was read the article
array:23 [ "pii" => "S0301054620300380" "issn" => "03010546" "doi" => "10.1016/j.aller.2019.12.011" "estado" => "S300" "fechaPublicacion" => "2020-09-01" "aid" => "1128" "copyright" => "SEICAP" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Allergol Immunopathol (Madr). 2020;48:441-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0301054620300392" "issn" => "03010546" "doi" => "10.1016/j.aller.2019.12.012" "estado" => "S300" "fechaPublicacion" => "2020-09-01" "aid" => "1129" "copyright" => "SEICAP" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Allergol Immunopathol (Madr). 2020;48:450-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Asthma, allergic sensitization and lung function in sickle cell disease" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "450" "paginaFinal" => "457" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2028 "Ancho" => 2917 "Tamanyo" => 100950 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0105" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Patterns of lung function in the sickle cell disease (SCD) group and in the control group (CG).</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Chi-squared test; * Fisher's exact test;</p> <p id="spar0015" class="elsevierStyleSimplePara elsevierViewall"># Likelihood ratio test</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Andrea Angel, Gustavo Falbo Wandalsen, Dirceu Solé, Fernanda C. Lanza, Carolina L.N. Cobra, Cintia Johnston, Josefina Aparecida Pellegrini Braga" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Andrea" "apellidos" => "Angel" ] 1 => array:2 [ "nombre" => "Gustavo Falbo" "apellidos" => "Wandalsen" ] 2 => array:2 [ "nombre" => "Dirceu" "apellidos" => "Solé" ] 3 => array:2 [ "nombre" => "Fernanda C." "apellidos" => "Lanza" ] 4 => array:2 [ "nombre" => "Carolina L.N." "apellidos" => "Cobra" ] 5 => array:2 [ "nombre" => "Cintia" "apellidos" => "Johnston" ] 6 => array:2 [ "nombre" => "Josefina Aparecida Pellegrini" "apellidos" => "Braga" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0301054620300392?idApp=UINPBA00004N" "url" => "/03010546/0000004800000005/v1_202009190755/S0301054620300392/v1_202009190755/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0301054620300379" "issn" => "03010546" "doi" => "10.1016/j.aller.2019.12.010" "estado" => "S300" "fechaPublicacion" => "2020-09-01" "aid" => "1127" "copyright" => "SEICAP" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Allergol Immunopathol (Madr). 2020;48:430-40" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "The <span class="elsevierStyleItalic">MEFV</span> gene and its association with familial Mediterranean fever, severe atopy, and recurrent respiratory tract infections" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "430" "paginaFinal" => "440" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M.H. Celiksoy, C. Dogan, B. Erturk, E. Keskin, B.S. Ada" "autores" => array:5 [ 0 => array:2 [ "nombre" => "M.H." "apellidos" => "Celiksoy" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Dogan" ] 2 => array:2 [ "nombre" => "B." "apellidos" => "Erturk" ] 3 => array:2 [ "nombre" => "E." "apellidos" => "Keskin" ] 4 => array:2 [ "nombre" => "B.S." "apellidos" => "Ada" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0301054620300379?idApp=UINPBA00004N" "url" => "/03010546/0000004800000005/v1_202009190755/S0301054620300379/v1_202009190755/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "441" "paginaFinal" => "449" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Xiaobo Xuan, Ziyan Sun, Chenhuan Yu, Jian Chen, Mei Chen, Qili Wang, Lan Li" "autores" => array:7 [ 0 => array:3 [ "nombre" => "Xiaobo" "apellidos" => "Xuan" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] 1 => array:3 [ "nombre" => "Ziyan" "apellidos" => "Sun" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] 2 => array:3 [ "nombre" => "Chenhuan" "apellidos" => "Yu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Jian" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "Mei" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "Qili" "apellidos" => "Wang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:4 [ "nombre" => "Lan" "apellidos" => "Li" "email" => array:1 [ 0 => "lilan99hz@163.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Experimental Animal centre, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2211 "Ancho" => 3167 "Tamanyo" => 777987 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The ingredient-target network of CAD. The blue node represents the target, and diamond nodes with different colors represent active ingredients from different herbs of CAD.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Asthma is a common chronic respiratory disease especially endemic among children. According to the epidemiological survey by the World Health Organization in 2015, there were approximately 334 million people (4.9% of the world's population) suffering from asthma, and 250,000 people die of asthma prematurely each year.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">1</span></a> Recent years have witnessed a rising tendency of the morbidity and mortality of asthma worldwide, which poses a serious threat to human health and medical resources.<a class="elsevierStyleCrossRefs" href="#bib0155"><span class="elsevierStyleSup">2,3</span></a> Studies have shown that many risk factors, including genetic susceptibility, allergens, air pollution, climate change, and respiratory virus infection are closely related to asthma.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">4</span></a> The pathogenesis of asthma is complex and has not been clearly elucidated, but the airway inflammation, accompanied by airway hyperresponsiveness and airway remodeling, are well-acknowledged characteristics of asthma. In the allergic reaction of asthma, allergens or pathogens that enter through body surfaces (e.g., the skin or lungs) are phagocytized by antigen-presenting cells, such as dendritic cells, which come to mature with the help of different cytokines.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">5</span></a> Th2 cells can produce pro-inflammatory cytokines, including IL4, IL5, and IL13 to exert their effects on many other cell types, including B cells, eosinophils, mast cells, epithelial cells, and airway goblet cells, and can also induce immunoglobulin E (IgE) production by B cells, resulting in the regulation of inflammation in asthma. Some drugs such as glucocorticoids, β2 receptor agonists, anti-cholinergic drugs, theophylline and leukotriene receptor antagonists, have also been approved for asthma treatment; however, the side effects and acquired resistance limit their clinical application.<a class="elsevierStyleCrossRefs" href="#bib0175"><span class="elsevierStyleSup">6–8</span></a> Thus, developing more safe and effective drugs for asthma therapy remains urgent and crucial.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Over thousands of years, traditional Chinese medicine has provided excellent therapeutic effects for asthma treatment in clinical practice.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">9</span></a> Traditional Chinese medicine possesses the advantages of “simple, convenient, economic, effective and individualized therapy”, which is in good accordance with the concept of modern medicine.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">10</span></a> Conciliatory anti-allergic decoction (CAD), a modified decoction comprising 10 herbs originating from the classical formula Xiao Chai Hu Tang by the well-known Chinese physician Zhang Zhongjing, has been widely used for asthma treatment in hospitals. Our former clinical research revealed that CAD can effectively reduce the frequency of asthma attacks and respiratory tract infection in children with asthma, enhance the immune function and anti-allergic ability of respiratory mucosa, and alleviate airway inflammation.<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">11</span></a> However, the therapeutic mechanism of CAD in asthma still remains unclear.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Our current study was designed to explore the anti-asthma mechanisms of CAD. Network pharmacology study was applied in this work since it can provide a novel strategy to uncover the bioactive ingredients and underlying mechanisms of CAD from a systemic and holistic perspective.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">12</span></a> With the approach of network pharmacology, the active ingredients and related targets relevant to asthma were screened out, an ingredients-targets network and a protein–protein interaction (PPI) network were constructed, gene functional enrichment analysis, and molecular docking of the targets were conducted to clarify the pharmacological mechanisms of the targets and ingredients in CAD. Furthermore, animal experiments were also performed to validate the pharmacological mechanisms of CAD in an asthma mouse model.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Screening of the active ingredients of CAD</span><p id="par0020" class="elsevierStylePara elsevierViewall">The CAD is composed of ten traditional Chinese herbs, including <span class="elsevierStyleItalic">Radix Bupleuri</span> (Chinese pinyin name Chaihu), <span class="elsevierStyleItalic">Scutellariae Radix</span> (Chinese pinyin name Huangqin), <span class="elsevierStyleItalic">Pseudostellariae Radix</span> (Chinese pinyin name Taizishen), <span class="elsevierStyleItalic">Arum Ternatum Thunb.</span> (Chinese pinyin name Banxia), <span class="elsevierStyleItalic">Radix Salviae</span> (Chinese pinyin name Danshen), <span class="elsevierStyleItalic">Ephedra Herba</span> (Chinese pinyin name Mahuang), <span class="elsevierStyleItalic">Fritillariae Thunbrgii Bulbus</span> (Chinese pinyin name Zhebeimu), <span class="elsevierStyleItalic">Farfarae Flos</span> (Chinese pinyin name Kuandonghua), <span class="elsevierStyleItalic">Cicadae Periostracum</span> (Chinese pinyin name Chantui), and <span class="elsevierStyleItalic">Licorice</span> (Chinese pinyin name Gancao). The ingredient information of these ten herbs was searched from the TCMSP database (<a href="http://ibts.hkbu.edu.hk/LSP/tcmsp.php">http://ibts.hkbu.edu.hk/LSP/tcmsp.php</a>). Data on the molecule name, 2D structure, Pubchem ID, pharmacological and molecular properties of the ingredients could all be obtained from that database. The ADME system parameters were used as the criteria to select the candidate active ingredients in each herb with oral bioavailability (OB) ≥30, drug-likeness (DL) ≥0.18 and half-life (HL) ≥4 based on the suggestion by the TCMSP database.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Prediction and screening of candidate targets</span><p id="par0025" class="elsevierStylePara elsevierViewall">The targets linked to the active ingredients in CAD were searched and predicted from the TCMSP database and STITCH database (<a href="http://stitch.embl.de/">http://stitch.embl.de/</a>, ver. 5.0) with the ‘Homo sapiens’ species setting. The targets related to asthma were identified from the TTD (<a href="http://bidd.nus.edu.sg/group/cjttd/">http://bidd.nus.edu.sg/group/cjttd/</a>), OMIM (<a href="http://www.omim.org/">http://www.omim.org/</a>), and PharmGKB (<a href="https://www.pharmgkb.org/">https://www.pharmgkb.org/</a>) databases with ‘asthma’ as the input keyword. The target gene information, including IDs and names, was confirmed and standardized using UniProt (<a href="http://www.uniprot.org/">http://www.uniprot.org/</a>) and duplicate targets were removed to obtain drug-related targets and disease-related targets, respectively. The Venny diagram online tool (<a href="http://bioinfogp.cnb.csic.es/tools/venny/">http://bioinfogp.cnb.csic.es/tools/venny/</a>) was employed to screen the overlapped targets between ingredients and diseases.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Protein–protein interaction (PPI) and gene functional enrichment analysis of the targets</span><p id="par0030" class="elsevierStylePara elsevierViewall">The STRING database (<a href="https://string-db.org/">https://string-db.org/</a>) was used to explore the interactions, and the hub gene targets among the candidate targets were screened with the ‘Homo sapiens’ species setting. The interaction data obtained from STRING were imported into Cytoscape software to construct the PPI network, and the topological properties of the network were analyzed with the plugin tool “Network analyzer”. For the candidate targets, the Cytoscape software plugin tool Clue GO was applied to perform the biological process and KEGG pathway enrichment analysis with terms, and <span class="elsevierStyleItalic">P</span> value <0.05 was set as the significance criterion for the terms.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Molecular docking</span><p id="par0035" class="elsevierStylePara elsevierViewall">The crystal structure of the target protein was obtained from the Protein Data Bank (<a href="http://www.rcsb.org/">http://www.rcsb.org/</a>), and the 2D structure of the compound was downloaded from the PubChem database (<a href="https://pubchem.ncbi.nlm.nih.gov/">https://pubchem.ncbi.nlm.nih.gov/</a>). The docking exercise was conducted with the systemDock online tool (<a href="http://systemsdock.unit.oist.jp/iddp/home/index">http://systemsdock.unit.oist.jp/iddp/home/index</a>).</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Network construction</span><p id="par0040" class="elsevierStylePara elsevierViewall">The ingredient-target network and target-related pathway network were constructed by the Cytoscape software and analyzed with the plugin tool “Network analyzer” to obtain the topological properties of the network.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Pharmacological verification</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Animals</span><p id="par0045" class="elsevierStylePara elsevierViewall">BALB/c mice weighting 18–20<span class="elsevierStyleHsp" style=""></span>g were purchased from the Centre of Experimental Animals at the Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, China). The animal experiments were approved by the Ethics Committee of Zhejiang Traditional Chinese Medicine University (Hangzhou, China), and all animal procedures were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The mice were housed for a week at standard room temperature (20<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>°C) and relative humidity (55<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10%) under a 12<span class="elsevierStyleHsp" style=""></span>h light/dark cycle, with free access to water and food.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Experimental design and drug administration</span><p id="par0050" class="elsevierStylePara elsevierViewall">A total of 60 BALB/c mice were randomly divided into six groups (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10) as follows: control group; ovalbumin (OVA) group; OVA<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>low CAD group (10<span class="elsevierStyleHsp" style=""></span>mg/kg); OVA<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>medium CAD group (20<span class="elsevierStyleHsp" style=""></span>mg/kg); OVA<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>high CAD group (40<span class="elsevierStyleHsp" style=""></span>mg/kg); and OVA<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>dexamethasone (Dex) group (0.5<span class="elsevierStyleHsp" style=""></span>mg/kg). The OVA-induced asthma mouse model was established as previously published with slight modifications.<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">13</span></a> Briefly, the mice were sensitized by intraperitoneal injection of 2<span class="elsevierStyleHsp" style=""></span>mg/ml OVA/Al(OH)<span class="elsevierStyleInf">3</span> gel in a total volume of 0.5<span class="elsevierStyleHsp" style=""></span>ml or saline in the control group on days 1 and intraperitoneal injection of 0.2<span class="elsevierStyleHsp" style=""></span>ml on day 13 to enhance sensitization. From day 23, the mice were then challenged by intranasal inhalations with OVA (10<span class="elsevierStyleHsp" style=""></span>mg/mL) or PBS aerosol challenges for 30<span class="elsevierStyleHsp" style=""></span>min three times a week for 8 weeks. CAD (10, 20, 40<span class="elsevierStyleHsp" style=""></span>mg/kg) or Dex was administered intragastrically 1<span class="elsevierStyleHsp" style=""></span>h prior to OVA challenge. The control and OVA groups received PBS on the same schedule with the same volume.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">ELISA assay</span><p id="par0055" class="elsevierStylePara elsevierViewall">Twenty-four hours after the last OVA challenge, the mice were anesthetized with an inhalation of diethyl ether and sacrificed by exsanguination. Bronchoalveolar lavage fluid (BALF) was obtained by intratracheal instillation, and the lungs were lavaged three times with 0.8<span class="elsevierStyleHsp" style=""></span>ml of sterile PBS. The BALF from each sample was centrifuged, and supernatants were stored at −80<span class="elsevierStyleHsp" style=""></span>°C for subsequent analysis. The levels of TNF-α, IL4, IL5, IL10, and IL13 in BALF were measured by ELISA kits according to the manufacturer's instructions.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">HE staining and AB-PAS staining</span><p id="par0060" class="elsevierStylePara elsevierViewall">Lung tissues from each group were collected and fixed in 10% buffered formalin for 24<span class="elsevierStyleHsp" style=""></span>h, dehydrated, embedded in paraffin, and then cut into approximately 3-μm tissue sections. Subsequently, the tissue sections were stained with hematoxylin and eosin (H&E) to evaluate the degree of peribronchial and perivascular inflammation, and stained with Alcian blue-periodic acid Schiff (AB-PAS) to identify goblet cells in the epithelium and measure mucus production, respectively. The degree of peribronchial inflammation was scored in a blinded manner according to the following criteria: 0, no cells; 1, a few cells; 2, a ring of cells one cell layer deep; 3, a ring of cells two to four cells deep; and 4, a ring of cells of more than four cells deep. The degree of mucus production and goblet cell hyperplasia in the airway epithelium were also quantified in a blinded manner using a five-point scoring system: 0, no goblet cells; 1, 25%; 2, 25–50%; 3, 50–75%; and 4, 75%.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">14</span></a></p></span></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Statistical analysis</span><p id="par0065" class="elsevierStylePara elsevierViewall">The experimental data are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation (SD). Differences between groups were analyzed using one-way analysis of variance (ANOVA) followed by Bonferroni's test. <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 was considered to be significant.</p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Results</span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Active ingredients and candidate targets in CAD</span><p id="par0070" class="elsevierStylePara elsevierViewall">A total of 77 active ingredients were screened from the TCMSP database according to the ADME criteria, with six compounds in <span class="elsevierStyleItalic">Radix Bupleuri</span>, 13 compounds in <span class="elsevierStyleItalic">Scutellariae Radix</span>, three compounds in <span class="elsevierStyleItalic">Pseudostellariae Radix</span>, five compounds in <span class="elsevierStyleItalic">Arum Ternatum Thunb.</span>, 27 compounds <span class="elsevierStyleItalic">Radix Salviae</span>, nine compounds in <span class="elsevierStyleItalic">Ephedra Herba</span>, one compound in <span class="elsevierStyleItalic">Fritillariae Thunbrgii Bulbus</span>, four compounds in <span class="elsevierStyleItalic">Farfarae Flos</span>, two compounds in <span class="elsevierStyleItalic">Cicadae Periostracum</span>, and 27 compounds in <span class="elsevierStyleItalic">Licorice</span>. Although the ingredients in CAD are complex, some compounds were repeated among the herbs, like quercetin, kaempferol, stigmasterol, beta-sitosterol, luteolin, acacetin, naringenin, and baicalin, which exist in more than two herbs of CAD. Based on the DrugBank and STITCH databases, a total of 392 proteins were linked to the 77 identified ingredients, thus forming an ingredient-related target network (see <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). Based on the TTD, OMIM, and PharmGKB databases, a total of 345 proteins were identified to be related to asthma in the asthma target network. According to the Venny diagram, 48 proteins were found to be overlapped in the two networks and thus concluded as CAD ingredient-related targets for asthma treatment.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Ingredient-target network of CAD for asthma treatment</span><p id="par0075" class="elsevierStylePara elsevierViewall">The ingredient-target network of CAD for asthma treatment was visualized by Cytoscape and is shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>. There were 147 nodes and 666 edges in the network. 48 blue elliptic nodes represent 48 targets, and diamond nodes with different kinds of colors represent ingredients in different herbs. The six compounds in <span class="elsevierStyleItalic">Radix Bupleuri</span> targeted 33 proteins in the network, 13 compounds in <span class="elsevierStyleItalic">Scutellariae Radix</span> targeted 26 proteins in the network, three compounds in <span class="elsevierStyleItalic">Pseudostellariae Radix</span> targeted 21 proteins in the network, five compounds in <span class="elsevierStyleItalic">Arum Ternatum Thunb.</span> targeted 23 proteins in the network, 27 compounds in <span class="elsevierStyleItalic">Radix Salviae</span> targeted 29 proteins in the network, nine compounds in <span class="elsevierStyleItalic">Ephedra Herba</span> targeted 33 proteins in the network, one compound in <span class="elsevierStyleItalic">Fritillariae Thunbrgii Bulbus</span> targeted nine proteins in the network, four compounds in <span class="elsevierStyleItalic">Farfarae Flos</span> targeted 28 proteins in the network, two compounds in <span class="elsevierStyleItalic">Cicadae Periostracum</span> targeted six proteins in the network, and 27 compounds in <span class="elsevierStyleItalic">Licorice</span> targeted 33 proteins in the network. Quercetin had the highest degree with 20 proteins targeted, followed by kaempferol with 12 targets, wogonin with 10 targets, stigmasterol, luteolin, beta-sitosterol and acacetin with nine targets, etc. The ingredient-target network has properties of complex ingredients, multiple targets, and close interactions between ingredients and targets, thus forming a network for asthma treatment.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Gene Ontology enrichment analysis</span><p id="par0080" class="elsevierStylePara elsevierViewall">With the Cytoscape software plugin tool Clue GO, gene functional enrichment analysis was performed (see <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>a). Each node represents a biological process term, and node size represents term enrichment significance. Different colors represent different clusters. Gene biological process analysis showed that these 48 targets were enriched in 225 significant terms of biological process, and these biological process terms also interact closely with each other and are assigned in several clusters, thus forming a complex and compact network. The top 20 terms with their respective <span class="elsevierStyleItalic">P</span> values are also presented. These targets were mainly enriched in biological processes including cytokine production involved in immune response, the positive regulation of inflammatory response, regulation of IL12 production, IL8 production, the positive regulation of receptor signaling pathway via JAK-STAT, the regulation of TNF superfamily cytokine production, endothelial cell apoptotic process, nitric oxide metabolic/biosynthetic process, etc.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Potential target-related pathway analysis</span><p id="par0085" class="elsevierStylePara elsevierViewall">KEGG pathway analysis of the targets was also conducted, and the results are shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b. KEGG pathway network showed that these targets were significantly enriched in 40 pathway terms, which were assigned into five clusters and interacted closely with each other. The significant pathways that these targets were enriched in mainly include the asthma pathway, IL17 signaling pathway, T cell receptor signaling pathway, TNF signaling pathway, Th1 and Th2 cell differentiation, JAK-STAT signaling pathway, HIF-1 signaling pathway, NF-κB signaling pathway, etc. The pathway analysis results also demonstrated that each target was involved in several pathways, and accordingly, each pathway was enriched with several targets, thus forming a multiple target–multiple pathway network that directly or indirectly affects the occurrence and progression of asthma. Among these pathways, the asthma pathway was directly related to asthma, and five out of the 48 targets (TNF, IL4, IL5, IL10, IL13) were involved in this pathway with a term <span class="elsevierStyleItalic">P</span> value<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.16E−06 (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b), indicating that CAD might interact with these targets, thus directly influencing the asthma pathway to play a protective role for asthma treatment.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">PPI network analysis</span><p id="par0090" class="elsevierStylePara elsevierViewall">The PPI network is presented in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>a, there were 48 nodes and 285 edges in the network with a medium degree of six for each node. The network topological properties of the targets, such as degree, and closeness centrality were also analyzed according to the “Network analyzer” tool in Cytoscape. The node size and color of each target were positively related to the node degree. TNF (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>29), PTGS2 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>29), IL10 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26), TLR4 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>25), IL4 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>24), CCL2 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>23), IFNG (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>21), and TLR2 (degree<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>21) were selected as the important targets from the PPI network with degree >20.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Molecular docking of the ingredients binding to asthma pathway related targets</span><p id="par0095" class="elsevierStylePara elsevierViewall">Since the KEGG pathway analysis revealed that CAD's ingredient-related targets were involved in the asthma pathway, we used molecular docking analysis to validate the binding property of the asthma-related targets TNF, IL4, IL5, IL10, IL13 and the linked active ingredients with docking score. As shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>b, TNF native ligand had a docking score of 4.79, while stigmasterol, kaempferol, quercetin, luteolin, and cryptotanshinone in CAD that targeted TNF all had higher scores than that of the native ligand, which suggested that these active ingredients possess ideal interactions with TNF. The docking results of all five targets are shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. It can be concluded that the majority of the ingredients have a higher score than the native ligand for the corresponding targets, which indicates that the ingredients in CAD can closely interact with the predicted targets and can thus influence asthma-related pathways.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Effects of CAD on the histological changes in OVA-induced asthmatic mice lungs</span><p id="par0100" class="elsevierStylePara elsevierViewall">To evaluate the therapeutic effect of CAD, histological studies of the lung tissues in different groups were performed. Compared with the control group, it can be observed that there was abundant inflammatory cell invasion into the peribronchial and perivascular areas in OVA-induced asthma mouse lung tissues stained by HE (see <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>a). When CAD or Dex was administered at different doses, the inflammatory cell invasion was markedly attenuated, especially in the high CAD group and Dex group (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05). AB-PAS staining was used to evaluate the presence of goblet cell hyperplasia and mucus secretion. As shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>b, the overexpression of goblet cell hyperplasia and mucus oversecretion can be observed in the bronchial airways of OVA group lung tissues. CAD in high doses (40<span class="elsevierStyleHsp" style=""></span>mg/kg) and Dex can efficiently alleviate goblet cell hyperplasia and mucus secretion compared with the asthma model group (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span><span id="sec0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Effect of CAD on TNF-α, IL4, IL5, IL10, and IL13 levels in BALF</span><p id="par0105" class="elsevierStylePara elsevierViewall">The levels of TNF-α, IL4, IL5, IL10, and IL13 in BALF were detected with ELISA and the results are shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>c. Compared to that in the normal control group, the levels of TNF-α, IL4, IL5, IL10, and IL13 in the OVA-induced asthma group were significantly elevated (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). After administration of CAD at different doses, the levels of these pro-inflammatory cytokines decreased to varying degrees. For TNF-α, CAD (40<span class="elsevierStyleHsp" style=""></span>mg/kg) or Dex could significantly reduce the level of TNF-α in BALF (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), the same trend was also observed for IL4. For IL5 and IL13, the administration of 20<span class="elsevierStyleHsp" style=""></span>mg/kg CAD reduced the levels in BALF (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05), and with 40<span class="elsevierStyleHsp" style=""></span>mg/kg CAD or Dex, the levels decreased significantly (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). For IL10, the changes in level among the experiment groups were not significant.</p></span></span><span id="sec0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Discussion</span><p id="par0110" class="elsevierStylePara elsevierViewall">Asthma is a chronic inflammatory disease of the airway with high morbidity and mortality globally. Numerous traditional Chinese medicines have excellent therapeutic effects for asthma, including CAD. Compared with the well-applied treatments in the clinic, the pharmacological mechanisms of CAD have not been researched clearly. In the present study, we applied network pharmacology to explore the anti-asthma mechanisms of CAD. A total of 77 active ingredients and 48 asthma-related targets of CAD were identified from the databases. Ingredient-target network and PPI network revealed that these ingredients and targets interact closely with each other. Pathway enrichment analysis also showed that these targets were directly or indirectly involved in asthma-related pathways. The molecular docking exercise showed that the majority of the active ingredients have a higher binding score than the native ligand binding to the corresponding targets. In the OVA-induced asthma mouse model, CAD administration efficiently attenuated airway inflammation and mucus production, and the expression of the hub targets were also decreased with CAD treatment.</p><p id="par0115" class="elsevierStylePara elsevierViewall">CAD comprises 10 herbs, Radix Bupleuri, Scutellariae Radix, Pseudostellariae Radix, Arum Ternatum Thunb., Radix Salviae, Ephedra Herba, Fritillariae Thunbrgii Bulbus, Farfarae Flos, Cicadae Periostracum, and Licorice. Most of these herbs have been proven to have anti-inflammatory and anti-allergic activities, due to the complex active compounds in these herbs. Quercetin, one the most important ingredients, was found in four herbs of CAD with 20 targets; it was reported to regulate Th1/Th2 balance in asthma, reduce the level of IL4, and increase the level of IFN-γ, and restrain antigen-specific IgE antibody formation.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">15</span></a> Kaempferol, identified in four out of the ten herbs of CAD, was reported to suppress eosinophil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma by disturbing NF-κB signaling.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">16</span></a> Baicalin, screened from Radix Bupleuri, Arum Ternatum Thunb., and Radix Salviae, was reported to inhibit airway remodeling in asthmatic mice by decreasing the expression of TGF-β1, IL13, and VEGF and inhibiting the activation of the extracellular signal-regulated kinase pathway.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">17</span></a> Stigmasterol in CAD was also reported with significant anti-asthmatic properties and had suppressive effects on the key features of allergen-induced asthma.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">18</span></a> Wogonin identified from Scutellariae Radix attenuated OVA-induced airway inflammation in a mouse model of asthma via the suppression of IL4/STAT6 signaling.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">19</span></a> These studies demonstrated that the major active ingredients identified from CAD were efficient for asthma treatment and accordingly confirmed the therapeutic effect of CAD.</p><p id="par0120" class="elsevierStylePara elsevierViewall">The pathway enrichment analysis in the present study revealed that TNF, IL4, IL5, IL10, IL13 were directly enriched in the asthma pathway. And several targets including TNF, PTGS2, IL10, TLR4, IL4, CCL2, IFN-γ, and TLR2 were also regarded as important targets according to their topological properties in the PPI network. TNF-α and IFN-γ belong to Th1 cell cytokines, IL4, IL5, and IL13 belong to Th2 cell cytokines, and the imbalance of Th1/Th2 cells is related to the pathogenesis of asthma. TNF-α, the most studied pro-inflammatory cytokine of the TNF family, is produced by several pro-inflammatory cells (mainly macrophages, but also monocytes, dendritic cells, B-cells, CD4+ cells, neutrophils, mast cells and eosinophils) and is known to be crucial in the pathogenesis of asthma.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">20</span></a> Its elevated expression can be involved in the development and progression of airway pathology in asthma, and has recently been highlighted as potentially important for asthma. The development of neutralizing biological agents against TNF-α is also a therapeutic strategy for asthma with improvement in lung function, airway hyper-responsiveness and quality-of-life in patients.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">21</span></a> The administration of IFN-γ has the ability to elevate airway hyper-responsiveness via the up-regulation of neurokinin A/neurokinin-2 receptor signaling in severe asthma.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">22</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">The Th2 cytokines including IL4, IL5, and IL13 are critical in the pathogenesis of asthma, since they contribute to hallmarks of this disease, including airway inflammation, airway eosinophilia, increased mucus production, goblet cell hyperplasia, production of allergen-specific IgE and development of airway hyper-responsiveness.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">23</span></a> IL4 plays a key role in inducing T cell polarization into Th2 cells, and the subsequent generation of IL4, IL5, and IL13 by Th2 cells.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">5</span></a> IL5 can induce eosinophilia in lung tissues during asthma via the production of eotaxins to activate the recruitment of eosinophils to the lung tissues. Similar to IL4 and sharing the same signaling pathways, IL13 and its receptor IL13Rα1 can be detected in eosinophils, B cells, macrophages, smooth muscle cells, lung epithelial cells, airway goblet cells, and endothelial cells. Antagonists targeting at IL4, IL5, and IL13 have also been developed as a therapeutic strategy in asthma.<a class="elsevierStyleCrossRefs" href="#bib0265"><span class="elsevierStyleSup">24,25</span></a> The active ingredients, including quercetin, kaempferol, stigmasterol, luteolin, and cryptotanshinone in CAD, were identified to target TNF, IL4, IL5, IL10, and IL13, and the molecular docking also proved the ideal binding score between these cytokines and active ingredients. In the asthma mouse model of our study, elevated levels of these Th1 and Th2 cytokines were also detected, and the CAD-treated group showed a significant decrease in cytokines expression in a dose-dependent manner. It can be indicated that CAD efficiently targets Th1 and Th2 cell cytokines, maintains Th1/Th2 balance, and inhibits the asthma pathway, thus exerting curative effects on asthma.</p><p id="par0130" class="elsevierStylePara elsevierViewall">In the pathogenesis of asthma, except for the central role of Th2 cells cytokines (IL4, IL5, IL10, IL13), or Th1 cells cytokines (TNF-α, IFN-γ), the signaling pathways involved with various targets are also vitally important. The NF-κB signaling pathway is one of the most important cellular signal transduction pathways that is essential for apoptosis, tumorigenesis, inflammation, viral infections, and various autoimmune diseases. The expression of the NF-κB signaling pathway can be abnormally activated in asthma, thus regulating many downstream targets and the secretion of pro-inflammatory cytokines to accelerate the progression of asthma.<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">26</span></a> Studies have found that airway inflammation can be alleviated via inhibition of the NF-κB pathway in asthma.<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">27,28</span></a> The differentiation of Th1 and Th2 cells from naive T cells occurs primarily via the JAK/STAT signaling pathway. IFN-γ-induced JAK/STAT signaling pathway is reported to be responsible for glucocorticoid insensitive in airway epithelial cells, and this steroid responsiveness of insensitive can be restored by the transfection of cells with siRNA-STAT1.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">29</span></a></p><p id="par0135" class="elsevierStylePara elsevierViewall">In conclusion, the protective effect and underlying mechanism of CAD on asthma was explored in the current study. The multiple active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin and related targets for asthma, mainly including TNF, IL4, IL5, IL10, IL13, and IFN-γ, were identified with ideal binding scores by network pharmacology. KEGG pathway analysis revealed that these targets were involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB signaling pathway, IL17 signaling pathway, T cell receptor signaling pathway, TNF signaling pathway, JAK-STAT signaling pathway, HIF-1 signaling pathway, etc.). Animal experiments also proved the therapeutic role of CAD in asthma by attenuating airway inflammation and mucus production and inhibiting the expression of Th1 and Th2 cytokines. Our study looked forward to providing a new perspective for developing traditional Chinese medicine on asthma therapy.</p></span><span id="sec0120" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Funding</span><p id="par0140" class="elsevierStylePara elsevierViewall">This work was funded by Zhejiang Provincia Natural Science Foundation of China (grant number LY15H270006).</p></span><span id="sec0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Conflict of interest</span><p id="par0145" class="elsevierStylePara elsevierViewall">The authors have no conflict of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:9 [ 0 => array:3 [ "identificador" => "xres1387877" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1273431" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:7 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Screening of the active ingredients of CAD" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Prediction and screening of candidate targets" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Protein–protein interaction (PPI) and gene functional enrichment analysis of the targets" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Molecular docking" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Network construction" ] 5 => array:3 [ "identificador" => "sec0040" "titulo" => "Pharmacological verification" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Animals" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "Experimental design and drug administration" ] 2 => array:2 [ "identificador" => "sec0055" "titulo" => "ELISA assay" ] 3 => array:2 [ "identificador" => "sec0060" "titulo" => "HE staining and AB-PAS staining" ] ] ] 6 => array:2 [ "identificador" => "sec0065" "titulo" => "Statistical analysis" ] ] ] 4 => array:3 [ "identificador" => "sec0070" "titulo" => "Results" "secciones" => array:8 [ 0 => array:2 [ "identificador" => "sec0075" "titulo" => "Active ingredients and candidate targets in CAD" ] 1 => array:2 [ "identificador" => "sec0080" "titulo" => "Ingredient-target network of CAD for asthma treatment" ] 2 => array:2 [ "identificador" => "sec0085" "titulo" => "Gene Ontology enrichment analysis" ] 3 => array:2 [ "identificador" => "sec0090" "titulo" => "Potential target-related pathway analysis" ] 4 => array:2 [ "identificador" => "sec0095" "titulo" => "PPI network analysis" ] 5 => array:2 [ "identificador" => "sec0100" "titulo" => "Molecular docking of the ingredients binding to asthma pathway related targets" ] 6 => array:2 [ "identificador" => "sec0105" "titulo" => "Effects of CAD on the histological changes in OVA-induced asthmatic mice lungs" ] 7 => array:2 [ "identificador" => "sec0110" "titulo" => "Effect of CAD on TNF-α, IL4, IL5, IL10, and IL13 levels in BALF" ] ] ] 5 => array:2 [ "identificador" => "sec0115" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "sec0120" "titulo" => "Funding" ] 7 => array:2 [ "identificador" => "sec0125" "titulo" => "Conflict of interest" ] 8 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-08-20" "fechaAceptado" => "2019-12-23" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1273431" "palabras" => array:6 [ 0 => "Asthma" 1 => "Conciliatory anti-allergic decoction" 2 => "Active ingredients" 3 => "Targets" 4 => "Pro-inflammatory cytokines" 5 => "Pathways" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">This study aimed to explore the underlying anti-asthma pharmacological mechanisms of conciliatory anti-allergic decoction (CAD) with a network pharmacology approach.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Traditional Chinese medicine related databases were utilized to screen the active ingredients of CAD. Targets of CAD for asthma treatment were also identified based on related databases. The protein-protein interaction network, biological function and KEGG pathway enrichment analysis, and molecular docking of the targets were performed. Furthermore, an asthma mouse model experiment involving HE staining, AB-PAS staining, and ELISA was also performed to assess the anti-asthma effect of CAD.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">There were 77 active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin, and 48 related targets for asthma treatment, mainly including TNF, IL4, IL5, IL10, IL13 and IFN-γ, were identified with ideal molecular docking binding scores by network pharmacology analysis. KEGG pathway analysis revealed that these targets were directly involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB, IL17, T cell receptor, TNF, JAK-STAT signaling pathways, etc.). Animal experiments also confirmed that CAD could attenuate inflammatory cell invasion, goblet cell hyperplasia and mucus secretion. The levels of the major targets TNF-α, IL4, IL5, and IL13 can also be regulated by CAD in an asthma mouse model.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusion</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">The anti-asthma mechanism of CAD possibly stemmed from the active ingredients targeting asthma-related targets, which are involved in the asthma pathway and signaling pathways to exhibit therapeutic effects.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] ] "NotaPie" => array:1 [ 0 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Xiaobo Xuan and Ziyan Sun contributed equally to this work.</p>" "identificador" => "fn0005" ] ] "multimedia" => array:6 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2562 "Ancho" => 2917 "Tamanyo" => 723184 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Candidate target screening in CAD for asthma treatment. CAD: conciliatory anti-allergic decoction.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2211 "Ancho" => 3167 "Tamanyo" => 777987 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The ingredient-target network of CAD. The blue node represents the target, and diamond nodes with different colors represent active ingredients from different herbs of CAD.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1997 "Ancho" => 3250 "Tamanyo" => 663038 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Gene functional enrichment analysis of the targets. (a) Gene Ontology enrichment analysis. In Gene Ontology enrichment network, each node represents a biological process term, with different colors assigned to different clusters. The top 20 significant terms of biological processes were also presented as a bubble diagram. (b) Target-related KEGG pathway analysis. KEGG pathway network and the enriched pathways bubble diagram of the targets were presented; these targets were enriched in the asthma pathway, and the genes with red color in the asthma pathway represent CAD related targets. The figure of the asthma pathway was downloaded from the KEGG database (<span class="elsevierStyleInterRef" id="intr0005" href="https://www.genome.jp/kegg/">https://www.genome.jp/kegg/</span>).</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1713 "Ancho" => 3250 "Tamanyo" => 526910 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">(a) PPI network of CAD related targets. The node size and color of each target were positively related to the node degree. (b) Molecular docking exercise of ingredients binding to TNF.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1637 "Ancho" => 3250 "Tamanyo" => 938548 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Effect of CAD on OVA-induced asthmatic mice. (a) Effect of CAD on airway inflammation of asthma mice (HE staining, ×400); (b) effect of CAD on mucus hypersecretion of asthma mice (AB-PAS staining, ×400); (c) effect of CAD on TNF-α, IL4, IL5, IL10, and IL13 levels in mice BALF. The data presented are the means<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 or **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01 vs. the OVA group. BALF: bronchoalveolar lavage fluid.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">TNF \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">IL4 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">IL5 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">IL10 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">IL13 \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Native ligand \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.79 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.28 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Stigmasterol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Kaempferol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.56 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Quercetin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.92 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Luteolin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.37 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cryptotanshinone \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Formononetin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Acacetin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.08 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2382473.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Molecular docking of the TNF, IL4, IL5, IL10, IL13 and linked active ingredients.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:29 [ 0 => array:3 [ "identificador" => "bib0150" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The epidemiology of noncommunicable respiratory disease in sub-Saharan Africa, the Middle East, and North Africa" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Ahmed" 1 => "R. Robinson" 2 => "K. Mortimer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Malawi Med" "fecha" => "2017" "volumen" => "29" "paginaInicial" => "203" "paginaFinal" => "211" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0155" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "D.G. Amato" 1 => "C.E. Cagnani" 2 => "L. Cecchi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/2049-6958-8-12" "Revista" => array:5 [ "tituloSerie" => "Multidiscip Respir Med" "fecha" => "2013" "volumen" => "8" "paginaInicial" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23398734" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0160" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rising to the GINA Asthma Challenge: thinking beyond just asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "Z. Pond" 1 => "H. Burke" 2 => "C. Duffus" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1183/09031936.00036712" "Revista" => array:6 [ "tituloSerie" => "Eur. Respir. J." "fecha" => "2012" "volumen" => "40" "paginaInicial" => "280" "paginaFinal" => "281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22753843" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0165" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Phenotypes, risk factors, and mechanisms of adult-onset asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "I. Pinja" 1 => "L.E. Tuomisto" 2 => "K. Hannu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mediators Inflamm." "fecha" => "2015" "volumen" => "2015" "paginaInicial" => "1" "paginaFinal" => "19" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0170" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Novel biologicals for the treatment of allergic diseases and asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H.T. Tan" 1 => "K. Sugita" 2 => "C.A. Akdis" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11882-016-0650-5" "Revista" => array:5 [ "tituloSerie" => "Curr. Allergy Asthma Rep." "fecha" => "2016" "volumen" => "16" "paginaInicial" => "70" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27613653" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0175" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Emerging drugs for asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Quirce" 1 => "I. Bobolea" 2 => "P. Barranco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1517/14728214.2012.683410" "Revista" => array:6 [ "tituloSerie" => "Expert Opin Emerg Drugs" "fecha" => "2012" "volumen" => "17" "paginaInicial" => "219" "paginaFinal" => "237" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22607631" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0180" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Drug repurposing to treat asthma and allergic disorders: progress and prospects" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.L. Kruse" 1 => "K. Vanijcharoenkarn" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/all.13305" "Revista" => array:6 [ "tituloSerie" => "Allergy" "fecha" => "2018" "volumen" => "73" "paginaInicial" => "313" "paginaFinal" => "322" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28880396" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0185" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of roflumilast and zileuton on the contraction of airway smooth muscle of asthmatic rat" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "X.Y. Zheng" 1 => "S.D. Song" 2 => "Y.Y. Hong" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chin J Mod Appl Pharm" "fecha" => "2019" "volumen" => "36" "paginaInicial" => "269" "paginaFinal" => "273" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0190" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Traditional Chinese herbal remedies for asthma and food allergy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "X.M. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaci.2007.04.030" "Revista" => array:6 [ "tituloSerie" => "J. Allergy Clin. Immunol." "fecha" => "2007" "volumen" => "120" "paginaInicial" => "25" "paginaFinal" => "31" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17560638" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0195" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Precision medicine and innovative development of traditional Chinese medicine (TCM), modernization of Traditional Chinese Medicine and Materia Medica" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C. Kaixian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "World Sci Technol" "fecha" => "2017" "volumen" => "19" "paginaInicial" => "7" "paginaFinal" => "18" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0200" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of Chinese medication on the immune function and chronic airway inflammation in asthma children at chronic duration stage" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "L. Li" 1 => "H. Chen" 2 => "J. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Trad Chin Med" "fecha" => "2012" "volumen" => "53" "paginaInicial" => "2011" "paginaFinal" => "2013" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0205" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: a network pharmacology study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Song" 1 => "S. Ni" 2 => "Y. Fu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41598-018-35791-9" "Revista" => array:5 [ "tituloSerie" => "Sci Rep" "fecha" => "2018" "volumen" => "8" "paginaInicial" => "17362" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30478434" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0210" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of taraxasterol on ovalbumin-induced allergic asthma in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Liu" 1 => "H. Xiong" 2 => "Y. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jep.2013.05.006" "Revista" => array:6 [ "tituloSerie" => "J. Ethnopharmacol." "fecha" => "2013" "volumen" => "148" "paginaInicial" => "787" "paginaFinal" => "793" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23727181" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0215" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "X. Yang" 1 => "Y. Li" 2 => "Y. He" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.intimp.2015.04.017" "Revista" => array:6 [ "tituloSerie" => "Int. Immunopharmacol." "fecha" => "2015" "volumen" => "26" "paginaInicial" => "401" "paginaFinal" => "408" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25912153" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0220" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quercetin regulates Th1/Th2 balance in a murine model of asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "H.J. Park" 1 => "C.M. Lee" 2 => "I.D. Jung" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.intimp.2008.10.021" "Revista" => array:6 [ "tituloSerie" => "Int. Immunopharmacol." "fecha" => "2009" "volumen" => "9" "paginaInicial" => "261" "paginaFinal" => "267" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19061976" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0225" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.H. Gong" 1 => "D. Shin" 2 => "S.Y. Han" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3945/jn.111.150748" "Revista" => array:6 [ "tituloSerie" => "J. Nutr." "fecha" => "2012" "volumen" => "142" "paginaInicial" => "47" "paginaFinal" => "56" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22157542" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0230" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of baicalin on airway remodeling in asthmatic mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Sun" 1 => "L.L. Li" 2 => "J.F. Wu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1055/s-0032-1328197" "Revista" => array:6 [ "tituloSerie" => "Planta Med." "fecha" => "2013" "volumen" => "79" "paginaInicial" => "199" "paginaFinal" => "206" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23378200" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0235" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.A. Opoku" 1 => "O.D. Darko" 2 => "O. Newman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Mediators Inflamm." "fecha" => "2017" "paginaInicial" => "1" "paginaFinal" => "11" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0240" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wogonin, a plant flavone from <span class="elsevierStyleItalic">Scutellariae radix</span>, attenuated ovalbumin-induced airway inflammation in mouse model of asthma via the suppression of IL-4/STAT6 signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "E.K. Ryu" 1 => "T.H. Kim" 2 => "E.J. Jang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3164/jcbn.15-45" "Revista" => array:6 [ "tituloSerie" => "J Clin Biochem Nutr" "fecha" => "2015" "volumen" => "57" "paginaInicial" => "105" "paginaFinal" => "112" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26388667" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0245" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role and pharmacogenomics of TNF-alpha in asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "K. Spiropoulos" 1 => "K. Karkoulias" 2 => "A. Kaparianos" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mini Rev. Med. Chem." "fecha" => "2008" "volumen" => "8" "paginaInicial" => "934" "paginaFinal" => "942" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0250" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "TNF-alpha in asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Berry" 1 => "C. Brightling" 2 => "I. Pavord" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.coph.2007.03.001" "Revista" => array:6 [ "tituloSerie" => "Curr. Opin. Pharmacol." "fecha" => "2007" "volumen" => "7" "paginaInicial" => "279" "paginaFinal" => "282" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17475560" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0255" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Kobayashi" 1 => "S. Ashino" 2 => "Y. Shiohama" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/eji.201141845" "Revista" => array:6 [ "tituloSerie" => "Eur. J. Immunol." "fecha" => "2012" "volumen" => "42" "paginaInicial" => "393" "paginaFinal" => "402" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22105467" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0260" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Th2 cells as targets for therapeutic intervention in allergic bronchial asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Wegmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1586/14737159.9.1.85" "Revista" => array:6 [ "tituloSerie" => "Expert Rev. Mol. Diagn." "fecha" => "2009" "volumen" => "9" "paginaInicial" => "85" "paginaFinal" => "100" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19099351" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0265" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biologics targeting IL-5, IL-4 or IL-13 for the treatment of asthma – an update" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.M. Walsh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/1744666X.2016.1216316" "Revista" => array:6 [ "tituloSerie" => "Expert Rev Clin Immunol" "fecha" => "2017" "volumen" => "13" "paginaInicial" => "143" "paginaFinal" => "149" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27459348" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0270" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recent developments in the use of biologics targeting IL-5, IL-4 or IL-13 in severe refractory asthma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.M. Walsh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Expert Rev Respir Med" "fecha" => "2018" "volumen" => "2" "paginaInicial" => "957" "paginaFinal" => "963" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0275" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Establishment of a high-throughput drug screening cell inflammatory model based on NF-κB signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "N.N. Wang" 1 => "Y.L. Tong" 2 => "X. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chin J Mod Appl Pharm" "fecha" => "2019" "volumen" => "36" "paginaInicial" => "397" "paginaFinal" => "402" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0280" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alleviating airway inflammation by inhibiting ERK-NF-κB signaling pathway by blocking Kv1.3 channels" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Q.L. Zhou" 1 => "T.Y. Wang" 2 => "M. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0199167" "Revista" => array:5 [ "tituloSerie" => "PLoS ONE" "fecha" => "2018" "volumen" => "13" "paginaInicial" => "e0199167" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30044776" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0285" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deguelin attenuates allergic airway inflammation via inhibition of NF-κb pathway in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "B. Zhang" 1 => "Z. Pei" 2 => "Y. Yinan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.7150/ijbs.17238" "Revista" => array:6 [ "tituloSerie" => "Int J Biol Sci" "fecha" => "2017" "volumen" => "13" "paginaInicial" => "492" "paginaFinal" => "504" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28529457" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0290" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IFN-γ-induced JAK/STAT, but not NF-κB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "D. O’Connell" 1 => "B. Bouazza" 2 => "B. Kokalari" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajplung.00099.2015" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Lung Cell Mol Physiol" "fecha" => "2015" "volumen" => "309" "paginaInicial" => "L348" "paginaFinal" => "L359" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26092996" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/03010546/0000004800000005/v1_202009190755/S0301054620300380/v1_202009190755/en/main.assets" "Apartado" => array:4 [ "identificador" => "5554" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/03010546/0000004800000005/v1_202009190755/S0301054620300380/v1_202009190755/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0301054620300380?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 0 | 2 |
2024 October | 48 | 13 | 61 |
2024 September | 40 | 8 | 48 |
2024 August | 56 | 10 | 66 |
2024 July | 55 | 11 | 66 |
2024 June | 55 | 14 | 69 |
2024 May | 57 | 4 | 61 |
2024 April | 72 | 10 | 82 |
2024 March | 54 | 10 | 64 |
2024 February | 61 | 14 | 75 |
2024 January | 16 | 8 | 24 |
2023 December | 42 | 5 | 47 |
2023 November | 68 | 19 | 87 |
2023 October | 39 | 6 | 45 |
2023 September | 50 | 10 | 60 |
2023 August | 49 | 6 | 55 |
2023 July | 49 | 3 | 52 |
2023 June | 44 | 9 | 53 |
2023 May | 94 | 18 | 112 |
2023 April | 101 | 17 | 118 |
2023 March | 40 | 4 | 44 |
2023 February | 15 | 11 | 26 |
2023 January | 29 | 4 | 33 |
2022 December | 37 | 9 | 46 |
2022 November | 46 | 7 | 53 |
2022 October | 82 | 12 | 94 |
2022 September | 41 | 16 | 57 |
2022 August | 37 | 17 | 54 |
2022 July | 18 | 10 | 28 |
2022 June | 22 | 9 | 31 |
2022 May | 34 | 12 | 46 |
2022 April | 37 | 19 | 56 |
2022 March | 42 | 24 | 66 |
2022 February | 43 | 11 | 54 |
2022 January | 67 | 17 | 84 |
2021 December | 31 | 16 | 47 |
2021 November | 26 | 23 | 49 |
2021 October | 38 | 34 | 72 |
2021 September | 35 | 21 | 56 |
2021 August | 49 | 17 | 66 |
2021 July | 44 | 26 | 70 |
2021 June | 125 | 16 | 141 |
2021 May | 42 | 22 | 64 |
2021 April | 65 | 30 | 95 |
2021 March | 23 | 22 | 45 |
2021 February | 14 | 23 | 37 |
2021 January | 16 | 13 | 29 |
2020 December | 1 | 1 | 2 |
2020 November | 1 | 2 | 3 |
2020 September | 3 | 2 | 5 |
2020 June | 0 | 2 | 2 |