was read the article
array:24 [ "pii" => "S018762361730005X" "issn" => "01876236" "doi" => "10.20937/ATM.2015.28.03.05" "estado" => "S300" "fechaPublicacion" => "2015-07-01" "aid" => "73853" "copyright" => "Universidad Nacional Autónoma de México" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Atmósfera. 2015;28:205-18" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 887 "formatos" => array:3 [ "EPUB" => 34 "HTML" => 642 "PDF" => 211 ] ] "itemSiguiente" => array:19 [ "pii" => "S0187623617300061" "issn" => "01876236" "doi" => "10.20937/ATM.2015.28.03.06" "estado" => "S300" "fechaPublicacion" => "2015-07-01" "aid" => "73854" "copyright" => "Universidad Nacional Autónoma de México" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Atmósfera. 2015;28:219-27" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 461 "formatos" => array:3 [ "EPUB" => 32 "HTML" => 301 "PDF" => 128 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Mexico's contribution to global radiative forcing by major anthropogenic greenhouse gases: CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "219" "paginaFinal" => "227" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 919 "Ancho" => 1377 "Tamanyo" => 89609 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Gross domestic product (GDP) per capita (USD thousands), and radiative forcing (RF) per capita (10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span>) produced by CO<span class="elsevierStyleInf">2</span>, for the USA, Spain (Spa), Argentina (Arg), Mexico (Mex) and the world (Wld) in 2000.</p>" ] ] ] "autores" => array:2 [ 0 => array:2 [ "autoresLista" => "Víctor M. Mendoza, René Garduño, Elba E. Villanueva" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Víctor M." "apellidos" => "Mendoza" ] 1 => array:2 [ "nombre" => "René" "apellidos" => "Garduño" ] 2 => array:2 [ "nombre" => "Elba E." "apellidos" => "Villanueva" ] ] ] 1 => array:2 [ "autoresLista" => "Blanca Mendoza" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Blanca" "apellidos" => "Mendoza" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0187623617300061?idApp=UINPBA00004N" "url" => "/01876236/0000002800000003/v2_201709141210/S0187623617300061/v2_201709141210/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0187623617300048" "issn" => "01876236" "doi" => "10.20937/ATM.2015.28.03.04" "estado" => "S300" "fechaPublicacion" => "2015-07-01" "aid" => "73852" "copyright" => "Universidad Nacional Autónoma de México" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Atmósfera. 2015;28:191-203" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 530 "formatos" => array:3 [ "EPUB" => 30 "HTML" => 330 "PDF" => 170 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Analysis of the Latin American west coast rainfall predictability using an ENSO index" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "191" "paginaFinal" => "203" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1120 "Ancho" => 1894 "Tamanyo" => 204104 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Latitudinal profiles of conditional probabilities for each tercile of rain, given the third tercile of NSO (warm phase of ENSO-NSO3).</p>" ] ] ] "autores" => array:4 [ 0 => array:2 [ "autoresLista" => "Luis Cid-Serrano" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Luis" "apellidos" => "Cid-Serrano" ] ] ] 1 => array:2 [ "autoresLista" => "Sandra M. Ramírez" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Sandra M." "apellidos" => "Ramírez" ] ] ] 2 => array:2 [ "autoresLista" => "Eric J. Alfaro" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Eric J." "apellidos" => "Alfaro" ] ] ] 3 => array:2 [ "autoresLista" => "David B. Enfield" "autores" => array:1 [ 0 => array:2 [ "nombre" => "David B." "apellidos" => "Enfield" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0187623617300048?idApp=UINPBA00004N" "url" => "/01876236/0000002800000003/v2_201709141210/S0187623617300048/v2_201709141210/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "titulo" => "The role of urban vegetation in temperature and heat island effects in Querétaro city, Mexico" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "205" "paginaFinal" => "218" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "María L. Colunga, Víctor Hugo Cambrón-Sandoval, Humberto Suzán-Azpiri, Aurelio Guevara-Escobar, Hugo Luna-Soria" "autores" => array:5 [ 0 => array:2 [ "nombre" => "María L." "apellidos" => "Colunga" ] 1 => array:2 [ "nombre" => "Víctor Hugo" "apellidos" => "Cambrón-Sandoval" ] 2 => array:4 [ "nombre" => "Humberto" "apellidos" => "Suzán-Azpiri" "email" => array:1 [ 0 => "hsuzan@uaq.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 3 => array:2 [ "nombre" => "Aurelio" "apellidos" => "Guevara-Escobar" ] 4 => array:2 [ "nombre" => "Hugo" "apellidos" => "Luna-Soria" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, Juriquilla, 76230 Querétaro, México" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "*" "correspondencia" => "Corresponding autor." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 623 "Ancho" => 1570 "Tamanyo" => 87277 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Relationship between urban heat island (UHI) intensity and difference in the pervious surface fraction (ΔPSF) during the (a) cold and (b) warm seasons described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">1</span><span class="elsevierStyleSectionTitle" id="sect0020">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">According to the population report of the <a class="elsevierStyleCrossRef" href="#bib0225">United Nations (2014)</a>, 54% of human population lives in urban areas and it is increasing at a rate of 1.8% per year. By year 2050 rural population would decrease to one third of its present size. Urban concentration ofhuman population causes deep modifications in the city and its surrounding landscapes, affecting environmental and climatic conditions (<a class="elsevierStyleCrossRef" href="#bib0250">Yu and Hien, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0220">Um <span class="elsevierStyleItalic">et al.,</span> 2007</a>). The effect and dynamics of the urban heat island (UHI) are well-known and deeply studied climatic processes (<a class="elsevierStyleCrossRef" href="#bib0065">García-Cueto <span class="elsevierStyleItalic">et al.,</span> 2007</a>; <a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>). The UHI effect is described as the difference in environmental temperature between the urban area and its rural periphery (<a class="elsevierStyleCrossRef" href="#bib0170">Oke, 1973</a>; <a class="elsevierStyleCrossRef" href="#bib0205">Stewart, 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0140">Li <span class="elsevierStyleItalic">et al.,</span> 2013</a>). The variation of air temperature associated with the UHI intensity depends on factors such as infrastructure and building design and density, among many others (<a class="elsevierStyleCrossRef" href="#bib0070">García-Cueto <span class="elsevierStyleItalic">et al.,</span> 2009</a>; <a class="elsevierStyleCrossRef" href="#bib0140">Li <span class="elsevierStyleItalic">et al.,</span> 2013</a>). Compared to the countryside, the low albedo and high heat absorption of city surfaces (<a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>), coupled with the generation of greenhouse gases (GHG) and dust from industrial processes and anthropogenic activities (<a class="elsevierStyleCrossRef" href="#bib0235">Wilby, 2003</a>; <a class="elsevierStyleCrossRef" href="#bib0080">Hunt <span class="elsevierStyleItalic">et al.,</span> 2007</a>), contributes to the increase in air temperature, and modifies surface wind flow and air quality (<a class="elsevierStyleCrossRef" href="#bib0035">Blake <span class="elsevierStyleItalic">et al.,</span> 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>).</p><p id="par0010" class="elsevierStylePara elsevierViewall">The increase of vegetation areas is a main option explored to mitigate UHI (<a class="elsevierStyleCrossRef" href="#bib0020">Anyanwu and Kanu, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0140">Li <span class="elsevierStyleItalic">et al.,</span> 2013</a>). Urban vegetation regulates climate mainly by shading (<a class="elsevierStyleCrossRef" href="#bib0060">Emmanuel, 2005</a>), CO<span class="elsevierStyleInf">2</span> sequestration (<a class="elsevierStyleCrossRef" href="#bib0145">Lin et <span class="elsevierStyleItalic">al.,</span> 2011</a>) and evapotranspiration (<a class="elsevierStyleCrossRef" href="#bib0250">Yu and Hien, 2006</a>). The mitigation potential of urban vegetation needs additional research because native vegetation and climate are strongly related, and this types of plants should be preferred as a robust mitigation option; nevertheless, exotic trees are common in the urban context.</p><p id="par0015" class="elsevierStylePara elsevierViewall">In this paper, we analyzed the UHI for Querétaro City, Mexico. This study is an effort of the Programa Estatal de Accion ante el Cambio Climático-Querétaro (State of Querétaro Action Program Addressing Climate Change, PEACC-Q) (<a class="elsevierStyleCrossRef" href="#bib0215">Suzán-Azpiri <span class="elsevierStyleItalic">et al</span>., 2014</a>). The aims of this study were to evaluate (1) the role of vegetation in urban temperature regularization, and (2) the role of vegetation cover in the adaptation to UHI effects.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="sect0025">Methodology</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.1</span><span class="elsevierStyleSectionTitle" id="sect0030">Study area</span><p id="par0020" class="elsevierStylePara elsevierViewall">The study area is the city of Querétaro (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), located in the southwestern portion of the State of Querétaro, Mexico (20° 35’ 34.8” N, 100° 23’ 31.6” W). It covers an area of 759.9 km<span class="elsevierStyleSup">2</span> with a population of 626 495 (<a class="elsevierStyleCrossRef" href="#bib0095">INEGI, 2010</a>). Its predominant climate is semiarid with summer rains, annual precipitation average of 549 mm and annual average temperature of 18 °C. The landscape comprises plains and small hills (<a class="elsevierStyleCrossRef" href="#bib0030">Baltazar <span class="elsevierStyleItalic">et al.,</span> 2004</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0025" class="elsevierStylePara elsevierViewall">The city of Querétaro can be classified as polycentric, with main urban cores associated to industrial and commercial areas (<a class="elsevierStyleCrossRef" href="#bib0015">Álvarez de la Torre, 2010</a>). The historic downtown is mainly composed of baroque buildings less than six stories tall. Almost 90% of the streets in the center of the city and its surroundings are paved with cobblestone, and the rest have asphalt surfaces. Industrial plots are allotted within industrial parks located to the north, east and southwest of the city; they are main land use changes that contribute to urban growth (<a class="elsevierStyleCrossRef" href="#bib0085">Icazuriaga and Osorio, 2007</a>). Concrete and steel buildings, as well as asphalt roads, are representative of these areas. Finally, 70% of the households are less than three stories single-family buildings; the rest are multi-family complexes and two level houses of social interest located on the periphery. Concrete, metal, bricks, tiles and polystyrene are the main construction materials on households. The streets are mainly asphalt roads and in some cases they are covered with cobblestone (<a class="elsevierStyleCrossRef" href="#bib0025">Aragón and López, 2013</a>).</p><p id="par0030" class="elsevierStylePara elsevierViewall">Using Landsat 8 imagery (Sensor OLI_TIRS_L1T, December 5, 2013, USGS Global Visualization Viewer) we created a supervised classification of the city using ENVI 5 (ITT Visual Information Solutions). Approximately 65% is constructed; 37% is paved; 28% is covered by vegetation or bare soil; and less than 1% is occupied by water (dams and artificial reservoirs).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.2</span><span class="elsevierStyleSectionTitle" id="sect0035">Study zones</span><p id="par0035" class="elsevierStylePara elsevierViewall">To avoid the arbitrary designation of urban and rural zones (<a class="elsevierStyleCrossRef" href="#bib0200">Stewart, 2007</a>), we used the climate-based classification system developed by <a class="elsevierStyleCrossRef" href="#bib0210">Stewart and Oke (2012)</a>. This system describes the local physical conditions around the measuring field sites, classifying them into local climate zones (LCZs). Four circular zones with a 500 m radius (78.5 ha) (<a class="elsevierStyleCrossRef" href="#bib0240">WMO, 2008</a>) were selected randomly within the range of 1 to 99% vegetation cover. We used satellite imagery to estimate the mean height of trees and buildings, the building surface fraction, and the impervious and pervious fractions (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>). The rest of the values were taken from literature (<a class="elsevierStyleCrossRef" href="#bib0175">Oke, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0210">Stewart and Oke, 2012</a>). The four zones were classified accordingly as scattered trees (LCZ B), open low-rise (LCZ 6), compact low-rise (LCZ 3), and compact mid-rise (LCZ 2).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3</span><span class="elsevierStyleSectionTitle" id="sect0040">Local climate zones</span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3.1</span><span class="elsevierStyleSectionTitle" id="sect0045">LCZ B (scattered trees)</span><p id="par0040" class="elsevierStylePara elsevierViewall">Described as lightly dense vegetation comprised by shrubs, cacti <span class="elsevierStyleItalic">(Opuntia</span> sp. and<span class="elsevierStyleItalic">Myrtillocactus geometrizans</span>), tropical dry forests (TDF) and reforestation patches (i.e. <span class="elsevierStyleItalic">Jacaranda mimosifolia, Eucalyptus globulus).</span> It constitutes one of the best-preserved climate zones in the municipality of Querétaro (Baltazar <span class="elsevierStyleItalic">etal.,</span> 2004), and is located in the southern periphery of the city (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3.2</span><span class="elsevierStyleSectionTitle" id="sect0050">LCZ 6 (open low-rise)</span><p id="par0045" class="elsevierStylePara elsevierViewall">It is composed of one to three stories small buildings of diverse construction materials (concrete, stones, bricks, tiles and metal). Fifty percent of the surface is covered with scattered shrubs and TDF. It has medium traffic flow, and residential (row housing and apartments) and commercial use (small shopping centers). These suburbs are located on the northern periphery of the city.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3.3</span><span class="elsevierStyleSectionTitle" id="sect0055">LCZ 3 (compact low-rise)</span><p id="par0050" class="elsevierStylePara elsevierViewall">A dense mix of low-rise buildings with less than three stories and diverse construction materials (concrete, stone, tiles and bricks). Pavement and cobblestone cover most ofthe streets with a few scattered trees. It is located within the city core (medium density) and has residential use (single unit households).</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3.4</span><span class="elsevierStyleSectionTitle" id="sect0060">LCZ 2 (compact mid-rise)</span><p id="par0055" class="elsevierStylePara elsevierViewall">Dense mix of mid-rise buildings lower than nine stories of diverse construction materials (concrete, stone, tiles, bricks and metal). Most of the streets are covered with pavement and cobblestone, with a few scattered trees <span class="elsevierStyleItalic">(Eucalyptus</span> sp., <span class="elsevierStyleItalic">Ficus</span> sp. and <span class="elsevierStyleItalic">Jacaranda</span> sp.). It is adjacent to the city center and has residential use (scattered single unit households).</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.4</span><span class="elsevierStyleSectionTitle" id="sect0065">Sampling</span><p id="par0060" class="elsevierStylePara elsevierViewall">In each LCZ we established random sampling points according to two different vegetation cover categories: high (+C) and low (–C) (<a class="elsevierStyleCrossRef" href="#tbl0010">Table II</a>). The characterization of each category was determined by the leaf area index (LAI), one-sided green leaf area per unit ground surface (m<span class="elsevierStyleSup">2</span>/m<span class="elsevierStyleSup">2</span>). The LAI was measured using a LAI-2000 Plant Canopy Analyzer (Li-Cor Inc., USA) which evaluates the transmission of light through the canopy in terms of gap fraction. For each LAI data, the average of three measurements under the canopy (separated by one meter each in a north-south direction), and one measurement above the canopy were obtained (<a class="elsevierStyleCrossRef" href="#bib0075">Guevara <span class="elsevierStyleItalic">et al.,</span> 2012</a>). For each sampling point (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>12), air temperature and relative humidity were measured with a climatic data logger EL-USB-2 (Hobo Pro v.2, LASCAR, USA). The data loggers were programmed to record every 30 min from June 1, 2012 to May 31, 2013.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.5</span><span class="elsevierStyleSectionTitle" id="sect0070">Temperature corrections</span><p id="par0065" class="elsevierStylePara elsevierViewall">Heating and cooling of air is considered to be an adiabatic process responding to the variation in gas pressures (<a class="elsevierStyleCrossRef" href="#bib0155">Lutgens and Tarbuck, 2012</a>). In this context, air temperature is directly affected by altitude, and we standardized altitude and pressure by an adjustment with a Poisson function (<a class="elsevierStyleCrossRef" href="#eq0005">Eq. 1</a>). The resulting value, known as potential temperature (<span class="elsevierStyleItalic">θ</span>), is defined as “the temperature that a parcel of air would have if it were expanded or compressed adiabatically from its existing pressure and temperature to a standard pressure” (<a class="elsevierStyleCrossRef" href="#bib0230">Wallace and Hobbs, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0160">Mohanakumar, 2008</a>). Mathematically, it is expressed as:<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0070" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">θ</span> = potential temperature, <span class="elsevierStyleItalic">T</span> = original temperature, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">0</span></span> = standard pressure of 1000 hPa, <span class="elsevierStyleItalic">p</span> = original pressure, <span class="elsevierStyleItalic">R</span> = universal gas constant (287 J K<span class="elsevierStyleSup">–1</span> kg<span class="elsevierStyleSup">–1</span>); and <span class="elsevierStyleItalic">c</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">p</span></span> = specific heat constant (1004 J K<span class="elsevierStyleSup">–1</span> kg<span class="elsevierStyleSup">–1</span>).</p><p id="par0075" class="elsevierStylePara elsevierViewall">To calculate the pressure corresponding to temperature data we used the hypsometric or barometric equation (<a class="elsevierStyleCrossRef" href="#eq0010">Eq. 2</a>), which relates pressure and temperature at a certain atmospheric altitude (<a class="elsevierStyleCrossRef" href="#bib0005">Adamson, 2012</a>):<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">where: <span class="elsevierStyleItalic">p</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">h</span></span> = pressure at <span class="elsevierStyleItalic">h</span> height, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">0</span></span> = pressure at ground level (1013.25 hPa), <span class="elsevierStyleItalic">M</span> = the mass or a mole of particles of air (0.029 kg mol<span class="elsevierStyleSup">–1</span>), <span class="elsevierStyleItalic">g</span> = gravitational acceleration (9.8 m s<span class="elsevierStyleSup">–2</span>), <span class="elsevierStyleItalic">h</span> = height in meters, <span class="elsevierStyleItalic">R</span> = universal gas constant (8.314472 J K<span class="elsevierStyleSup">–1</span> mol<span class="elsevierStyleSup">–1</span>), and <span class="elsevierStyleItalic">T</span> = average temperature at height (°K).</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.6</span><span class="elsevierStyleSectionTitle" id="sect0075">The role of vegetation in urban temperature dynamics</span><p id="par0085" class="elsevierStylePara elsevierViewall">In a global scale, a rise in minimum temperature has a greater impact on average daily temperature than maximum temperature (<a class="elsevierStyleCrossRef" href="#bib0100">IPCC, 1997</a>). Therefore, the effects of climate change are mainly detected in minimum daily temperatures (<a class="elsevierStyleCrossRef" href="#bib0105">IPCC, 2007</a>). In order to prove this hypothesis within the city of Querétaro we analyzed daily average minimum temperatures <span class="elsevierStyleItalic">(T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span><span class="elsevierStyleItalic">,</span> °C) and maximum temperatures <span class="elsevierStyleItalic">(T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span><span class="elsevierStyleItalic">,</span><span class="elsevierStyleSup">0</span>C) between 1982 and 2011 from six climate stations (<a class="elsevierStyleCrossRef" href="#tbl0015">Table III</a>). Data were obtained from the databases of the SMN (<a class="elsevierStyleCrossRef" href="#bib0045">CNA-SMN, 2014</a>). In the case of Querétaro, all stations were previously verified with the RClimDex software (<a class="elsevierStyleCrossRef" href="#bib0255">Zhang and Yang, 2004</a>), developed within the PEACC project (<a class="elsevierStyleCrossRef" href="#bib0215">Suzán-Azpiri <span class="elsevierStyleItalic">etal.,</span> 2014</a>). Moreover, the databases of the six stations were filtered to ensure temporal homogeneity throughout the 30 years. Additionally, we analyzed the relationship between variations in <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> as a function of population size, according to the demographic censuses conducted between 1990 and 2010 (<a class="elsevierStyleCrossRefs" href="#bib0090">INEGI, 1990, 2010</a>). Finally, we studied the oscillation in a monthly scale to identify extreme periods in both <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span><span class="elsevierStyleItalic">.</span></p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall">In order to evaluate the role of vegetation cover in urban temperature dynamics, we evaluated the changes in <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and average relative humidity (RH, %) in function of the different LCZs, canopy cover status (+C and –C) and pervious surface fraction (PSF, %) –defined as the percentage of vegetated surface–, between June 1, 2012 and May 31, 2013.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.7</span><span class="elsevierStyleSectionTitle" id="sect0080">Vegetation cover and effect of the UHI</span><p id="par0095" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#bib0210">Stewart and Oke (2012)</a>, the UHI is represented as a function of the intensity difference (Δ<span class="elsevierStyleItalic">T</span>) between LCZs temperatures according to the degree of urbanization. Mathematically it is defined as:<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">UHI</span> is the intensity of the urban heat island effect, Δ<span class="elsevierStyleItalic">T</span> is the temperature difference between LCZs, <span class="elsevierStyleItalic">LCZx</span> is the zone with more urban components (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>), and <span class="elsevierStyleItalic">LCZy</span> is the zone with less number of urban components (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>).</p><p id="par0105" class="elsevierStylePara elsevierViewall">In this study, we quantified the differences between average minimum temperatures (Δ<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span><span class="elsevierStyleItalic">,</span><span class="elsevierStyleSup">0</span>C) between the four described climate zones in six possible arrangements: LCZ<span class="elsevierStyleInf">2-3</span>, LCZ<span class="elsevierStyleInf">2-6</span>, LCZ<span class="elsevierStyleInf">2-B</span>, LCZ<span class="elsevierStyleInf">3-6</span>, LCZ<span class="elsevierStyleInf">3-B</span> and LCZ<span class="elsevierStyleInf">6-B</span>. The role of vegetation in UHI dynamics was evaluated through the fluctuation in <span class="elsevierStyleItalic">AT</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> for the LCZ<span class="elsevierStyleInf">x-y</span> arrangements according to the cover status (+C y –C), and seasonality (cold and warm seasons). Additionally, a daily profile of UHI (24 h) changes was studied.</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.8</span><span class="elsevierStyleSectionTitle" id="sect0085">Statistical analysis</span><p id="par0110" class="elsevierStylePara elsevierViewall">A linear regression (LR) analysis was applied to evaluate the annual increase in daily average minimum and maximum temperatures from six meteorological stations, with the function:<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0115" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">Y</span> is the dependent variable <span class="elsevierStyleItalic">(T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span><span class="elsevierStyleItalic">), β<span class="elsevierStyleInf">1</span></span> is the intercept, <span class="elsevierStyleItalic">β<span class="elsevierStyleInf">0</span></span> is the slope, and <span class="elsevierStyleItalic">X</span> is the independent variable (year).</p><p id="par0120" class="elsevierStylePara elsevierViewall">In order to estimate <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and <span class="elsevierStyleItalic">RH</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ave</span></span> differences among the LCZs zones, according to the status of vegetation cover (+C and -C), a full factorial analysis was performed with the model:<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0125" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">μ</span> is the general average value, <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> is the monthly effect, <span class="elsevierStyleItalic">L</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">j</span></span> is the zone, <span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> is the effect for the <span class="elsevierStyleItalic">k</span>-th status of vegetation, <span class="elsevierStyleItalic">M*L</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ij</span></span> is the interaction month-zone, <span class="elsevierStyleItalic">M*S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ik</span></span> is the interaction month-status, <span class="elsevierStyleItalic">S*L</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">kj</span></span> is the interaction status-zone, <span class="elsevierStyleItalic">M*L*S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">jjk</span></span> is the interaction month-zone-status, and <span class="elsevierStyleItalic">e</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ijk</span></span> is the random error.</p><p id="par0130" class="elsevierStylePara elsevierViewall">A simple linear regression analysis was applied to explore the relation between the <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> and the pervious surface fraction (PSF, %) (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>) of the four LCZs with the function:<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">Y</span> is the dependent variable (<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span>), β<span class="elsevierStyleItalic"><span class="elsevierStyleInf">1</span></span>, is the intercept, β<span class="elsevierStyleItalic"><span class="elsevierStyleInf">0</span></span> is the slope, and <span class="elsevierStyleItalic">X</span> is the independent variable (PSF).</p><p id="par0140" class="elsevierStylePara elsevierViewall">The monthly changes in the UHI associated to the status of the cover (+C and –C) in each LCZ<span class="elsevierStyleInf">x-y</span>, were analyzed with the model:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0145" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">μ</span> is the average value, <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> is the effect for the <span class="elsevierStyleItalic">i</span>-th month, <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">j</span></span> is the effect for the <span class="elsevierStyleItalic">j</span>-th LCZ<span class="elsevierStyleInf">x-y</span>, <span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> is the effect for the <span class="elsevierStyleItalic">k</span>-th status of vegetation, <span class="elsevierStyleItalic">M*C</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ij</span></span> is the interaction month-LCZ<span class="elsevierStyleInf">x-y</span>, <span class="elsevierStyleItalic">M*S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ik</span></span> is the interaction month-status, <span class="elsevierStyleItalic">S*L</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">kj</span></span> is the interaction status-zone, <span class="elsevierStyleItalic">M*L*S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ijk</span></span> is the interaction month-zone-status, and <span class="elsevierStyleItalic">e</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ijk</span></span> is the random error.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Linear regression analysis was applied to explore the relation between the UHI and the difference between the pervious surface fraction (ΔPSF, %) in the six arrangements LCZ<span class="elsevierStyleInf">x-y</span>, with the function:<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0155" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">Y</span> is the dependent variable (<span class="elsevierStyleItalic">ΔT</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span>), <span class="elsevierStyleItalic">β<span class="elsevierStyleInf">1</span></span>, is the intercept, <span class="elsevierStyleItalic">β<span class="elsevierStyleInf">0</span></span> is the slope, and <span class="elsevierStyleItalic">X</span> is the independent variable <span class="elsevierStyleItalic">(ΔPSF).</span></p><p id="par0160" class="elsevierStylePara elsevierViewall">The hourly behavior of the UHI at high and low temperature phases between the LCZ<span class="elsevierStyleInf">x-y</span>, was evaluated with the model:<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0165" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">μ</span> is the general average, <span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> is the effect of the de <span class="elsevierStyleItalic">i</span>-th fase, <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">j</span></span> is the effect for the <span class="elsevierStyleItalic">j</span>-th LCZ<span class="elsevierStyleInf">x-y</span>, <span class="elsevierStyleItalic">H</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> is the effect of the <span class="elsevierStyleItalic">j-th</span> hour, <span class="elsevierStyleItalic">F*C</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ij</span></span> is the interaction phase LCZ<span class="elsevierStyleInf">x-y</span>, <span class="elsevierStyleItalic">F*H</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ik</span></span> is the interaction phase-hour, <span class="elsevierStyleItalic">C*H</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">jk</span></span> is the interaction LCZ<span class="elsevierStyleInf">x-y</span>-hour, <span class="elsevierStyleItalic">F*C*H</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ijk</span></span> is the interaction phase-LCZ<span class="elsevierStyleInf">x-y</span>-hour, and <span class="elsevierStyleItalic">e</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">ijk</span></span> is the random error.</p></span></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3</span><span class="elsevierStyleSectionTitle" id="sect0090">Results and discussion</span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.1</span><span class="elsevierStyleSectionTitle" id="sect0095">Historic and annual temperature oscillation</span><p id="par0170" class="elsevierStylePara elsevierViewall">The temperature comparison for the period 19822011 from six climate stations within the city of Querétaro showed significant differences between the daily <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>49.99, 29, 929) and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>122.53, 29, 900) among the 30 years. The LR exhibited a low significant linear trend for the increase in annual <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (P < 0.0001, <span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.07) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3a</a>). In contrast, <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> had a more significant trend (P < 0.0001, <span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span>=0.38) of 0.751 °C per decade (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3c</a>). This differential trend agreed with the global pattern, where minimum daily temperatures increase faster than maximums. However, the rate was higher than the global decadal range (0.254 to 0.273 °C) between 1979 and 2012 (<a class="elsevierStyleCrossRef" href="#bib0110">IPCC, 2013</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0175" class="elsevierStylePara elsevierViewall">This increase was higher than in other Mexican cities, where values of 0.57 °C for large metropolis (bigger than one million inhabitants) and 0.37 °C for medium size cities (smaller than one million) are found (<a class="elsevierStyleCrossRef" href="#bib0125">Jáuregui, 2005</a>). Particularly the city of Querétaro, with less than one million inhabitants, has experienced a high rate of urban growth (<a class="elsevierStyleCrossRef" href="#bib0085">Icazuriaga and Osorio, 2007</a>) of about 33% between 1990 and 2010 (<a class="elsevierStyleCrossRefs" href="#bib0090">INEGI, 1990, 2010</a>). This growth was significantly correlated with the daily annual average <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> increase (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.52, P < 0.0001) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3d</a>), but not with the <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.0018, P < 0.0001) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3b</a>). Therefore, factors related to the urbanization process like the increase in building surface fraction and impervious surface fraction, the change in surface albedo and the rise of anthropogenic heat flux, could explain the <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> increase.</p><p id="par0180" class="elsevierStylePara elsevierViewall">In a monthly scale we detected significant differences in <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>115.27, 11, 348) (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4a</a>) and in <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>180.69, 11, 348) (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4b</a>). During the cold season for <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (defined as July to March) the mean and standard deviation were 27.24<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.58 °C, while these values during the warm season for <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> (April to June) were 31.45<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.85 °C (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). In contrast, the cold season for <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> (November to March) had a mean and standard deviation of 7.51<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.40 °C, while these values during the warm season (April to October) for the same variable were 13.13<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.43 °C. Both trends in temperature agree with the pattern detected for a larger region in Mexico (<a class="elsevierStyleCrossRef" href="#bib0165">Morillón <span class="elsevierStyleItalic">et al.,</span> 2002</a>).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.2</span><span class="elsevierStyleSectionTitle" id="sect0100">The role of vegetation in urban temperature</span><p id="par0185" class="elsevierStylePara elsevierViewall">For the studied period, average <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> was 13 °C with a maximum of 14.89 °C and a minimum of 10.79 °C. Significant differences between the studied zones were detected (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>85.42, 3, 87). These differences oscillated from 1.6 °C between LCZ 3 and LCZ 6, to 4 °C between LCZ 2 and LCZ B. In agreement with <a class="elsevierStyleCrossRef" href="#bib0010">Alexander and Mills (2014)</a>, the areas with more urban elements such as high anthropogenic heat flux percentages, impervious surface and building surface fraction, had temperatures over the mean (LCZ 2 and LCZ 3), while the less urbanized areas had temperatures below the mean (LCZ 6 and LCZ B). Among the annual seasons, a 5 °C difference between cold and warm seasons was detected (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>602.93, 1, 87). These results agree with the findings reported by <a class="elsevierStyleCrossRef" href="#bib0185">Romero-Dávila <span class="elsevierStyleItalic">et al.</span> (2011)</a> for the city of Toluca, Mexico.</p><p id="par0190" class="elsevierStylePara elsevierViewall">No significant differences were found between -C and +C for <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> (P<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.80, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.06, 1, 87) (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>). However, <a class="elsevierStyleCrossRef" href="#bib0250">Yu and Hien (2006)</a> proved that foliar density (LAI) within a green area has an effect on air temperature; particularly in urban gardens, high values in the LAI (> 7) were associated with lower temperatures. Therefore, we deduced that the difference between +C and -C for each climate zone was insufficient to detect an effect on <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span>.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0195" class="elsevierStylePara elsevierViewall">Relative humidity was different between LCZ 2 and LCZ B (P<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.0074, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4.25, 3, 89), but it was not related to seasonality (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>). The lower RH in LCZ 2 results from fast evaporation as a consequence of high surface temperature and high runoff rates through water-drainages (<a class="elsevierStyleCrossRef" href="#bib0220">Um <span class="elsevierStyleItalic">et al.,</span> 2007</a>). In contrast, the high canopy cover for LCZ B maintained high humidity values resulting from lower mixing ratios for evapotranspiration, possibly due to lower wind speeds. <a class="elsevierStyleCrossRef" href="#bib0150">Liu <span class="elsevierStyleItalic">et al.</span> (2009)</a> found a similar result.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0200" class="elsevierStylePara elsevierViewall">The relationship between PSF and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> was significant for the cold and warm seasons (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.72, P < 0.0001). According to the equation's model of linear regression (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7a</a> and <a class="elsevierStyleCrossRef" href="#fig0035">7b</a>), a 50% increase in PSF produced a decrease of approximately 1.75 and 2.18 °C in <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> for both seasons. <a class="elsevierStyleCrossRef" href="#bib0245">Yan <span class="elsevierStyleItalic">et al.</span> (2014)</a> demonstrated a similar relationship between canopy cover and temperature in urban parks; an increase of 50% in vegetation cover produced a decrease of 0.6 °C in air temperature, reinforcing the idea that canopy cover is a regulator of environmental temperature (<a class="elsevierStyleCrossRef" href="#bib0250">Yu and Hien, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0140">Li <span class="elsevierStyleItalic">et al.,</span> 2013</a>).</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0205" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#bib0235">Wilby (2003)</a> and <a class="elsevierStyleCrossRef" href="#bib0145">Lin <span class="elsevierStyleItalic">et al.</span> (2011)</a>, through evapotranspiration vegetation acts as an evaporative cooling system, creating an albedo 15% higher than urban surface due to smaller heat absorption and higher reflected radiation (<a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>). Also, the shade effect decreases incident radiation and the micro greenhouse effect within buildings (<a class="elsevierStyleCrossRefs" href="#bib0060">Emmanuel, 2005; Anyanwu and Kanu, 2006</a>), which promotes energy savings by decreasing the demand in cooling systems; it also reduces health risks by decreasing atmospheric pollutants while increasing CO<span class="elsevierStyleInf">2</span> sequestration (<a class="elsevierStyleCrossRef" href="#bib0145">Lin <span class="elsevierStyleItalic">et al.,</span> 2011</a>).</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.3</span><span class="elsevierStyleSectionTitle" id="sect0105">Effect of the urban heat island (UHI)</span><p id="par0210" class="elsevierStylePara elsevierViewall">Significant temperature differences were found between LCZ<span class="elsevierStyleInf">2-B</span> and LCZ<span class="elsevierStyleInf">3-6</span> (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>155.88, 5, 120; Tukey-Kramer α<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.05, Q<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.89), with a 4.94 °C maximum intensity and a 0.48 °C minimum intensity (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>). <a class="elsevierStyleCrossRef" href="#bib0010">Alexander and Mills (2014)</a> found similar results between LCZ<span class="elsevierStyleInf">2-d</span> (4.8 °C). During the warm season an UHI of 2.64 °C in average, with a 5 °C maximum and a 0.82 °C minimum, was detected. In the cold season, UHI values had a 2.46 °C average, ranging from a 4.88 °C maximum to a 0.14 °C minimum. These values agreed with the maximum UHI reported for the city of Mexicali, Mexico; 5.4 °C during the summer (<a class="elsevierStyleCrossRef" href="#bib0065">García-Cueto <span class="elsevierStyleItalic">et al.,</span> 2007</a>) and 4.5 °C during winter (<a class="elsevierStyleCrossRef" href="#bib0070">García-Cueto <span class="elsevierStyleItalic">et al.,</span> 2009</a>); and also for Toluca, Mexico with values of 5 °C for winter and summer (<a class="elsevierStyleCrossRef" href="#bib0185">Romero-Dávila <span class="elsevierStyleItalic">et al.,</span> 2011</a>). There was no effect of the canopy cover (–C and +C) over UHI intensities (P<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.2073, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.60, 1, 120).</p><elsevierMultimedia ident="fig0040"></elsevierMultimedia><p id="par0215" class="elsevierStylePara elsevierViewall">The relationship between the UHI and the difference in canopy cover (ΔPSF) in the LCZ<span class="elsevierStyleInf">x-y</span> was significant according to the proposed seasons (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.67, P < 0.0001). For the cold season (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9a</a>) 57% ofthe UHI values were explained by ΔPSF (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.58, P < 0.0001), while during the warm season (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9b</a>) the explained variance was about 73% (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.74, P < 0.0001). According to the linear regression model, a difference of 50% in ΔPSF between more and less urbanized zones (LCZ<span class="elsevierStyleInf">x-y</span>), will produce a difference of 1.9 and 2.05 °C in the UHI for the cold and warm season, respectively. <a class="elsevierStyleCrossRef" href="#bib0195">Steeneveld <span class="elsevierStyleItalic">et al.</span> (2011)</a> found a similar relationship for a green cover increase of 50% which resulted in an average decrease of 2.9 °C in air temperature. The close relationship between increase in seasonal UHI and the ΔPSF within each LCZ also was in agreement with the work of <a class="elsevierStyleCrossRef" href="#bib0190">Shahmohamadi <span class="elsevierStyleItalic">et al.</span> (2010)</a> which reported a smaller UHI, but similar values in canopy cover as the present study.</p><elsevierMultimedia ident="fig0045"></elsevierMultimedia><p id="par0220" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#bib0205">Stewart (2011)</a>, hourly observations are recommended for detection of the daily maximum and minimum UHI. When we examined the variability of the UHI on hourly intervals (<a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10</a>) we found no interaction between the season effect (<a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10a</a>) (P<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.58, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.30, 1, 235) and the canopy cover (<a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10b</a>) (P<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.47, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.50, 1, 235). However, significant differences through the hours were detected (P < 0.0001, F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>5.05, 23, 235). The UHI was slightly more intense during warm nights and days according to <a class="elsevierStyleCrossRef" href="#bib0120">Jáuregui (1997)</a> and <a class="elsevierStyleCrossRef" href="#bib0185">Romero-Dávila <span class="elsevierStyleItalic">et al.</span> (2011)</a>, who state that during the summer (warm) more and less urbanized zones receive high amounts of radiation, although they have different albedos. Therefore, differences among <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> were not considerable. Nevertheless, during the night the response to the slow rate of heat dissipation was significant in more urbanized areas (<a class="elsevierStyleCrossRef" href="#bib0190">Shahmohamadi <span class="elsevierStyleItalic">et al.,</span> 2010</a>).</p><elsevierMultimedia ident="fig0050"></elsevierMultimedia><p id="par0225" class="elsevierStylePara elsevierViewall">A pattern in UHI variation was detected independently of the season and status of the canopy cover. During the first hours of the day (0:00 to 11:00 LT) the intensity remains between 2 and 3 °C. A substantial increase reaching a maximum of 5 °C between 15:00 and 16:00 LT is achieved later. Between 17:00-19:00 LT the UHI diminishes and remains between 2-3 °C (<a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10</a>) throughout the night. Two minor intensity peaks were detected associated with the sunrise and sunset, and the differential between more and less urbanized zones was minimal (<a class="elsevierStyleCrossRef" href="#bib0130">Landsberg, 1981</a>). Maximum UHI peaks were observed through the afternoon during the hours of highest solar radiation. This energy is absorbed and stored by the most urbanized surfaces, whereas less urbanized zones with greater percentages of permeable surfaces (including vegetation) reflected more radiation and therefore maintained smaller superficial temperatures (<a class="elsevierStyleCrossRef" href="#bib0060">Emmanuel, 2005</a>; <a class="elsevierStyleCrossRef" href="#bib0035">Blake <span class="elsevierStyleItalic">et al.,</span> 2011</a>).</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.4</span><span class="elsevierStyleSectionTitle" id="sect0110">General considerations</span><p id="par0230" class="elsevierStylePara elsevierViewall">The vegetation cover examined in the present work had a seasonal effect on air temperature and reduced the UHI intensity, although LAI peaks were relatively low (2.05 to 2.52), and vegetation types and their phenological activity were reduced because many species are deciduous during the cold season, and also as a result of the predominant summer rainfall distribution. In other studies a decrease in the UHI effect is reported, but the LAI is typically higher due to the temperate nature of vegetation and higher and more uniform rainfall regimes (<a class="elsevierStyleCrossRef" href="#bib0180">Potchter <span class="elsevierStyleItalic">et al.,</span> 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0135">Leuzinger <span class="elsevierStyleItalic">et al.,</span> 2010</a>). Although the watering costs may reduce the environmental benefits of urban vegetation (<a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>), here we have shown that vegetation types adapted to low rainfall are useful for reducing climate change effects. The cooling effect of urban vegetation, with likely higher water availability, was similar in magnitude to that of native species present in suburban areas and located at hill slopes. A further work should examine the performance of native species under water-restricted regimes within the urban context.</p><p id="par0235" class="elsevierStylePara elsevierViewall">The increase of green areas within the cities is an efficient strategy to buffer environmental temperatures (<a class="elsevierStyleCrossRef" href="#bib0020">Anyanwu and Kanu, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0250">Yu and Hien, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0140">Li <span class="elsevierStyleItalic">et al.,</span> 2013</a>). However, there are some drawbacks that should be considered when including trees in the urban landscape, such as litter production, infrastructure damage by roots, and emission of harmful volatile compounds (<a class="elsevierStyleCrossRef" href="#bib0020">Anyanwu and Kanu, 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0050">DEFRA, 2007</a>; <a class="elsevierStyleCrossRef" href="#bib0055">Doick and Hutchings, 2013</a>). Therefore, careful selection of tree species and thorough planning are advised.</p><p id="par0240" class="elsevierStylePara elsevierViewall">Urban parks are conspicuous and urban expansion is fast in Querétaro; therefore, a planned integration of adequate green areas is urgent. When increasing green land areas, sizeable areas should be considered because their thermal influence depends on size (<a class="elsevierStyleCrossRef" href="#bib0115">Jáuregui, 1990</a>; <a class="elsevierStyleCrossRef" href="#bib0040">Ca <span class="elsevierStyleItalic">et al.,</span> 1998</a>; <a class="elsevierStyleCrossRef" href="#bib0245">Yan <span class="elsevierStyleItalic">et al.,</span> 2014</a>). Even though the studied urban sites are small patches or household gardens, they still have an ameliorating effect. Besides the planning of big urban parks, empty lots could be reclaimed, which is important because some residential developments still have over 25% of unconstructed area after decades of being inaugurated.</p></span></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">4</span><span class="elsevierStyleSectionTitle" id="sect0115">Conclusions</span><p id="par0245" class="elsevierStylePara elsevierViewall">Within the city of Querétaro, minimum daily temperature increased at a rate of 0.751 °C per decade during the period 1982-2011, while population increased 33% during the last two decades.</p><p id="par0250" class="elsevierStylePara elsevierViewall">More urbanized zones, higher temperature and a decreasing temperature gradient were associated to increasing vegetation cover. The effect of local climate zones could be associated to factors such as construction materials, infrastructure, extension of the impermeable surfaces, percentage of construction and fraction of permeable surface (vegetal cover and naked ground). Particularly, we demonstrated the importance of green areas, since a 50% increase in the permeable surface diminished <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">min</span></span> by 1.76 °C during the cold season and 2.18 °C during the warm season.</p><p id="par0255" class="elsevierStylePara elsevierViewall">The UHI effect was similar regardless of the season (cold or warm), oscillating between 0.14 and 5 °C. The UHI had a daily maximum of 4.2 °C between 13:00-16:00 LT, while a daily minima of the order of 1.5 °C was nearly coincident with sunrise and sunset hours.</p><p id="par0260" class="elsevierStylePara elsevierViewall">According to the relation showed by canopy cover and UHI intensity, a 50% increase in vegetation cover in urbanized zones could mitigate the UHI intensity up to 2.05 °C during the warmest period.</p><p id="par0265" class="elsevierStylePara elsevierViewall">Finally, it is important to emphasize that including green areas in urban planning is utterly important, since they have a potential for temperature mitigation. However, the design, extent and species composition of the canopy should take into account the existing urban climate and the species adaptation to climate variability.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:9 [ 0 => array:3 [ "identificador" => "xres901037" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:3 [ "identificador" => "xres901036" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec882099" "titulo" => "Keywords" ] 3 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 4 => array:3 [ "identificador" => "sec0010" "titulo" => "Methodology" "secciones" => array:8 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Study area" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Study zones" ] 2 => array:3 [ "identificador" => "sec0025" "titulo" => "Local climate zones" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0030" "titulo" => "LCZ B (scattered trees)" ] 1 => array:2 [ "identificador" => "sec0035" "titulo" => "LCZ 6 (open low-rise)" ] 2 => array:2 [ "identificador" => "sec0040" "titulo" => "LCZ 3 (compact low-rise)" ] 3 => array:2 [ "identificador" => "sec0045" "titulo" => "LCZ 2 (compact mid-rise)" ] ] ] 3 => array:2 [ "identificador" => "sec0050" "titulo" => "Sampling" ] 4 => array:2 [ "identificador" => "sec0055" "titulo" => "Temperature corrections" ] 5 => array:2 [ "identificador" => "sec0060" "titulo" => "The role of vegetation in urban temperature dynamics" ] 6 => array:2 [ "identificador" => "sec0065" "titulo" => "Vegetation cover and effect of the UHI" ] 7 => array:2 [ "identificador" => "sec0070" "titulo" => "Statistical analysis" ] ] ] 5 => array:3 [ "identificador" => "sec0075" "titulo" => "Results and discussion" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0080" "titulo" => "Historic and annual temperature oscillation" ] 1 => array:2 [ "identificador" => "sec0085" "titulo" => "The role of vegetation in urban temperature" ] 2 => array:2 [ "identificador" => "sec0090" "titulo" => "Effect of the urban heat island (UHI)" ] 3 => array:2 [ "identificador" => "sec0095" "titulo" => "General considerations" ] ] ] 6 => array:2 [ "identificador" => "sec0100" "titulo" => "Conclusions" ] 7 => array:2 [ "identificador" => "xack299709" "titulo" => "Acknowledgments" ] 8 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2013-11-13" "fechaAceptado" => "2015-06-24" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec882099" "palabras" => array:5 [ 0 => "Climate change" 1 => "urban heat island effect" 2 => "urban planning" 3 => "Querétaro" 4 => "vegetation" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">La alteración de las condiciones climáticas y el efecto de isla urbana de calor (EIC) son resultado del incremento de la población y de sus actividades en las zonas urbanas. En ciudades medianas como Querétaro es importante determinar la magnitud del EIC y promover la planeación del crecimiento urbano. Conservar y aumentar las áreas con vegetación es una buena opción para mitigar el EIC. En este estudio se analizaron la intensidad del EIC y el efecto de la cobertura vegetal sobre la regularización de la temperatura del aire. Se definieron cuatro zonas climáticas locales para el estudio, tres urbanas y una rural. En cada zona se ubicó una parcela de medición en la cual se consideraron dos niveles de cobertura vegetal en función del índice de área foliar: bajo y alto (0.5 y 2.0, respectivamente). La temperatura del aire se midió con recolectores de datos a intervalos de 30 min entre junio de 2012 y mayo de 2013. También se analizaron datos climáticos de seis estaciones meteorológicas. La temperatura media diaria aumentó a razón de 0.75 °C por década (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.38, P < 0.0001); este aumento se relacionó con la dinámica poblacional (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.52, P < 0.0001). Los patrones estacionales de temperatura se describieron como temporada fría de julio a marzo y temporada cálida de abril a junio para la temperatura máxima, y temporada fría de noviembre a marzo y temporada cálida de abril a octubre para la temperatura mínima. La diferencia entre las temporadas cálida y fría fue del orden de 5 °C (P < 0.0001). No se identificaron differencias en la temperatura mínima en función de los niveles de cobertura de la vegetación. Sin embargo, la humedad relativa fue mayor en el nivel alto de la cobertura vegetal. La relación entre la intensidad del EIC y la fracción de superficie impermeable fue inversamente proporcional. La intensidad del EIC fue similar para la temporada cálida y fría y varió de 0.1 a 5 °C. La vegetación con mayor cobertura presentó menor temperatura a las 17:00 horas y mayor de las 9:00 a las 10:00 horas durante la temporada cálida. Al aumentar 50% la cobertura vegetal en la zona urbana se lograría reducir la intensidad del EIC en 2.05 °C. En conclusión, una mayor cobertura de la vegetación mejora las condiciones ambientales en términos de humedad relativa y regularización de los extremos de temperatura durante la temporada cálida.</p></span>" ] "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Alteration of climatic conditions and the urban heat island effect (UHI) are consequences of increased human population and activities in urban zones. Determining the magnitude of the UHI is important to improve urban planning in medium-size cities like Querétaro. Increase and conservation of vegetated areas is a mitigation option for UHI. Here we characterized both the UHI and the role of vegetation cover over temperature regularization in urban zones. Four local climatic zones were defined: three urban and one rural, each with two plots with low and high canopy cover defined by their average leaf area index (0.5 and 2.0, respectively). Air temperature and relative humidity were measured with data loggers at a 30 min time step from June 2012 to May 2013. Climatic data from six weather stations was also analyzed. Daily mean temperature increased at a rate of 0.75 °C per decade (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.38, P < 0.0001), and this was related to population dynamics (<span class="elsevierStyleItalic">r</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.52, P < 0.0001). Patterns of air temperature defined a cold and a warm season: July to March and April to June for maximum temperature, and November to March and April to October for minimum temperature. The difference between cold and warm seasons was 5 °C (P < 0.0001). The minimum temperature was similar between canopy cover levels. However, relative humidity was higher in high canopy cover plots. The relationship between UHI and the pervious surface fraction of the city was inversely proportional. The UHI ranged from 0.1 to 5 °C and this magnitude was similar between the warm and cold seasons. Vegetation with high canopy cover had lower temperature at 17:00 LT and higher at 9:00 to 10:00 LT during the warm season. Increasing the urban zone canopy cover by 50% would reduce the UHI by 2.05 °C. In conclusion, vegetation with higher canopy cover improved environmental conditions in terms of relative humidity and regularization of extreme temperatures during the warm season.</p></span>" ] ] "multimedia" => array:25 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 742 "Ancho" => 948 "Tamanyo" => 109890 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Geographic location of the study area (Querétaro City).</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 963 "Ancho" => 1230 "Tamanyo" => 230945 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Location of the four delimited local climate zones (LCZ B, LCZ 2, LCZ 3, LCZ 6) and situation of the climatic stations of the Sistema Meteorológico Nacional (National Meteorological System, SMN) (CNA-SMN, 2014) within the city of Querétaro.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1191 "Ancho" => 1588 "Tamanyo" => 223314 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Scatterplots and linear regressions between daily average temperature on time (a and c) and Querétaro city population size (b and d), from six climate stations of the SMA (CNA-SMN, 2014).</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 611 "Ancho" => 1740 "Tamanyo" => 98112 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Monthly average for maximum temperature (<span class="elsevierStyleItalic">T<span class="elsevierStyleInf">max</span></span>) and minimum temperature (<span class="elsevierStyleItalic">T<span class="elsevierStyleInf">min</span></span>) between 1982 and 2011 for six climate stations of the SMA (CNA-SMN, 2014). Black bars (warm season) are significantly different from white bars (cold season). Line bars are the standard errors of the mean.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 670 "Ancho" => 943 "Tamanyo" => 41705 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Average of minimum temperature (<span class="elsevierStyleBold"><span class="elsevierStyleItalic">T<span class="elsevierStyleInf">min</span></span></span>) for the local climate zones (LCZ) according to low (–C) and high (+C) canopy cover categories during the cold and warm season described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>. Cold: <elsevierMultimedia ident="201709141212235341"></elsevierMultimedia>–C, <elsevierMultimedia ident="201709141212235342"></elsevierMultimedia>+C. Warm: ▼–C, ▲+C. Line bars are the standard errors of the mean.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 668 "Ancho" => 942 "Tamanyo" => 44007 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Average of relative humidity (RH) for local climate zones (LCZ) during the cold (o) and warm (•) seasons as described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>. Line bars are the standard errors of the mean.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 629 "Ancho" => 1585 "Tamanyo" => 79785 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Relationship between monthly average minimum temperature (<span class="elsevierStyleItalic">T<span class="elsevierStyleInf">min</span></span>) and pervious surface fraction (PSF) of the four local climate zones during (a) cold and (b) warm seasons, as described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 710 "Ancho" => 942 "Tamanyo" => 42478 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Urban heat island (UHI) intensity of monthly average minimum temperature (Δ<span class="elsevierStyleItalic">T<span class="elsevierStyleInf">min</span></span>) between local climate zones (LCZs), during cold (o) and warm (●) seasons as described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>, where <span class="elsevierStyleItalic">x</span> and <span class="elsevierStyleItalic">y</span> represent more and less urbanized zones, respectively. Line bars are the standard errors of the mean.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 623 "Ancho" => 1570 "Tamanyo" => 87277 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Relationship between urban heat island (UHI) intensity and difference in the pervious surface fraction (ΔPSF) during the (a) cold and (b) warm seasons described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>.</p>" ] ] 9 => array:7 [ "identificador" => "fig0050" "etiqueta" => "Fig. 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 608 "Ancho" => 1568 "Tamanyo" => 95448 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Time hourly series for (a) urban heat island (UHI) intensity of monthly average minimum temperature (<span class="elsevierStyleItalic">ΔT<span class="elsevierStyleInf">min</span></span>) throughout a day, during the cold (○) and warm (●) seasons described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>, and (b) low (<elsevierMultimedia ident="201709141212235343"></elsevierMultimedia>–C) and high (▲+C) cover categories. Line bars are the standard errors of the mean.</p>" ] ] 10 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table I" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">LCZ B: scattered trees; LCZ 6: open low-rise; LCZ 3: compact low-rise; LCZ 2: compact mid-rise.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Properties \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LCZ B \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LCZ 6 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LCZ 3 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LCZ 2 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Sky view factor (<span class="elsevierStyleItalic">Ψ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">sky</span></span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.5-0.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.6-0.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.2-0.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.3-0.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Aspect ratio (H/W) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.25-0.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.3-0.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.75-1.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.75-2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Mean height of trees/buildings (<span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">H</span></span>) (m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">< 20 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Terrain roughness class \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Building surface fraction (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">b</span></span>) (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">30.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">58.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">64.39 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Impervious surface fraction (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span>) (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">27.46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">26.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">34.28 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Pervious surface fraction (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>)(%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">99.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">42.40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">15.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1.33 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Surface admittance (<span class="elsevierStyleItalic">μ</span>) (J m<span class="elsevierStyleSup">–2</span>s−12 K<span class="elsevierStyleSup">–1</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1000-1800 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1200-1800 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1200-1800 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1500-2200 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Surface albedo (α) (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.15-0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.12-0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.10-0.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0.10-0.20 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Anthropogenic heat flux (<span class="elsevierStyleItalic">Q</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">F</span></span>) (W m<span class="elsevierStyleSup">–2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">< 25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">< 75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">< 75 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1513551.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Parameters of geometric and surface cover properties for the LCZs of Queretaro City, according to the Stewart and Oke (2012) classification.</p>" ] ] 11 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table II" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">LCZ \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Land cover category<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">*</span></a> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LAI \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Latitude (dd) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Longitude (dd) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Altitude (masl) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.055 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.530611 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.361917 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">2334 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.536028 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.3605 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">2204 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.54 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.535528 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.360722 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">2208 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.375 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.531306 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.360806 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">2319 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.699139 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.444111 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1908 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.702056 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.443611 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1932 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.635 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.70075 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.443639 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1920 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.285 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.701306 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.442556 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1921 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.175 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.567639 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.368361 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1883 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.755 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.567611 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.368389 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1883 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">+C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.295 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.579944 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.384806 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1829 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">LCZ 2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">–C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.255 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.579917 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.384806 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1829 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1513553.png" ] ] ] "notaPie" => array:1 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "*" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">High (+C) and low (–C). dd: decimal degrees; masl: meters above sea level.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Leaf area index (LAI), geographic coordinates and altitude values of the sampling points in each local climate zone (LCZ).</p>" ] ] 12 => array:7 [ "identificador" => "tbl0015" "etiqueta" => "Table III" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">SMN: National Meteorological System.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Code \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Name \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Latitude (dd) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Longitude (dd) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Altitude (masl) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">El Batán \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.424 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.504 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1886 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22006 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">El Pueblito \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.448 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.522 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1830 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22027 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Carrillo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.441 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.604 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1802 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22045 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Junquilla \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.459 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.704 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1877 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22063 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Querétaro \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.383 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.583 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1827 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">22070 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Plantel 7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">–100.344 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20.606 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="top">1857 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1513552.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Geographic coordinates and altitude values for the seven climate stations of the SMN (CNA-SMN, 2014).</p>" ] ] 13 => array:5 [ "identificador" => "201709141212235341" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 30 "Ancho" => 30 "Tamanyo" => 11195 ] ] ] 14 => array:5 [ "identificador" => "201709141212235342" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx2.jpeg" "Alto" => 29 "Ancho" => 30 "Tamanyo" => 11156 ] ] ] 15 => array:5 [ "identificador" => "201709141212235343" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx2.jpeg" "Alto" => 29 "Ancho" => 30 "Tamanyo" => 11156 ] ] ] 16 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "θ=Tp0pR/cp" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 1221 "Alto" => 33 "Ancho" => 102 ] ] 17 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ph=p0 e(−mgh/RT)" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 1096 "Alto" => 18 "Ancho" => 129 ] ] 18 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "UHI=ΔTLCZx−y (°C)" "Fichero" => "STRIPIN_si4.jpeg" "Tamanyo" => 1394 "Alto" => 16 "Ancho" => 155 ] ] 19 => array:6 [ "identificador" => "eq0020" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Y=β1+β0X" "Fichero" => "STRIPIN_si5.jpeg" "Tamanyo" => 890 "Alto" => 14 "Ancho" => 97 ] ] 20 => array:6 [ "identificador" => "eq0025" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Yijk=m+Mi+Lj+Sk+M*Lij+M*Sik+L*Sjk+M*L*Sijk+eijk" "Fichero" => "STRIPIN_si6.jpeg" "Tamanyo" => 4045 "Alto" => 40 "Ancho" => 261 ] ] 21 => array:6 [ "identificador" => "eq0030" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Y=β1+β0X" "Fichero" => "STRIPIN_si5.jpeg" "Tamanyo" => 890 "Alto" => 14 "Ancho" => 97 ] ] 22 => array:6 [ "identificador" => "eq0035" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Yijk=m+Mi+Cj+Sk+M*Cij+M*Sik+C*Sjk+M*C*Sijk+eijk" "Fichero" => "STRIPIN_si8.jpeg" "Tamanyo" => 4088 "Alto" => 40 "Ancho" => 262 ] ] 23 => array:6 [ "identificador" => "eq0040" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Y=β1+β0X" "Fichero" => "STRIPIN_si5.jpeg" "Tamanyo" => 890 "Alto" => 14 "Ancho" => 97 ] ] 24 => array:6 [ "identificador" => "eq0045" "etiqueta" => "(9)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Yij=m+Ei+Hj+E*Hij+eij" "Fichero" => "STRIPIN_si10.jpeg" "Tamanyo" => 1837 "Alto" => 16 "Ancho" => 232 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:51 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "Adamson, 2012" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A textbook of physical chemistry" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Adamson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "2nd" "fecha" => "2012" "paginaInicial" => "996" "editorial" => "Burlington Elsevier Science" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "Alexander and Mills, 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Local climate classification and Dublin's urban heat island" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.J. Alexander" 1 => "G. Mills" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmosphere" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "755" "paginaFinal" => "774" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "Álvarez de la Torre, 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "El crecimiento urbano y estructura urbana en las ciudades mexicanas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.B. Álvarez de la Torre" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Quivera" "fecha" => "2010" "volumen" => "12" "paginaInicial" => "94" "paginaFinal" => "114" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "Anyanwu and Kanu, 2006" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "<span class="elsevierStyleInterRef" id="intr0005" href="http://www.sid.ir/en/VEWSSID/J_pdf/92220060213.pdf">http://www.sid.ir/en/VEWSSID/J_pdf/92220060213.pdf</span>" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of urban forest in the protection of human environmental health in geographically prone unpredictable hostile weather conditions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E.C. Anyanwu" 1 => "I. Kanu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Environ. Sci. Te" "fecha" => "2006" "volumen" => "3" "paginaInicial" => "197" "paginaFinal" => "201" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "Aragón-Domínguez and López-Carranza, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Aragón-Domínguez M. E. and D. López-Carranza, 2013. La conformación de la Zona Metropolitana de Querétaro. Segundo Seminario Internacional Repensar la Metrópoli. Mexico, 7-11 de octubre, 16 pp. Available at: <a href="http://geouam.xoc.uam.mx/Seminario/PDFS/M12P3.pdf">http://geouam.xoc.uam.mx/Seminario/PDFS/M12P3.pdf</a>." ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "Baltazar et al., 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guía de plantas comunes del Parque Nacional “El Cimatario” y sus alrededores" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.O. Baltazar" 1 => "M. Martínez" 2 => "L. Hernández-Sandoval" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2004" "paginaInicial" => "86" "editorial" => "Universidad Autónoma de Querétaro" "editorialLocalizacion" => "Mexico" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "Blake et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Urban climate: Processes, trends and projections" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "R. Blake" 1 => "A. Grimm" 2 => "T. Ichinose" 3 => "R. Horton" 4 => "S. Gaffin" 5 => "S. Jiong" 6 => "D.A. Bader" 7 => "L.D. Cecil" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "Climate change and cities: First assessment report of the Urban Climate Change Research Network" "paginaInicial" => "p43" "paginaFinal" => "p81" "serieFecha" => "2011" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "Ca et al., 1998" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reductions in air-conditioning energy caused by a nearby park" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "V.T. Ca" 1 => "T. Asaeda" 2 => "E.M. Abu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Energ. Buildings" "fecha" => "1998" "volumen" => "29" "paginaInicial" => "83" "paginaFinal" => "92" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "CNA-SMN, 2014" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "CNA-SMN, 2014. Normales climatológicas. Base de datos climatológica para el estado de Querétaro a Julio de 2014. Available at: smn.conagua.gob.mx." ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "DEFRA, 2007" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "DEFRA, 2007. <span class="elsevierStyleItalic">Air quality and climate change: A UK perspective</span>. Report of the Air Quality Expert Group to the UK Department of Environment, Food and Rural Affairs, 317 pp. Available at: <a href="http://uk-air.defra.gov.uk/assets/documents/reports/aqeg/fullreport.pdf">http://uk-air.defra.gov.uk/assets/documents/reports/aqeg/fullreport.pdf</a>." ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "Doick and Hutchings, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Doick K. and T. Hutchings, 2013. Air temperature regulation by urban trees and green infrastructure. Forestry Research, Forestry Commission, UK, 10 pp. Available at: <a href="http://www.forestry.gov.uk/pdf/FCRN012.pdf/$file/FCRN012.pdf">http://www.forestry.gov.uk/pdf/FCRN012.pdf/$file/FCRN012.pdf</a>." ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "Emmanuel, 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An urban approach to climate-sensitive design: Strategies for the tropics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.R. Emmanuel" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2005" "paginaInicial" => "208" "editorial" => "Spon Press" "editorialLocalizacion" => "Oxfordshire" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "García-Cueto et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Detection of the urban heat island in Mexicali, B.C., Mexico and its relationship whit land use" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. García-Cueto O" 1 => "E. Jáuregui O" 2 => "D. Toudert" 3 => "A. Tejeda" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmósfera" "fecha" => "2007" "volumen" => "20" "paginaInicial" => "111" "paginaFinal" => "131" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "García-Cueto et al., 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Urbanization effects upon the air temperature in Mexicali, B.C., México" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "O.R. García-Cueto" 1 => "A. Tejeda Martínez" 2 => "G. Bojórquez Morales" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmósfera" "fecha" => "2009" "volumen" => "22" "paginaInicial" => "349" "paginaFinal" => "365" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "Guevara-Escobar et al., 2012" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rhodes grass production under a Eucalypt canopy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Guevara-Escobar" 1 => "M. Cervantes-Jiménez" 2 => "H. Suzán-Azpiri" 3 => "E. González-Sosa" 4 => "I. Saavedra" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Agrociencia" "fecha" => "2012" "volumen" => "46" "paginaInicial" => "175" "paginaFinal" => "188" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "Hunt et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Introduction. Climate change and urban areas: Research dialogue in a policy framework Philos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.C.R. Hunt" 1 => "M. Maslin" 2 => "T. Killeen" 3 => "P. Backlund" 4 => "H.J. Schellnhuber" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Trans. R. Soc. A" "fecha" => "2007" "volumen" => "355" "paginaInicial" => "2615" "paginaFinal" => "2629" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "Icazuriaga-Montes and Osorio-Franco, 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La relación periferia-centro en la ciudad de Querétaro mediante las prácticas de movilidad y consumo" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Icazuriaga-Montes" 1 => "L.E. Osorio-Franco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Alteridades" "fecha" => "2007" "volumen" => "17" "paginaInicial" => "21" "paginaFinal" => "41" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "INEGI, 1990" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "INEGI, 1990. XI Censo General de Población y Vivienda 1990. Perfil sociodemográfico de Querétaro de Arteaga. Instituto Nacional de Estadística y Geografía, Mexico. Available at: <a href="http://www.inegi.org.mx/sistemas/olap/proyectos/bd/consulta.asp?p=16653%26c=11893%26s=est">http://www.inegi.org.mx/sistemas/olap/proyectos/bd/consulta.asp?p=16653&c=11893&s=est</a>." ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "INEGI, 2010" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "INEGI, 2010. Principales resultados del Censo de Población y Vivienda 2010: Querétaro. Instituto Nacional de Estadística y Geografía, Mexico, 84 pp. Available at: <a href="http://www.inegi.org.mx/prod_serv/contenidos/es-panol/bvinegi/productos/censos/poblacion/2010/princi_result/qro/22_principales_resultados_cpv2010.pdf">http://www.inegi.org.mx/prod_serv/contenidos/es-panol/bvinegi/productos/censos/poblacion/2010/princi_result/qro/22_principales_resultados_cpv2010.pdf</a>." ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "IPCC, 1997" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "Available at: <span class="elsevierStyleInterRef" id="intr0035" href="http://www.ipcc.ch/ipccreports/sres/regional/index.php?idp=0">http://www.ipcc.ch/ipccreports/sres/regional/index.php?idp=0</span>" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The regional impacts of Climate Change: An assessment of vulnerability" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "IPCC" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Intergovernmental Panel on Climate Change" "paginaInicial" => "517" "serieFecha" => "1997" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "IPCC, 2007" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "IPCC, 2007. Cambio climático 2007. Informe de síntesis. Contribución de los grupos de trabajo I, II y III al Cuarto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (R. K. Pachauri y A. Reisinger, Dirs.). Geneva, 104 pp. Available at: <a href="http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_sp.pdf">http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_sp.pdf</a>." ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "IPCC, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "IPCC, 2013. <span class="elsevierStyleItalic">Climate change 2013: The physical science basis</span>. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, 1535 pp. Available at: <a href="http://www.ipcc.ch/report/ar5/wg1/">http://www.ipcc.ch/report/ar5/wg1/</a>." ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "Jáuregui, 1990" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of a large urban park on temperature and convective precipitation in a tropical city" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Jáuregui" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Energ. Buildings" "fecha" => "1990" "volumen" => "15" "paginaInicial" => "457" "paginaFinal" => "463" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "Jáuregui, 1997" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Heat island development in Mexico City" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Jáuregui" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmos. Environ." "fecha" => "1997" "volumen" => "31" "paginaInicial" => "3821" "paginaFinal" => "3831" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "Jáuregui, 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Possible impact of urbanization on the thermal climate of some large cities in México" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Jáuregui" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmósfera" "fecha" => "2005" "volumen" => "18" "paginaInicial" => "247" "paginaFinal" => "248" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "Landsberg, 1981" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The urban climate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "H.E. Landsberg" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "1981" "paginaInicial" => "275" "editorial" => "Academic Press" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "Leuzinger et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tree surface temperature in an urban environment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Leuzinger" 1 => "R. Vogt" 2 => "C. Körner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Agr. Forest Meteorol." "fecha" => "2010" "volumen" => "150" "paginaInicial" => "56" "paginaFinal" => "62" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "Li et al., 2013" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "doi:10.1088/1748-9326/8/1/01502314" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Corrigendum: The use of reflective and permeable pavements as a potential practice for heat island mitigation and storm water management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H. Li" 1 => "J.T. Harvey" 2 => "T.J. Holland" 3 => "M. Kayhanian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Environ. Res. Lett" "fecha" => "2013" "volumen" => "8" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "Lin et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Carbon savings resulting from the cooling effect of green areas: a case study in Beijing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W. Lin" 1 => "T. Wu" 2 => "C. Zhang" 3 => "T. Yu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.envpol.2011.02.035" "Revista" => array:6 [ "tituloSerie" => "Environ. Pollut" "fecha" => "2011" "volumen" => "159" "paginaInicial" => "2148" "paginaFinal" => "2154" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21444136" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "Liu et al., 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Urban-rural humidity and temperature differences in the Beijing area" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "W. Liu" 1 => "H. You" 2 => "J. Dou" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Theor. Appl. Climatol" "fecha" => "2009" "volumen" => "96" "paginaInicial" => "201" "paginaFinal" => "207" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "Lutgens and Tarbuck, 2012" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The atmosphere: An introduction to meteorology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F.K. Lutgens" 1 => "E.J. Tarbuck" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "12th" "fecha" => "2012" "paginaInicial" => "533" "editorial" => "Pearsons" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "Mohanakumar, 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stratosphere-troposphere interactions: An introduction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Mohanakumar" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2008" "paginaInicial" => "416" "editorial" => "Springer" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "Morillón et al., 2002" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atlas bioclimático de la República Mexicana" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.D. Morillón" 1 => "F.R. Saldaña" 2 => "T.I. Castañeda" 3 => "M.U. Miranda" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Energías Renovables y Medio Ambiente" "fecha" => "2002" "volumen" => "10" "paginaInicial" => "57" "paginaFinal" => "62" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "Oke, 1973" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "City size and the urban heat island" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T.R. Oke" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmos. Environ" "fecha" => "1973" "volumen" => "7" "paginaInicial" => "769" "paginaFinal" => "779" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "Oke, 2006" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Oke T. R., 2006. Initial guidance to obtain representative meteorological observations at urban sites. Instrument and Observing Methods Report No. 81, WMO/TD No. 1250. World Meteorological Organization, Geneva. Available at: <a href="http://www.urban-climate.org/documents/IOM-81-UrbanMetObs.pdf">http://www.urban-climate.org/documents/IOM-81-UrbanMetObs.pdf</a>." ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "Potchter et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climatic behaviour of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "O. Potchter" 1 => "P. Cohen" 2 => "A. Bitan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Israel. Int. J. Climatol." "fecha" => "2006" "volumen" => "26" "paginaInicial" => "695" "paginaFinal" => "711" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "Romero-Dávila, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identificación de las islas de calor de verano e invierno en la ciudad de Toluca México" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Romero-Dávila" 1 => "C.C. Morales-Méndez" 2 => "X.A. Némiga" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Revista de Climatología" "fecha" => "2011" "volumen" => "11" "paginaInicial" => "1" "paginaFinal" => "10" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "Shahmohamadi et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reducing urban heat island effects: A systematic review to achieve energy consumption balance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "P. Shahmohamadi" 1 => "A.I. Che-Ani" 2 => "A. Ramly" 3 => "K.N.A. Maulud" 4 => "M.F.I. Mohd-Nor" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Phys. Sci." "fecha" => "2010" "volumen" => "5" "paginaInicial" => "626" "paginaFinal" => "636" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "Steeneveld et al., 2011" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "doi:10.1029/2011JD015988." "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G.J. Steeneveld" 1 => "S. Koopmans" 2 => "B.G. Heusinkveld" 3 => "L.W.A. van Hove" 4 => "A.A.M. Holtslag" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "J. Geophys. Res" "fecha" => "2011" "volumen" => "116" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "Stewart, 2007" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "111-121" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Landscape representation and the urban-rural dichotomy in empirical urban heat island literature, 1950-2006" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "I.D. Stewart" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Acta Climatologica et Chorologica" "fecha" => "2007" "paginaInicial" => "40" "paginaFinal" => "41" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "Stewart, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A systematic review and scientific critique of methodology in modern urban heat island literature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "I.D. Stewart" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Climatol" "fecha" => "2011" "volumen" => "31" "paginaInicial" => "200" "paginaFinal" => "217" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "Stewart and Oke, 2012" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Local climate zones for urban temperature studies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I.D. Stewart" 1 => "T.R. Oke" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bull. Am. Meteorol. Soc." "fecha" => "2012" "volumen" => "93" "paginaInicial" => "1897" "paginaFinal" => "1900" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "Suzán-Azpiri et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Elementos técnicos del Programa Estatal de Acción ante el Cambio Climático-Querétaro" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H. Suzán-Azpiri" 1 => "V.H. Cambrón-Sandoval" 2 => "O.R. García-Rubio" 3 => "A. Guevara-Escobar" 4 => "H. Luna-Soria" 5 => "E. González-Sosa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2014" "paginaInicial" => "288" "editorial" => "Universidad Autónoma de Querétaro" "editorialLocalizacion" => "Mexico" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "Um et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of the urban effect of long-term relative humidity and the separation of temperature and water vapor effects" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H.-H. Um" 1 => "K.-J. Ha" 2 => "S.-S. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Climatol." "fecha" => "2007" "volumen" => "27" "paginaInicial" => "1531" "paginaFinal" => "1542" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "United Nations, 2014" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "Available at: <span class="elsevierStyleInterRef" id="intr0055" href="http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf">http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf</span>." "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "World urbanization prospects: The 2014 revision, highlights ST/ESA/SER. A/352" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "United Nations" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2014" "paginaInicial" => "32" "editorial" => "United Nations, Department of Economic and Social Affairs, Population Division" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "Wallace, 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atmospheric science: An introductory survey" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.M. Wallace" 1 => "P.V. Hobbs" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "edicion" => "2nd" "fecha" => "2006" "paginaInicial" => "576" "editorial" => "Academic Press" "editorialLocalizacion" => "Elsevier" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0235" "etiqueta" => "Wilby, 2003" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Past and projected trends in London's urban heat island" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "R.L. Wilby" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Weather" "fecha" => "2003" "volumen" => "58" "paginaInicial" => "251" "paginaFinal" => "260" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0240" "etiqueta" => "WMO, 2008" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "Available at: <span class="elsevierStyleInterRef" id="intr0060" href="http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf">http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf</span>" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guide to meteorological instruments and methods of observation Vol. I: Meteorology" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "WMO" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "edicion" => "7th" "fecha" => "2008" "paginaInicial" => "681" "editorial" => "WMO-No. 8 World Meteorological Organization" "editorialLocalizacion" => "Geneva" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0245" "etiqueta" => "Yan et al., 2014" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "doi:10.1371/journal.pone.0102124" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Yan" 1 => "S. Fan" 2 => "C. Guo" 3 => "J. Hu" 4 => "L. Dong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0115697" "Revista" => array:4 [ "tituloSerie" => "PLoS ONE" "fecha" => "2014" "volumen" => "9" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25551375" "web" => "Medline" ] ] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0250" "etiqueta" => "Yu and Hien, 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thermal benefits of city parks" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Yu" 1 => "W.N. Hien" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Energ. Buildings Lausanne" "fecha" => "2006" "volumen" => "38" "paginaInicial" => "105" "paginaFinal" => "120" ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0255" "etiqueta" => "Zhang and Yang, 2004" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "Available at: etccdi.pacificclimate.org/RClimDex/RClimDex_Manual_Usuario.doc" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "RClimDex 1.0 User Manual" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "X. Zhang" 1 => "F. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2004" "paginaInicial" => "23" "editorial" => "Climate Research Branch" "editorialLocalizacion" => "Ontario, Canada" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack299709" "titulo" => "Acknowledgments" "texto" => "<p id="par0270" class="elsevierStylePara elsevierViewall">This study was partially funded by Conacyt-Semarnat (project 0108173), INE-UAQ (project INE/PS- 051/2011), and Sedesu (Government of the State of Querétaro).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/01876236/0000002800000003/v2_201709141210/S018762361730005X/v2_201709141210/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/01876236/0000002800000003/v2_201709141210/S018762361730005X/v2_201709141210/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S018762361730005X?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 4 | 9 |
2024 October | 46 | 19 | 65 |
2024 September | 82 | 17 | 99 |
2024 August | 52 | 9 | 61 |
2024 July | 44 | 5 | 49 |
2024 June | 99 | 14 | 113 |
2024 May | 114 | 13 | 127 |
2024 April | 98 | 9 | 107 |
2024 March | 88 | 11 | 99 |
2024 February | 83 | 11 | 94 |
2024 January | 109 | 20 | 129 |
2023 December | 46 | 12 | 58 |
2023 November | 98 | 15 | 113 |
2023 October | 105 | 21 | 126 |
2023 September | 54 | 10 | 64 |
2023 August | 57 | 5 | 62 |
2023 July | 52 | 8 | 60 |
2023 June | 69 | 7 | 76 |
2023 May | 83 | 2 | 85 |
2023 April | 87 | 9 | 96 |
2023 March | 77 | 0 | 77 |
2023 February | 31 | 5 | 36 |
2023 January | 52 | 10 | 62 |
2022 December | 51 | 20 | 71 |
2022 November | 40 | 8 | 48 |
2022 October | 47 | 8 | 55 |
2022 September | 51 | 10 | 61 |
2022 August | 66 | 14 | 80 |
2022 July | 72 | 14 | 86 |
2022 June | 50 | 15 | 65 |
2022 May | 36 | 18 | 54 |
2022 April | 52 | 23 | 75 |
2022 March | 62 | 18 | 80 |
2022 February | 57 | 10 | 67 |
2022 January | 88 | 11 | 99 |
2021 December | 34 | 7 | 41 |
2021 November | 42 | 9 | 51 |
2021 October | 83 | 37 | 120 |
2021 September | 71 | 21 | 92 |
2021 August | 85 | 14 | 99 |
2021 July | 62 | 20 | 82 |
2021 June | 43 | 8 | 51 |
2021 May | 73 | 17 | 90 |
2021 April | 282 | 49 | 331 |
2021 March | 114 | 62 | 176 |
2021 February | 107 | 19 | 126 |
2021 January | 91 | 13 | 104 |
2020 December | 76 | 22 | 98 |
2020 November | 92 | 36 | 128 |
2020 October | 50 | 23 | 73 |
2020 September | 38 | 7 | 45 |
2020 August | 59 | 13 | 72 |
2020 July | 45 | 11 | 56 |
2020 June | 33 | 19 | 52 |
2020 May | 51 | 13 | 64 |
2020 April | 37 | 11 | 48 |
2020 March | 57 | 11 | 68 |
2020 February | 39 | 12 | 51 |
2020 January | 42 | 4 | 46 |
2019 December | 32 | 6 | 38 |
2019 November | 20 | 8 | 28 |
2019 October | 25 | 5 | 30 |
2019 September | 37 | 8 | 45 |
2019 August | 23 | 6 | 29 |
2019 July | 36 | 6 | 42 |
2019 June | 32 | 22 | 54 |
2019 May | 105 | 52 | 157 |
2019 April | 60 | 24 | 84 |
2019 March | 12 | 3 | 15 |
2019 February | 17 | 4 | 21 |
2019 January | 15 | 3 | 18 |
2018 December | 8 | 3 | 11 |
2018 November | 13 | 4 | 17 |
2018 October | 6 | 7 | 13 |
2018 September | 8 | 3 | 11 |
2018 August | 13 | 5 | 18 |
2018 July | 11 | 4 | 15 |
2018 June | 8 | 7 | 15 |
2018 May | 15 | 3 | 18 |
2018 April | 8 | 2 | 10 |
2018 March | 10 | 0 | 10 |
2018 February | 9 | 1 | 10 |
2018 January | 4 | 3 | 7 |
2017 December | 9 | 0 | 9 |
2017 November | 10 | 0 | 10 |
2017 October | 8 | 2 | 10 |
2017 September | 7 | 1 | 8 |
2017 August | 4 | 2 | 6 |
2017 July | 2 | 1 | 3 |
2017 June | 4 | 2 | 6 |
2017 April | 1 | 0 | 1 |
2017 March | 2 | 1 | 3 |