array:24 [ "pii" => "S2173579422000767" "issn" => "21735794" "doi" => "10.1016/j.oftale.2021.11.002" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "1996" "copyright" => "Sociedad Española de Oftalmología" "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2022;97:370-5" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0365669122000399" "issn" => "03656691" "doi" => "10.1016/j.oftal.2021.11.002" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "1996" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2022;97:370-5" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Artículo original</span>" "titulo" => "Límites de la precisión en el resultado refractivo tras la cirugía de cataratas" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "370" "paginaFinal" => "375" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Limits of the precision in refractive results after cataract surgery" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figura 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1264 "Ancho" => 1507 "Tamanyo" => 86322 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Porcentaje de ojos en cada rango de error para la situación ideal y la descrita por Melles et al.<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">3</span></a> con la Barrett Universal-II. En la situación ideal el porcentaje de ojos entre + -0,50D del objetivo refractivo fue de 91,93% mientras que para la situación descrita por Melles et al.<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">3</span></a> fue 78,55%.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Romero Valero, J. Escolano Serrano, C.E. Monera Lucas, G. Castilla Martínez, J.J. Martínez Toldos" "autores" => array:5 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Romero Valero" ] 1 => array:2 [ "nombre" => "J." "apellidos" => "Escolano Serrano" ] 2 => array:2 [ "nombre" => "C.E." "apellidos" => "Monera Lucas" ] 3 => array:2 [ "nombre" => "G." "apellidos" => "Castilla Martínez" ] 4 => array:2 [ "nombre" => "J.J." "apellidos" => "Martínez Toldos" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173579422000767" "doi" => "10.1016/j.oftale.2021.11.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579422000767?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669122000399?idApp=UINPBA00004N" "url" => "/03656691/0000009700000007/v1_202207010747/S0365669122000399/v1_202207010747/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2173579422000548" "issn" => "21735794" "doi" => "10.1016/j.oftale.2022.03.008" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "1987" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2022;97:376-80" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Lid wiper epitheliopathy in patients with blepharospasm and/or hemifacial spasm" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "376" "paginaFinal" => "380" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Epiteliopatía en limpiaparabrisas en pacientes con blefaroespasmo o espasmo hemifacial" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 574 "Ancho" => 905 "Tamanyo" => 59087 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Epitheliopathy in the palpebral wiper area stained with lissamine green. The arrows delimit the vertical involvement between the Marx line or mucocutaneous junction (upper arrow) and the subtarsal fold (lower arrow).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M.D. Romero-Caballero, M.P. Salmerón Ato, A. Palazón-Cabanes, A. Caravaca-Alegría" "autores" => array:4 [ 0 => array:2 [ "nombre" => "M.D." "apellidos" => "Romero-Caballero" ] 1 => array:2 [ "nombre" => "M.P." "apellidos" => "Salmerón Ato" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Palazón-Cabanes" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "Caravaca-Alegría" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0365669122000156" "doi" => "10.1016/j.oftal.2021.10.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669122000156?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579422000548?idApp=UINPBA00004N" "url" => "/21735794/0000009700000007/v1_202206300612/S2173579422000548/v1_202206300612/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2173579422000664" "issn" => "21735794" "doi" => "10.1016/j.oftale.2022.05.002" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "2000" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2022;97:363-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The rs1800795 single nucleotide polymorphism in the <span class="elsevierStyleItalic">IL6</span> gene is not associated with primary open angle glaucoma in Mexican population" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "363" "paginaFinal" => "369" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "El polimorfismo de un solo nucleótido rs1800795 en el gen <span class="elsevierStyleItalic">IL6</span> no está asociado con el glaucoma primario de ángulo abierto en la población mexicana" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M.A. Ponce-Gallegos, N. Partida-Zavala, C.R. Castro-Castaneda, D. Navarro-Arregui, D.A. Garcia-Hernandez, B.A. García-Loza, B. Alvarado-Castillo, J. Navarro-Partida" "autores" => array:8 [ 0 => array:2 [ "nombre" => "M.A." "apellidos" => "Ponce-Gallegos" ] 1 => array:2 [ "nombre" => "N." "apellidos" => "Partida-Zavala" ] 2 => array:2 [ "nombre" => "C.R." "apellidos" => "Castro-Castaneda" ] 3 => array:2 [ "nombre" => "D." "apellidos" => "Navarro-Arregui" ] 4 => array:2 [ "nombre" => "D.A." "apellidos" => "Garcia-Hernandez" ] 5 => array:2 [ "nombre" => "B.A." "apellidos" => "García-Loza" ] 6 => array:2 [ "nombre" => "B." "apellidos" => "Alvarado-Castillo" ] 7 => array:2 [ "nombre" => "J." "apellidos" => "Navarro-Partida" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0365669122000727" "doi" => "10.1016/j.oftal.2021.11.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669122000727?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579422000664?idApp=UINPBA00004N" "url" => "/21735794/0000009700000007/v1_202206300612/S2173579422000664/v1_202206300612/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Limits of the precision in refractive results after cataract surgery" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "370" "paginaFinal" => "375" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "D. Romero Valero, J. Escolano Serrano, C.E. Monera Lucas, G. Castilla Martínez, J.J. Martínez Toldos" "autores" => array:5 [ 0 => array:4 [ "nombre" => "D." "apellidos" => "Romero Valero" "email" => array:1 [ 0 => "drv.romero@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "J." "apellidos" => "Escolano Serrano" ] 2 => array:2 [ "nombre" => "C.E." "apellidos" => "Monera Lucas" ] 3 => array:2 [ "nombre" => "G." "apellidos" => "Castilla Martínez" ] 4 => array:2 [ "nombre" => "J.J." "apellidos" => "Martínez Toldos" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Servicio de Oftalmología, Hospital General Universitario de Elche, Elche, Alicante, Spain" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Límites de la precisión en el resultado refractivo tras la cirugía de cataratas" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1264 "Ancho" => 1507 "Tamanyo" => 83462 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Percentage of eyes in each error range for the ideal situation and the situation described by Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> with the Barrett Universal-II. In the ideal situation the percentage of eyes between ±0.50D of the refractive target was 91.93% while for the situation described by Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> it was 78.55%.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">With the development of small incision cataract surgery, surgery-induced astigmatism (SIA) has been considerably reduced<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>. This means that, for the vast majority of patients, the main determinant for a satisfactory refractive result is the spherical component.</p><p id="par0010" class="elsevierStylePara elsevierViewall">In recent years there has been an increase in the predictability of refractive outcomes after cataract surgery. The development of biometers based on low coherence reflectometry or scanning optical tomography (SS-OCT) has allowed the measurement of new ocular structures such as anterior chamber width (ACD) or lens thickness (LT)<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a>. These measurements have made it possible to develop new formulas which, with the inclusion of these new parameters, have demonstrated greater accuracy of intraocular lens calculation compared to third generation formulae<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,4</span></a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Despite the aforementioned advances, different studies analysing the predictability of the refractive outcome after cataract surgery with state-of-the-art biometers and formulas have shown that 20–30% of analysed eyes have a postoperative spherical equivalent that is more than 0.5D away from the preoperative predicted value<a class="elsevierStyleCrossRefs" href="#bib0020"><span class="elsevierStyleSup">4,5</span></a>. Therefore, errors in the postoperative refractive outcome have been reduced but not completely eliminated.</p><p id="par0020" class="elsevierStylePara elsevierViewall">Analysing the causes of postoperative refractive error could lead to proposals of solutions to minimise it. Although various studies have been published analysing the sources of error in the calculation of intraocular lenses, these analyses have become partially obsolete due to improvements in the precision of the measuring devices developed after their publication<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>. Analysis of the sources of error in intraocular calculation would allow us to establish the theoretical limit of accuracy that we have today with the biometers currently available.</p><p id="par0025" class="elsevierStylePara elsevierViewall">The aim of this study is to determine the theoretical limit in the accuracy of the refractive result after cataract surgery with the means currently available as well as to assess the impact of different sources of error in this process in normal eyes in which cataract surgery is performed without associated complications.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Material and methods</span><p id="par0030" class="elsevierStylePara elsevierViewall">A Gaussian error propagation analysis was made in order to assess the influence of random errors on the spectacle plane refraction. In this type of analysis it is assumed that the error contributed by each parameter is independent of the rest. A literature review was made to find the mean values of each of the parameters analysed. The variability in each parameter was expressed in terms of standard deviation (SD).</p><p id="par0035" class="elsevierStylePara elsevierViewall">In this type of analysis the total variance (calculated as the square of the total SD) is equal to the sum of the individual variances. The percentage contribution of each error to the total error was calculated as 100 times the variance of each individual error divided by the total variance.</p><p id="par0040" class="elsevierStylePara elsevierViewall">For each of the variables included, the change in refraction in the spectacle plane caused by a variation of 1 SD was calculated, leaving the rest of the variables unchanged. In this process we calculated the mean values using the Barrett Universal-II formula. This formula uses axial length, keratometry, anterior chamber depth, lens thickness and central corneal thickness as input variables for calculating the intraocular lens<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a>. According to several published studies, this formula has been among the most accurate formulas currently available for intraocular lens calculation<a class="elsevierStyleCrossRefs" href="#bib0020"><span class="elsevierStyleSup">4,5</span></a>.</p><p id="par0045" class="elsevierStylePara elsevierViewall">The formula was accessed using the calculator available through the American Society of Cataract and Refractive Surgery. Subsequently, variations in the calculator parameters were made and the variation in the predicted result was recorded. This method obtains the same results as performing the partial derivative of each variable with respect to the spectacle plane refraction<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>.</p><p id="par0050" class="elsevierStylePara elsevierViewall">The SD values of the biometric measurements are based on the data reported on the IOL-Master 700. This is an SS-OCT based biometer that has shown comparable results available with the same technology<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a>. In accordance with the aim of the study to analyse the accuracy limit with currently available means, this biometer was chosen as a reference because it is one of the benchmarks in the most advanced technology for ocular biometry available at the moment<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a>.</p><p id="par0055" class="elsevierStylePara elsevierViewall">A literature review was conducted to find the total variability, variability in subjective refraction and variability in intraocular lens power labelling<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,10</span></a>. According to the International Organization for Standardization (ISO) standard in force at the time of this study, the tolerance for lens power between +15.00D and +25.00D should be between ±0.40D<a class="elsevierStyleCrossRefs" href="#bib0055"><span class="elsevierStyleSup">11,12</span></a>. Assuming a normal distribution, from this range we were able to obtain the variability contributed by intraocular lens labelling in terms of standard deviation.</p><p id="par0060" class="elsevierStylePara elsevierViewall">In this study, the qualification of an eye as “normal” is based on purely statistical criteria, i.e. that its biometric measurements do not deviate considerably from the population mean. In the present work, the mean biometric values obtained in the study by Melles et al. in 2017 were taken as a reference<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a>. The starting point for the simulation was the mean for each of the biometric values of the sample analysed with SN60WF IOL implant (Alcon Laboratories, Inc., Fort Worth, TX) in that study.</p><p id="par0065" class="elsevierStylePara elsevierViewall">The limit of accuracy in intraocular lens calculation at this point in time was defined as the situation in which systematic errors have been eliminated or compensated for and in which errors are only contributed by the variability of biometric parameter measurements, intraocular lens labelling and the patient's subjective refraction. In this ideal situation the error would not be influenced by postoperative changes, the variability generated by the surgical technique (size and shape of the capsulorhexis)<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>, nor the influence of parameters not used by the formulae included in this study (such as corneal asphericity, IOL asphericity or lens tilt)<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a>.</p><p id="par0070" class="elsevierStylePara elsevierViewall">To approximate the errors derived from intraoperative and postoperative variability, which would include the errors contributed by the variability of the surgical technique or the capsular fibrosis process, and the errors derived from parameters not included in the Barrett Universal-II intraocular lens calculation formulae (corneal asphericity or lens inclination), we subtracted the error contributed by the variability of the ideal situation described above from the total error of the process. To perform this calculation, we performed the square root difference of the total variance minus the sum of the variances of the other parameters analysed in the study.</p><p id="par0075" class="elsevierStylePara elsevierViewall">To obtain the percentage of eyes in each error range, median absolute error and mean absolute error under these conditions, a random distribution of 10,000 eyes with mean equal to zero and standard deviation obtained in this ideal situation was generated using the Python programming language (version 3.9) and the percentage of eyes falling into each interval was analysed.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Results</span><p id="par0080" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> shows the variability contributed by each parameter included and the results obtained after Gaussian error propagation analysis. In all cases the constant A used was 118.9. For the baseline situation (calculation with mean values) the power calculated by the Barrett Universal-II was +19.18D. <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows the relative contributions of each error source.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0085" class="elsevierStylePara elsevierViewall">As for the limit of the precision of the intraocular lens calculation, the standard deviation obtained was 0.283D. In this ideal situation, systematic errors are eliminated or compensated for and all sources of intraoperative and postoperative variability, as well as biometric parameters not considered by the current formulas, have a null effect. In this ideal situation the percentage of eyes between ±0.50D of the refractive target is 91.93%. The median absolute error was 0.192D; while the mean absolute error was 0.227D. <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> shows the graphical representation of the distribution of the ideal situation compared to the simulation of the situation reported by Melles et al. in 2017<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a>. In the simulation adjusted to the results of Melles the percentage of eyes between ±0.50D was 78.55% (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Discussion</span><p id="par0090" class="elsevierStylePara elsevierViewall">The present study included an analysis of the main sources of error in intraocular lens calculation. In comparison with previous studies such as that of Norrby in 2008<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>, we have obtained a lower relative contribution of error in the measurement of axial length, being 0.314% in our study, compared to 17.03% in the aforementioned study. This is due to the use in that study of a variability derived from ultrasonic biometry, with a standard deviation of 0.10 mm. The optical biometric variability is significantly lower, using a standard deviation of 0.01 mm in our study, i.e. 10 times less variability.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Since in previous studies on this issue the contribution to the total error of the variability of parameters such as the refractive index of the media did not have a considerable impact on the total error (in no case >1% of the total error), these parameters were not included in our analysis<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>.</p><p id="par0100" class="elsevierStylePara elsevierViewall">In the present study, subjective refraction was the second most impactful source of error in total error with a relative contribution of 38.29%. Previous studies have suggested that autorefraction may be more reproducible in pseudophakic patients and thus be useful in optimising outcomes after cataract surgery<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>.</p><p id="par0105" class="elsevierStylePara elsevierViewall">In the present work, the main source of error was contributed by the compendium of intraoperative and postoperative variability with a 49.32% contribution to the final error. In previous work by Norrby and Olsen in 2007, effective lens position (ELP) was the most important determinant of total error, with contributions to total error of 35.47% and 42%, respectively<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,6</span></a>.</p><p id="par0110" class="elsevierStylePara elsevierViewall">One of the main limitations of this study is that we have not reported the error arising from the uncertainty in the prediction of the ELP<a class="elsevierStyleCrossRefs" href="#bib0025"><span class="elsevierStyleSup">5,9,15</span></a>. It is expected that most of the error contributed by intraoperative and postoperative variability in our study is also due to errors in ELP estimation. The development of formulas or improvement of IOL calculation formulas could minimise errors in ELP estimation and consequently improve refractive outcomes after cataract surgery<a class="elsevierStyleCrossRefs" href="#bib0070"><span class="elsevierStyleSup">14,16,17</span></a>.</p><p id="par0115" class="elsevierStylePara elsevierViewall">Previous studies have linked capsulorhexis with ELP and postoperative refractive changes<a class="elsevierStyleCrossRefs" href="#bib0065"><span class="elsevierStyleSup">13,18</span></a>. Theoretically, decreased variability in surgical technique with femtosecond laser-assisted cataract surgery (FLACS) should show improved refractive outcomes over conventional cataract surgery due to increased reproducibility of surgical technique. While this effect has been found in some studies, other studies have shown no superiority of FLACS over conventional cataract surgery in terms of predictability of refractive outcome<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">19,20</span></a>.</p><p id="par0120" class="elsevierStylePara elsevierViewall">In the study by Conrad-Hengerer et al. in 2015, in the group of 90 eyes in which FLACS was performed the percentage of eyes between ±0.50D was 92% while in the group in which conventional surgery was performed it was 78%<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a>. These results were similar, even slightly higher than the accuracy limit in our study, which was 91.93% of eyes for an error range of ±0.50D of spherical equivalent. Studies with larger samples in which FLACS was performed have failed to reproduce such high accuracy, indicating the difficulty in achieving results close to the accuracy limit described above on an ongoing basis<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a>.</p><p id="par0125" class="elsevierStylePara elsevierViewall">In conclusion, with current scanning methods, the theoretical limit of accuracy is 91.92% of eyes between ±0.5D. To get as close as possible to the accuracy limit described in this study, systematic errors must be eliminated or offset by adjusting constants<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>. To minimise random errors, the use of optical biometry and state-of-the-art formulas for intraocular lens calculation is essential<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,4</span></a>. In the future, the use of more accurately labelled lenses and the development of new formulae in intraocular lens calculation may increase the accuracy limit obtained in this study.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Funding</span><p id="par0130" class="elsevierStylePara elsevierViewall">This research has not received specific support from public sector agencies, the commercial sector or non-profit organisations.</p></span><span id="sec1005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect1005">Conflict of interests</span><p id="par1040" class="elsevierStylePara elsevierViewall">The authors declare no conflict of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres1740872" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background and objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1535372" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1740871" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Antecedentes y objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1535371" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Material and methods" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Results" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Funding" ] 9 => array:2 [ "identificador" => "sec1005" "titulo" => "Conflict of interests" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2021-03-22" "fechaAceptado" => "2021-11-10" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1535372" "palabras" => array:3 [ 0 => "IOL calculation" 1 => "Sources of error" 2 => "Cataract surgery" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1535371" "palabras" => array:3 [ 0 => "Cálculo de LIO" 1 => "Fuentes de error" 2 => "Cirugía de cataratas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background and objective</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">In order to improve refractive results in cataract surgery with an intraocular lens implant, it is important to know the sources of error as well as the limit of this process. Therefore, the objective of the present work is to approximate the theoretical limit in the precision in the refractive result after cataract surgery with the currently available means and to assess the impact of different sources of error in this process.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Materials and methods</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">We conducted a search of the literature to determine the variability provided by each component of the process. Based on the Barrett Universal-II formula, we performed an error propagation analysis. The theoretical limit was defined as the situation in which the refractive result is only affected by the variability in the parameters introduced in the formula, the tolerance of the intraocular lens and the subjective refraction.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">The main contributors to the error were (1) intraoperative and postoperative variability variables not considered by the formulas (49.33%), (2) postoperative subjective refraction (38.29%), (3) mean keratometry (5.98%) and (4) the variability in the labelling of the power of the intraocular lens (5.09%). The theoretical limit obtained for the intraocular lens calculation with the means available today was 91.9% of the eyes between ±0.50D.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">We found a theoretical limit for the intraocular lens calculation of 91.9% of the eyes between ±0.50D. Approaching the precision limit described in the study requires the use of optical biometrics and state-of-the-art formulas, a reproducible surgical technique, and the compensation of systematic errors by adjusting constants.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background and objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Antecedentes y objetivo</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Para mejorar los resultados refractivos en cirugía de cataratas con implante de lente intraocular es importante conocer las fuentes de error así como el límite de mejora de dicho proceso. Por tanto, el objetivo del presente trabajo es aproximar el límite teórico en la precisión en el resultado refractivo tras cirugía de cataratas con los medios disponibles en la actualidad y valorar el impacto de distintas fuentes de error en dicho proceso.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materiales y métodos</span><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Realizamos una búsqueda de la bibliografía para determinar la variabilidad aportada por cada componente del proceso. Tomando como base la fórmula de Barrett Universal-II realizamos un análisis de propagación de errores. El límite teórico fue definido como la situación en la que el resultado refractivo únicamente está afectado por la variabilidad en los parámetros introducidos en la fórmula, la tolerancia de la lente intraocular y la refracción subjetiva.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Los principales contribuidores al error fueron (1) la variabilidad intraoperatoria y postoperatoria variables no consideradas por las fórmulas (49.33%), (2) la refracción subjetiva postoperatoria (38.29%), (3) la queratometría media (5.98%) y (4) la variabilidad en el etiquetado de la potencia de la lente intraocular (5.09%). El límite teórico obtenido para el cálculo de lente intraocular con los medios disponibles a día de hoy fue del 91.9% de los ojos entre +-0.50D.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">El límite teórico de la precisión es de 91,92% de los ojos entre +- 0,5D. Los principales determinantes del error refrac. Para aproximarnos al límite de precisión descrito en el estudio requiere de la utilización de biometría óptica y fórmulas de última generación, una técnica quirúrgica reproducible y la compensación de los errores sistemáticos mediante el ajuste de constantes.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Antecedentes y objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Romero Valero D, Escolano Serrano J, Monera Lucas CE, Castilla Martínez G, Martínez Toldos JJ. Límites de la precisión en el resultado refractivo tras la cirugía de cataratas. Arch Soc Esp Oftalmol. 2022;97:370–375.</p>" ] ] "multimedia" => array:4 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2939 "Ancho" => 2924 "Tamanyo" => 277786 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Results of the error propagation analysis.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">AL: axial length; K: mean keratometry; ACD: anterior chamber Depth; LT: lens thickness; WTW: white-white; IOL: intraocular lens.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1195 "Ancho" => 1507 "Tamanyo" => 96744 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Comparison of the error distribution in the 10,000-eye simulation according to the ideal situation of the error boundary (mean 0.0 D and SD 0.283D) and that described by Melles et al. in 2017<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> with the Barrett Universal-II (mean 0.0 D and SD 0.404D).</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1264 "Ancho" => 1507 "Tamanyo" => 83462 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Percentage of eyes in each error range for the ideal situation and the situation described by Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> with the Barrett Universal-II. In the ideal situation the percentage of eyes between ±0.50D of the refractive target was 91.93% while for the situation described by Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> it was 78.55%.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Source \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SD \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Source \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SD (D-LIO) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SD (D-PG) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">S2 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Relative contribution (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Axial Length (AL) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.96 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullimore et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.030 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0228 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.318 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mean keratometry (K) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">43.92 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">337.5/radio \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">337.5/radio \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.130 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0988 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.981 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mean corneal radius of curvature (radius) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.68 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.020 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullimore et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.000 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.000 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Anterior Chamber Depth (ACD) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullimore et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.040 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.028 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.480 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lens Thickness (LT) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.55 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullimore et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.007 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.000 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.030 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">White-White (WTW) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.65 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bullimore et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.040 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.028 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.480 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">IOL labelling \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.120 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Calculated \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.120 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.076 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.096 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Subjective Refraction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.250 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Taneri et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.250 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.063 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38.293 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Intraoperative and postoperative variability \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.284 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Calculated \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.284 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.081 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">49.328 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TOTAL \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.404 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melles et al.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.404 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.163 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Results of the error propagation analysis.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:21 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Calculation of intraocular lens power: a review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T. Olsen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-0420.2007.00879.x" "Revista" => array:6 [ "tituloSerie" => "Acta Ophthalmol Scand" "fecha" => "2007" "volumen" => "85" "paginaInicial" => "472" "paginaFinal" => "485" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17403024" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An Evaluation of the IOLMaster 700" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.A. Bullimore" 1 => "S. Slade" 2 => "P. Yoo" 3 => "T. Otani" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ICL.0000000000000552" "Revista" => array:6 [ "tituloSerie" => "Eye Contact Lens" "fecha" => "2019" "volumen" => "45" "paginaInicial" => "117" "paginaFinal" => "123" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30325761" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Accuracy of Intraocular Lens Calculation Formulas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.B. Melles" 1 => "J.T. Holladay" 2 => "W.J. Chang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ophtha.2017.08.027" "Revista" => array:4 [ "tituloSerie" => "Ophthalmology" "fecha" => "2017" "volumen" => "1–10" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/35761260" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of 9 intraocular lens power calculation formulas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.L. Cooke" 1 => "T.L. Cooke" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2016" "volumen" => "42" "paginaInicial" => "1157" "paginaFinal" => "1164" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "K. Darcy" 1 => "D. Gunn" 2 => "S. Tavassoli" 3 => "J. Sparrow" 4 => "J.X. Kane" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrs.2019.08.014" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2020" "volumen" => "46" "paginaInicial" => "2" "paginaFinal" => "7" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32050225" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sources of error in intraocular lens power calculation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "S. Norrby" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrs.2007.10.031" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "368" "paginaFinal" => "376" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18299059" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recent developments in intraocular lens power calculation methods—update 2020" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Savini" 1 => "L. Taroni" 2 => "K.J. Hoffer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Ann Transl Med" "fecha" => "2020" "volumen" => "8" "paginaInicial" => "1553" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ocular biometry with swept-source optical coherence tomography" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Montés-Micó" 1 => "F. Pastor-Pascual" 2 => "R. Ruiz-Mesa" 3 => "P. Tañá-Rivero" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/j.jcrs.0000000000000551" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2021" "volumen" => "47" "paginaInicial" => "802" "paginaFinal" => "814" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33315731" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biometry in cataract surgery: A review of the current literature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Moshirfar" 1 => "B. Buckner" 2 => "Y.C. Ronquillo" 3 => "D. Hofstedt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ICU.0000000000000536" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Ophthalmol" "fecha" => "2019" "volumen" => "30" "paginaInicial" => "9" "paginaFinal" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30394990" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Repeatability and reproducibility of manifest refraction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Taneri" 1 => "S. Arba-Mosquera" 2 => "A. Rost" 3 => "S. Kießler" 4 => "H.B. Dick" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/j.jcrs.0000000000000343" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2020" "volumen" => "46" "paginaInicial" => "1659" "paginaFinal" => "1666" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33259390" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of prediction error: Labeled versus unlabeled intraocular lens manufacturing tolerance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.V. Zudans" 1 => "N.R. Desai" 2 => "W.B. Trattler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrs.2011.08.044" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2012" "volumen" => "38" "paginaInicial" => "394" "paginaFinal" => "402" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22340603" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ophthalmic Implants – Intraocular LensesdPart 2: Optical Properties and Test Methods" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "International Organization for Standardization" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2014" "editorial" => "ISO" "editorialLocalizacion" => "Geneva, Switzerland" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of centration and circularity of manual capsulorrhexis on cataract surgery refractive outcomes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Okada" 1 => "D. Hersh" 2 => "E. Paul" 3 => "D. Van Der Straaten" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ophtha.2013.09.049" "Revista" => array:6 [ "tituloSerie" => "Ophthalmology" "fecha" => "2014" "volumen" => "121" "paginaInicial" => "763" "paginaFinal" => "770" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24342022" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Corneal asphericity and IOL power calculation in eyes with aspherical IOLs" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G. Savini" 1 => "K.J. Hoffer" 2 => "P. Barboni" 3 => "D.S. Lomoriello" 4 => "P. Ducoli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3928/1081597X-20170504-05" "Revista" => array:6 [ "tituloSerie" => "J Refract Surg" "fecha" => "2017" "volumen" => "33" "paginaInicial" => "476" "paginaFinal" => "481" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28681907" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intraocular lens power formula accuracy: Comparison of 7 formulas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.X. Kane" 1 => "A. Van Heerden" 2 => "A. Atik" 3 => "C. Petsoglou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrs.2016.07.021" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2016" "volumen" => "42" "paginaInicial" => "1490" "paginaFinal" => "1500" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27839605" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Y.S. Yoo" 1 => "W.J. Whang" 2 => "H.S. Kim" 3 => "C.K. Joo" 4 => "G. Yoon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Medicine (Baltimore)" "fecha" => "2019" "volumen" => "98" "paginaInicial" => "e18026" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New IOL formula using anterior segment three-dimensional optical coherence tomography" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Y.S. Yoo" 1 => "W.J. Whang" 2 => "H.S. Kim" 3 => "C.K. Joo" 4 => "G. Yoon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2020" "volumen" => "15" "paginaInicial" => "1" "paginaFinal" => "12" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of different shapes of capsulorrhexis on postoperative refractive outcomes and the effective position of the intraocular" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.J. Park" 1 => "C.W. Bang" 2 => "S.Y. Han" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2147/OPTH.S217919" "Revista" => array:6 [ "tituloSerie" => "Clin Ophthalmol" "fecha" => "2019" "volumen" => "13" "paginaInicial" => "1361" "paginaFinal" => "1368" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31440024" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of visual recovery and refractive stability between femtosecond laser-assisted cataract surgery and standard phacoemulsification: Six-month follow-up" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "I. Conrad-Hengerer" 1 => "M. Al Sheikh" 2 => "F.H. Hengerer" 3 => "T. Schultz" 4 => "H.B. Dick" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrs.2014.10.044" "Revista" => array:6 [ "tituloSerie" => "J Cataract Refract Surg" "fecha" => "2015" "volumen" => "41" "paginaInicial" => "1356" "paginaFinal" => "1364" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26287876" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Visual and refractive outcomes and complications in femtosecond laser-assisted versus conventional phacoemulsification cataract surgery: Findings from a randomised, controlled clinical trial" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D. Dzhaber" 1 => "O.M. Mustafa" 2 => "F. Alsaleh" 3 => "Y.J. Daoud" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bjophthalmol-2019-314548" "Revista" => array:6 [ "tituloSerie" => "Br J Ophthalmol" "fecha" => "2020" "volumen" => "104" "paginaInicial" => "1596" "paginaFinal" => "1600" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32066559" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "C. Schweitzer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Lancet" "fecha" => "2020" "volumen" => "395" "paginaInicial" => "212" "paginaFinal" => "224" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735794/0000009700000007/v1_202206300612/S2173579422000767/v1_202206300612/en/main.assets" "Apartado" => array:4 [ "identificador" => "5816" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735794/0000009700000007/v1_202206300612/S2173579422000767/v1_202206300612/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579422000767?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Original article
Limits of the precision in refractive results after cataract surgery
Límites de la precisión en el resultado refractivo tras la cirugía de cataratas
D. Romero Valero
, J. Escolano Serrano, C.E. Monera Lucas, G. Castilla Martínez, J.J. Martínez Toldos
Corresponding author
Servicio de Oftalmología, Hospital General Universitario de Elche, Elche, Alicante, Spain