was read the article
array:23 [ "pii" => "S0187623617300061" "issn" => "01876236" "doi" => "10.20937/ATM.2015.28.03.06" "estado" => "S300" "fechaPublicacion" => "2015-07-01" "aid" => "73854" "copyright" => "Universidad Nacional Autónoma de México" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Atmósfera. 2015;28:219-27" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 461 "formatos" => array:3 [ "EPUB" => 32 "HTML" => 301 "PDF" => 128 ] ] "itemAnterior" => array:19 [ "pii" => "S018762361730005X" "issn" => "01876236" "doi" => "10.20937/ATM.2015.28.03.05" "estado" => "S300" "fechaPublicacion" => "2015-07-01" "aid" => "73853" "copyright" => "Universidad Nacional Autónoma de México" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Atmósfera. 2015;28:205-18" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 887 "formatos" => array:3 [ "EPUB" => 34 "HTML" => 642 "PDF" => 211 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "The role of urban vegetation in temperature and heat island effects in Querétaro city, Mexico" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "205" "paginaFinal" => "218" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 623 "Ancho" => 1570 "Tamanyo" => 87277 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Relationship between urban heat island (UHI) intensity and difference in the pervious surface fraction (ΔPSF) during the (a) cold and (b) warm seasons described in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "María L. Colunga, Víctor Hugo Cambrón-Sandoval, Humberto Suzán-Azpiri, Aurelio Guevara-Escobar, Hugo Luna-Soria" "autores" => array:5 [ 0 => array:2 [ "nombre" => "María L." "apellidos" => "Colunga" ] 1 => array:2 [ "nombre" => "Víctor Hugo" "apellidos" => "Cambrón-Sandoval" ] 2 => array:2 [ "nombre" => "Humberto" "apellidos" => "Suzán-Azpiri" ] 3 => array:2 [ "nombre" => "Aurelio" "apellidos" => "Guevara-Escobar" ] 4 => array:2 [ "nombre" => "Hugo" "apellidos" => "Luna-Soria" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S018762361730005X?idApp=UINPBA00004N" "url" => "/01876236/0000002800000003/v2_201709141210/S018762361730005X/v2_201709141210/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "titulo" => "Mexico's contribution to global radiative forcing by major anthropogenic greenhouse gases: CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "219" "paginaFinal" => "227" ] ] "autores" => array:2 [ 0 => array:4 [ "autoresLista" => "Víctor M. Mendoza, René Garduño, Elba E. Villanueva" "autores" => array:3 [ 0 => array:4 [ "nombre" => "Víctor M." "apellidos" => "Mendoza" "email" => array:1 [ 0 => "victor@atmosfera.unam.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "René" "apellidos" => "Garduño" ] 2 => array:2 [ "nombre" => "Elba E." "apellidos" => "Villanueva" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, 04510 México, D.F." "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "*" "correspondencia" => "Corresponding author." ] ] ] 1 => array:3 [ "autoresLista" => "Blanca Mendoza" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Blanca" "apellidos" => "Mendoza" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, 04510 México, D.F." "identificador" => "aff0010" ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 919 "Ancho" => 1377 "Tamanyo" => 89609 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Gross domestic product (GDP) per capita (USD thousands), and radiative forcing (RF) per capita (10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span>) produced by CO<span class="elsevierStyleInf">2</span>, for the USA, Spain (Spa), Argentina (Arg), Mexico (Mex) and the world (Wld) in 2000.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">1</span><span class="elsevierStyleSectionTitle" id="sect0020">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Atmospheric CO<span class="elsevierStyleInf">2</span> represents the main atmospheric phase of the global carbon cycle and it is the most important of the three anthropogenic greenhouse gases (AGG) studied in this work (which are also called emissions). This gas has a variable lifetime in the atmosphere that cannot be precisely specified. “Within several decades of CO<span class="elsevierStyleInf">2</span> emissions, about a third to half of an initial pulse of anthropogenic CO<span class="elsevierStyleInf">2</span> goes into the land and ocean, while the rest stays in the atmosphere (Box 6.1, <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1a</a>). Within a few centuries, most of the anthropogenic CO2 will be in the form of additional dissolved inorganic carbon in the ocean, thereby decreasing ocean pH (Box 6.1, <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1b</a>)” (<a class="elsevierStyleCrossRef" href="#bib0205">Ciais <span class="elsevierStyleItalic">et al.,</span> 2013</a>). As a result, the atmospheric CO<span class="elsevierStyleInf">2</span> adjustment time scales are 1-10<span class="elsevierStyleSup">2</span> years due to land uptake by photosynthesis-respiration and 10-10<span class="elsevierStyleSup">3</span> years due to reduced seawater buffer capacity as a result of ocean invasion by CO<span class="elsevierStyleInf">2</span> (<a class="elsevierStyleCrossRef" href="#bib0205">Ciais <span class="elsevierStyleItalic">et al</span>., 2013</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0010" class="elsevierStylePara elsevierViewall">There is a difference between the increase of CO<span class="elsevierStyleInf">2</span> in the global atmosphere and the global anthropogenic emissions. During 2000-2009 the global atmospheric CO<span class="elsevierStyleInf">2</span> amount had an average annual increase (evaluated in carbon) of 4.0<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.7 PgC/yr (1PgC<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">15</span> grams of carbon) (<a class="elsevierStyleCrossRef" href="#bib0195">IPCC, 2013</a>); whilst the emissions from fossil fuel combustion and cement works (7.8<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.6), as well as land use change (1.1<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.8), sum up the higher amount of 8.9<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.0 PgC/yr. Therefore, we calculated that only a decimal fraction (0.45<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.20) of anthropogenic CO2 remains in the atmosphere. On the other hand, 2.3<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.7 PgC/yr were absorbed by the ocean and 2.6<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.2 PgC/yr by continental biomass, which sum up 4.9<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.4 PgC/yr and represent the 0.55<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.30 decimal fraction that was removed from the atmosphere (<a class="elsevierStyleCrossRef" href="#bib0195">IPCC, 2013</a>, Figure 6.1).</p><p id="par0015" class="elsevierStylePara elsevierViewall">Tropospheric CH<span class="elsevierStyleInf">4</span> has a lifetime of ~10 years due to a major loss resulting from the chemical reaction with the hydroxyl (OH) radical (its main sink, representing 84.6%), which produces CH<span class="elsevierStyleInf">3</span> and H<span class="elsevierStyleInf">2</span>O, and two minor losses: soil sinking (5%) and chemical reactions in the stratosphere (6.7%). The net imbalance of the CH<span class="elsevierStyleInf">4</span> emissions of+22 TgCH<span class="elsevierStyleInf">4</span>/yr (1TgCH<span class="elsevierStyleInf">4</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">12</span> grams of CH<span class="elsevierStyleInf">4</span>) is 3.7% of the total global emissions of this gas (598 TgCH<span class="elsevierStyleInf">4</span>/yr) (<a class="elsevierStyleCrossRef" href="#bib0250">IPCC, 2001</a>; Table 4.2).</p><p id="par0020" class="elsevierStylePara elsevierViewall">Tropospheric N<span class="elsevierStyleInf">2</span>O sinks, which consist in photo-dissociation and reactions with electronically excited oxygen atoms in the stratosphere, lead to a lifetime of ~120 years for the N<span class="elsevierStyleInf">2</span>O molecule, whose amount in the atmosphere is reduced annually by both sinks from 16.4 to 3.8 TgN/yr (1 TgN<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">12</span> grams of N); i.e., 23.2% of the total emissions remains as imbalanced in the atmosphere (<a class="elsevierStyleCrossRef" href="#bib0250">IPCC, 2001</a>; Table 4.4).</p><p id="par0025" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#bib0270">Myhre <span class="elsevierStyleItalic">et al.</span> (2013)</a>, the radiative forcing (RF), considering short and longwave radiation, is defined as the instantaneous change in the net radiative flux (downward minus upward) at the tropopause (top of the troposphere), maintaining fixed the shortwave radiation; therefore, there is an imbalance in the longwave flux. The RF was previously called initial radiative perturbation (<a class="elsevierStyleCrossRef" href="#bib0225">Garduño and Adem, 1994</a>). In the present work, RF is due to the increase of the AGG.</p><p id="par0030" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#bib0270">Myhre <span class="elsevierStyleItalic">et al.</span> (2013)</a> report several RF values (including some that are not due to the increase of AGG), all of them computed between 1750 (during the pre-industrial era) and 2011. Given that the major AGG are well mixed in the atmosphere, it is assumed that their respective concentrations, as well as their increases, are spatially homogeneous. But the contribution per country to this increment (as a consequence of its domestic emissions) is unequal; therefore, its contribution to the corresponding RF by each one of the AGG increase is also unequal. In this work, we compute the contributions of Mexico to the global RF by CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O and compare them with those of Spain, Argentina and the USA based on the retention<a name="p3"></a> of these gases in the atmosphere during a period of 22 years (1990-2011). Clearly, emissions are equal to the sum of sinks plus atmospheric retentions (also referred in this work as retained emissions).</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="sect0025">Relation between the emitted mass and the global volume-mixing ratio of gases</span><p id="par1030" class="elsevierStylePara elsevierViewall">According to the Amagat Law (<a class="elsevierStyleCrossRef" href="#bib0260">Lee and Sears, 1962</a>), the volume fraction <span class="elsevierStyleItalic">(χ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span><span class="elsevierStyleItalic">)</span> of the <span class="elsevierStyleItalic">k</span>-th component of dry air, which is considered as a homogeneous mixture of ideal gases, can be expressed in terms of its mixing ratio <span class="elsevierStyleItalic">(r</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">m</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> / <span class="elsevierStyleItalic">m</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span><span class="elsevierStyleItalic">)</span> as:<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0035" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">m</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> is the mass of gas <span class="elsevierStyleItalic">k</span> in the whole atmosphere and <span class="elsevierStyleItalic">m</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span> is the total mass of the atmosphere (assuming it as dry air) with a value of 5.13<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">21</span> g (given by <a class="elsevierStyleCrossRef" href="#bib0285">Trenberth and Smith [2005]</a> based on the atmosphere weight computed as the total surface area of the Earth multiplied by the surface pressure). Explicitly, <span class="elsevierStyleItalic">m</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> stands for the total emissions of the gas from all countries during a certain period (in this case 1990-2011), added to its mass at the beginning of the period (1990). The contributions of each country are given in its respective national inventory. <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>28.97 g/mol and <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> are the molecular weights of the dry air and of the k-th component, respectively. <span class="elsevierStyleItalic">χ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">k</span></span> in <a class="elsevierStyleCrossRef" href="#eq0005">Eq. (1)</a> is given in parts per million by volume (ppmv) for CO<span class="elsevierStyleInf">2</span> and in parts per billion by volume (ppbv) for CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O. Given that the molecular weights of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O are 44.01, 16.04 and 44.01 g/mol, respectively, we can establish from <a class="elsevierStyleCrossRef" href="#eq0005">Eq. (1)</a> the following correspondences:<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0040" class="elsevierStylePara elsevierViewall">The use of equivalencies in <a class="elsevierStyleCrossRef" href="#eq0010">Eq. (2)</a> for AGG assumes that these gases, cumulated during a certain period and retained in the atmosphere are well mixed. However, the three main AGG may have an annual cycle and a horizontal gradient because they are emitted mainly in cities and industrial areas, but given that the period considered for the retained fraction of these gases in the atmosphere is 22 years (1990-2011), we can reasonably assume that they have been well mixed in the atmosphere.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3</span><span class="elsevierStyleSectionTitle" id="sect0030">The Mexican AGG emissions</span><p id="par0045" class="elsevierStylePara elsevierViewall">An AGG inventory is usually the first step taken by a country to determine the amount and trend of AGG, in order to establish an appropriate agenda to reduce its emissions and to stop global warming. The Inventario Nacional de Gases de Efecto Invernadero (National Inventory of AGG Emissions, INEGEI) from Mexico (<a class="elsevierStyleCrossRef" href="#bib0240">INECC, 2013</a>, hereafter referred as INEGEI) covers a 21-yr period from 1990 to 2010. Given that it has specific information for each type of emission source (industry, homes, vehicles, etc.) at a municipal level, the INEGEI was prepared based on the bottom-up methodology (<a class="elsevierStyleCrossRef" href="#bib0275">Ramírez, 2015</a>) in the majority of sectors. This kind of methodology can accumulate large uncertainties in the estimation of totals for each sector, especially if the inventory is highly detailded (as TIER3 [<a class="elsevierStyleCrossRef" href="#bib0210">Cruz, 2015</a>]). The INEGEI reports a total uncertainty of ±5.6%.</p><p id="par0050" class="elsevierStylePara elsevierViewall">The emissions of the three main AGG (CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O) shown in the INEGEI series have been practically stabilized in the last two years. Therefore, in order to quantify the contribution of Mexico to the global RF by these emissions in the period 1990-2011, we add one year to those series, assuming that emissions for 2011 were the same as in 2010. Thus, in this 22-yr period, the accumulative Mexican AGG gross emissions (before its own sinks), result in 10 276 570 Gg of CO<span class="elsevierStyleInf">2</span>, 131 830 Gg of CH<span class="elsevierStyleInf">4</span> and 4296 Gg of N<span class="elsevierStyleInf">2</span>O.</p><p id="par0055" class="elsevierStylePara elsevierViewall">According to the INEGEI, during 2010 ~82.1% of the CO2 emissions came from burning fossil fuel, mainly by the energy industry. With respect to CH<span class="elsevierStyleInf">4</span>, ~49.8% was originated by fugitive emissions, largely due to the extraction of oil, coal and natural gas (this value is an uncertainty in itself, due to the emissions nature); and ~22.8% was attributable to livestock enteric fermentation. Other authors found somewhat higher percentages of this last origin: 33.7% (<a class="elsevierStyleCrossRef" href="#bib0230">González and Ruiz-Suárez, 1995</a>) and 25.4% (<a class="elsevierStyleCrossRef" href="#bib0200">Castelán-Ortega <span class="elsevierStyleItalic">et al.,</span> 2014</a>). In the case of N<span class="elsevierStyleInf">2</span>O, 76.6% of the emissions correspond to agricultural activity, mainly soil management.</p><p id="par0060" class="elsevierStylePara elsevierViewall">Concerning the global balance, we assume that for Mexico (as for the rest of the world), due to global<a name="p4"></a> sinks (which are the sum of each country's own sinks plus sinks not pertaining to any country) of these main AGG, in a sufficiently long period as 22 years, only 45.0, 3.70 and 23.2% of the emissions of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O, respectively, are retained (and distributed homogeneously) in the atmosphere. The complement of these retentions is their sinks, the ocean being the main one. Nevertheless, before 1750 the ocean was rather a source of carbon; namely, an emission of 60.7 minus an absorption of 60.0 yields 0.7 PgC/yr During the period 2000-2009 the ocean absorbed 20 and emitted 17.7 PgC/yr, resulting in a net sink of 2.3<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.7 PgC/yr. Combining the pre-industrial and industrial (present) eras, we realize that the ocean is a net sink of carbon, providing that (in PgC/yr) (60.7 + 17.7) – (60 + 20)<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>–1.6 (<a class="elsevierStyleCrossRef" href="#bib0195">IPCC, 2013</a>, Figure 6.1). Therefore, during the period 1990-2011 Mexico contributed to the global retention of the main AGG with 4 624 457 Gg of CO<span class="elsevierStyleInf">2</span>, 4 878 Gg of CH<span class="elsevierStyleInf">4</span>, and 997 Gg ofN<span class="elsevierStyleInf">2</span>O. Taking into account the equivalences given in <a class="elsevierStyleCrossRef" href="#eq0010">Eq. (2)</a>, we can estimate the corresponding concentration increases due to the emissions of a 22-yr period: 0.59 ppmv, 1.72 ppbv, and 0.13 ppbv.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">4</span><span class="elsevierStyleSectionTitle" id="sect0035">Contribution of Mexico to the global radiative forcing</span><p id="par0065" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#bib0270">Myhre <span class="elsevierStyleItalic">et al.</span> (2013)</a>, by 2011 the global atmospheric concentrations of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O reached 391<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.2 ppmv, 1803<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2 ppbv, and 324<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1 ppbv, respectively; and the corresponding RF due to these AGG increases relative to pre-industrial values were of 1.82<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.19, 0.48<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.05, and 0.17<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.03 Wm<span class="elsevierStyleSup">–2</span>, respectively. The <a class="elsevierStyleCrossRef" href="#bib0245">IPCC (1990)</a> gives simplified formulas to compute the RFs from <a class="elsevierStyleCrossRef" href="#bib0300">Wigley (1987)</a> with coefficients of <a class="elsevierStyleCrossRef" href="#bib0235">Hansen <span class="elsevierStyleItalic">et al.</span> (1988)</a> improved by <a class="elsevierStyleCrossRef" href="#bib0265">Myhre <span class="elsevierStyleItalic">et al.</span> (1998)</a>. These formulas and coefficients are:</p><p id="par0070" class="elsevierStylePara elsevierViewall">For CO<span class="elsevierStyleInf">2</span>:<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0075" class="elsevierStylePara elsevierViewall">For CH<span class="elsevierStyleInf">4</span>:<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">For N<span class="elsevierStyleInf">2</span>O:<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0085" class="elsevierStylePara elsevierViewall">where:<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0090" class="elsevierStylePara elsevierViewall">Being <span class="elsevierStyleItalic">ΔF</span> the RF in Wm<span class="elsevierStyleSup">–2</span>, <span class="elsevierStyleItalic">C, M,</span> and <span class="elsevierStyleItalic">N</span> are the atmospheric concentrations for 2011 of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span>, and N2O, respectively; and <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">0</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>278 ppmv, <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf">0</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>772 ppbv, and N<span class="elsevierStyleInf">0</span>=270 ppbv are the corresponding pre-industrial values. <a class="elsevierStyleCrossRef" href="#bib0265">Myhre <span class="elsevierStyleItalic">et al.</span> (1998)</a> determined that the uncertainties of the coefficients in Eqs. <a class="elsevierStyleCrossRef" href="#eq0015">(3)</a>, <a class="elsevierStyleCrossRef" href="#eq0020">(4)</a> and <a class="elsevierStyleCrossRef" href="#eq0025">(5)</a> are 1, 10 and 5%, respectively. The logarithmic form in <a class="elsevierStyleCrossRef" href="#eq0015">Eq. (3)</a> suggests that the lines in the main CO<span class="elsevierStyleInf">2</span> absorption band of 15 pm are mainly saturated. The cross dependence between CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O in Eqs. <a class="elsevierStyleCrossRef" href="#eq0020">(4)</a> and <a class="elsevierStyleCrossRef" href="#eq0025">(5)</a> may be due to the fact that the absorption bands of these gases are partially overlapped at ~8.5<span class="elsevierStyleHsp" style=""></span>μm. The semiempirical formulas in Eqs. <a class="elsevierStyleCrossRef" href="#eq0015">(3)</a> to <a class="elsevierStyleCrossRef" href="#eq0025">(5)</a> are well established simple functional expressions, whose results for well mixed AGG are cited in the <a class="elsevierStyleCrossRefs" href="#bib0250">IPCC (2001, 2013)</a>. Due to their excellent agreement with explicit radiative transfer calculations, we used these formulas to compute the contribution per country to the global RF.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Hansen (1998) and the <a class="elsevierStyleCrossRef" href="#bib0255">IPCC (2007</a>, <a class="elsevierStyleCrossRef" href="#bib0195">2013)</a> define RF as the instantaneous radiative imbalance at the tropopause. The response of the troposphere is a change in the lapse rate, keeping the tropopause temperature fixed. Eqs. <a class="elsevierStyleCrossRef" href="#eq0015">(3)</a> to <a class="elsevierStyleCrossRef" href="#eq0025">(5)</a> implicitly include water vapor with its concentration prior to the RF; in this process there are no feedbacks, and in particular vapor remains fixed.</p><p id="par0100" class="elsevierStylePara elsevierViewall">We only estimate Mexico's contribution to the global RF for the period 1990-2011 because prior to 1990 there are no emissions inventories; so the values for this last year, denoted as <span class="elsevierStyleItalic">ΔF*, C*,</span> etc., are necessary. Therefore, from <a class="elsevierStyleCrossRef" href="#eq0015">Eq. (3)</a> the RF for CO<span class="elsevierStyleInf">2</span> is:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0105" class="elsevierStylePara elsevierViewall">Equivalent expressions to <a class="elsevierStyleCrossRef" href="#eq0035">Eq. (7)</a> for CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O can be obtained from Eqs. <a class="elsevierStyleCrossRef" href="#eq0020">(4)</a> and <a class="elsevierStyleCrossRef" href="#eq0025">(5)</a> using <span class="elsevierStyleItalic">M*</span> and <span class="elsevierStyleItalic">N*</span> instead of <span class="elsevierStyleItalic">M</span> and <span class="elsevierStyleItalic">N.</span> From Figures 2.3, 2.4 and 2.5 of the <a class="elsevierStyleCrossRef" href="#bib0255">IPCC (2007)</a>, we take (for 1990): <span class="elsevierStyleItalic">C*</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>352 ppmv, M*<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1710 ppbv, and N*<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>308 ppbv.<a name="p5"></a></p><p id="par0110" class="elsevierStylePara elsevierViewall">If Mexico's emissions in 1990-2011 are excluded from the rest of the world, denoted by <span class="elsevierStyleItalic">Δ</span>F<span class="elsevierStyleSup">–</span>, <span class="elsevierStyleItalic">C</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">–</span></span><span class="elsevierStyleItalic">,</span> etc., we have:<elsevierMultimedia ident="eq0040"></elsevierMultimedia>Using Mexico's contribution to the concentration increases of the three AGG (due to domestic emissions) mentioned at the end of Section 3, we obtain (for 2011): <span class="elsevierStyleItalic">C</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">–</span></span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>391– 0.59<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>390.42 ppmv; whilst for CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O we obtain:<span class="elsevierStyleItalic">M</span><span class="elsevierStyleSup">–</span>= 1803 – 1.72<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1801.28 ppbv and <span class="elsevierStyleItalic">N</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">–</span></span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>324 – 0.13<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>323.87 ppbv, respectively.</p><p id="par0115" class="elsevierStylePara elsevierViewall">The percentage difference of RF between 1990 and 2011 is:<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0120" class="elsevierStylePara elsevierViewall">And without Mexican emissions:<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0125" class="elsevierStylePara elsevierViewall">Therefore, the contribution of Mexico in absolute terms (percentage points) is given by:<elsevierMultimedia ident="eq0055"></elsevierMultimedia></p><p id="par0130" class="elsevierStylePara elsevierViewall">And in relative terms by:<elsevierMultimedia ident="eq0060"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">According to <a class="elsevierStyleCrossRef" href="#eq0045">Eq. (9)</a>, the RF of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O, between 1990 and 2011 increased 44.5, 7.61 and 40.2%, respectively; excluding Mexico's emissions and according to <a class="elsevierStyleCrossRef" href="#eq0050">(10)</a>, these increases are of 43.9, 7.47 and 39.9%, respectively. From <a class="elsevierStyleCrossRef" href="#eq0055">Eq. (11)</a>, the absolute contributions of Mexico are <span class="elsevierStyleItalic">(%D)</span> of 0.64, 0.14 and 0.32 percentage points, respectively, and according to <a class="elsevierStyleCrossRef" href="#eq0060">Eq. (12)</a>, in relative terms (%d), they are of 1.47, 1.85 and 0.79%, respectively.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5</span><span class="elsevierStyleSectionTitle" id="sect0040">The RF of Mexico in comparison to that of Argentina, Spain and the USA</span><p id="par0140" class="elsevierStylePara elsevierViewall">Figure II.15 of the INEGEI shows AGG emissions (specifically CO<span class="elsevierStyleInf">2</span>) and the gross domestic product (GDP), both for 2009 and per capita, for a set of 36 countries. A certain direct correlation is observed in this figure, called by us main sequence. According to this, countries with greater GDP (with the exception of the United Arab Emirates) produce greater AGG emissions; the retained fractions ofthese gases increased their concentrations in the atmosphere, and consequently the resulting RF. Within the main sequence, Mexico and the world average are at the bottom of the set with similar values, while the USA is at the top. Considering only the GDP, Spain is midway between Mexico and the USA, and Argentina is between Mexico and Spain. Thus we selected these three countries to compare their emissions and contributions to the global RF with those of Mexico.</p><p id="par0145" class="elsevierStylePara elsevierViewall">In response to the United Nations Framework Convention on Climate Change (<a class="elsevierStyleCrossRef" href="#bib0290">UN, 1992</a>), these countries, including Mexico, elaborated their national inventories of emissions of AGG based on the year 1990, as proposed by the <a class="elsevierStyleCrossRef" href="#bib0245">IPCC (1990)</a>. Spain reports its annual emissions from 1990 to 2012 (<a class="elsevierStyleCrossRef" href="#bib0280">Santamarta and Higueras, 2013</a>), with a total uncertainty of ±12.3% (<a class="elsevierStyleCrossRef" href="#bib0215">DGCEAMN, 2014</a>). Argentina reports its emissions for periods of four years, covering only the first half of the period 1990-2011: 1990, 1994, 1997 and 2000 (<a class="elsevierStyleCrossRef" href="#bib0220">Fundación Bariloche, 2007</a>), with uncertainties between ±4.0 and ±8.3% in 2000 for the sectors with highest emissions. The four annual values reported by Argentina for each gas are adjusted quite well to a logarithmic trend curve and a linear trend; we used the logarithmic (with correlations of 1.0, 0.96 and 0.92 for CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O, respectively) to determine the annual emission values of the whole period. This curve provides a more moderate increase in emissions over the 22-yr period (1990-2011) than the linear trend and a better correlation. The USA provides a table with emission values for six years: 1990, 2005, 2008, 2009, 2010 and 2011, and a histogram with annual emission values from 1990 to 2012. From these table and graph we obtained cumulative emissions for each of the three gases over the 22-yr. period. The USA inventory is highly detailed, based on the EPA methodology, and some sectors have the TIER2 level. For 2012, uncertainty in CO<span class="elsevierStyleInf">2</span> emissions from fossil fuel combustion reaches a maximum of ±5.0%, while the uncertainty in CH<span class="elsevierStyleInf">4</span> emissions from enteric fermentation is somewhat larger, reaching a maximum of±18% (<a class="elsevierStyleCrossRef" href="#bib0295">USEPA, 2014</a>).</p><p id="par0150" class="elsevierStylePara elsevierViewall">By using the warming potential per molecule ofeach AGG, we compute that 1 Gg of CH<span class="elsevierStyleInf">4</span> is equivalent to 21 Gg of CO<span class="elsevierStyleInf">2</span>, whereas 1 Gg of N<span class="elsevierStyleInf">2</span>O is equivalent to 310 Gg of CO<span class="elsevierStyleInf">2</span>. With these data, we also compute<a name="p6"></a> for 2010 the per capita emissions in kilograms of equivalent CO<span class="elsevierStyleInf">2</span> for the four countries (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>, third column). <a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a> also shows, for the period 1990-2011, the percentage of each country's population compared to the world (second column); emissions retained in the atmosphere for the three AGG (fourth column), and the contribution (absolute and relative) of each country to the global RF (fifth and sixth columns, respectively).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0155" class="elsevierStylePara elsevierViewall">National emissions of CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O retained in the atmosphere from Argentina and Mexico are very similar, as well as their contributions to the global RF. However, CO<span class="elsevierStyleInf">2</span> retained emissions from Argentina and their contribution to the global RF are considerably lower than those from Mexico and Spain.</p><p id="par0160" class="elsevierStylePara elsevierViewall">Overall, the three AGG emissions per capita of Argentina, Spain and the USA represent 108.8, 110.8 and 327.0% of the Mexican ones, respectively, in units of equivalent CO2. The CO2 emissions of the USA retained in the atmosphere are 12.1, 19.4 and 45.0 times higher than those of Mexico, Spain and Argentina, respectively; and its relative contribution to the global RF by this gas (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>, last column) is 14.6, 23.6 and 55.0 times higher, respectively.</p><p id="par0165" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a> shows the GDP per capita in USD thousands obtained from the World Bank (<a href="http://www.worldbank.org/">http://www.worldbank.org/</a>), as well as the RF from CO<span class="elsevierStyleInf">2</span> in 10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span> per capita for 2000 (note that the main sequence is for 2009), which represents the middle of the period 1990-2011 in which the atmospheric retained emissions of the AGG are measured for the whole world and the four countries (USA, Mexico, Spain and Argentina). The GDP per capita in Mexico is 6.6 (in USD thousands), lower than the other countries, but somewhat greater than the world average, which is 5.5. The RF per capita of Mexico is 8.8, positioned between the RF of Argentina and Spain and practically equal to the world average, which is 9.3. Admittedly, these and former figures should have uncertainties, due to those found in the emissions inventories. The GDP data are only used as a socioeconomic context, given that our main interest is to compute Mexico's contribution to the global RF by AGG, and to compare its per capita share to those of other significant countries and with the world average.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">6</span><span class="elsevierStyleSectionTitle" id="sect0045">Conclusions</span><p id="par0170" class="elsevierStylePara elsevierViewall">Mexico contributed to the increase of the global emissions retained in the atmosphere during the<a name="p7"></a> 22-yr period from 1990 to 2011 with 0.59 ppmv (0.27 ppmv/decade), 1.72 ppbv (0.78 ppbv/decade) and 0.13 ppbv (0.06 ppbv/decade) of CO<span class="elsevierStyleInf">2</span>, CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O, respectively.</p><p id="par0175" class="elsevierStylePara elsevierViewall">National emissions of CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O retained in the atmosphere from Argentina and Mexico are very similar, as well as their contributions to the global RF. However, CO<span class="elsevierStyleInf">2</span> emissions from Argentina are much less than those from Mexico and Spain.</p><p id="par0180" class="elsevierStylePara elsevierViewall">The AGG emissions per capita of Argentina, Spain and the USA are 108.8, 110.8 and 327.0% of those of Mexico, respectively, in units of equivalent CO<span class="elsevierStyleInf">2</span>. The CO<span class="elsevierStyleInf">2</span> emissions of the USA retained in the atmosphere are 12.1, 19.4 and 45.0 times higher than those of Mexico, Spain and Argentina, respectively; and its relative contribution to the RF by this gas is, in the same order, 14.6, 23.6 and 55.0 times higher.</p><p id="par0185" class="elsevierStylePara elsevierViewall">Mexico has a GDP per capita of 6600 USD, less than the other countries, but somewhat greater than the world average (5500 USD); its RF per capita is 8.8<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span>, almost equal to the world average (9.3<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span>) and positioned between the RFs of Argentina and Spain.</p><p id="par0190" class="elsevierStylePara elsevierViewall">The parameters of the formulas to compute the RF from AGG concentrations have explicit uncertainties, as well as the emissions fractions retained in the atmosphere (<a class="elsevierStyleCrossRef" href="#bib0195">IPCC, 2013</a>). The main uncertainties in our estimations of Mexico's contribution to the global RF come from national emissions; in the respective inventory, we can appreciate that some sectors are not taken into account. Even though Mexico holds only 1.7% of the world population, the concentrations increase of CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O due to Mexico's net emissions are similar to their respective global uncertainties: 1.72 vs. 2 ppbv and 0.13 vs. 1 ppbv.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres901039" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:3 [ "identificador" => "xres901038" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec882100" "titulo" => "Keywords" ] 3 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 4 => array:2 [ "identificador" => "sec0010" "titulo" => "Relation between the emitted mass and the global volume-mixing ratio of gases" ] 5 => array:2 [ "identificador" => "sec0015" "titulo" => "The Mexican AGG emissions" ] 6 => array:2 [ "identificador" => "sec0020" "titulo" => "Contribution of Mexico to the global radiative forcing" ] 7 => array:2 [ "identificador" => "sec0025" "titulo" => "The RF of Mexico in comparison to that of Argentina, Spain and the USA" ] 8 => array:2 [ "identificador" => "sec0030" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "xack299710" "titulo" => "Acknowledgments" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-01-14" "fechaAceptado" => "2015-06-25" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec882100" "palabras" => array:3 [ 0 => "Anthropogenic greenhouse gases" 1 => "global radiative forcing" 2 => "contribution of Mexico" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">El IPCC (2013) proporciona fórmulas simplificadas para calcular el forzamiento radiativo (RF, por sus siglas en inglés) por incremento de los gases antrópicos de efecto invernadero (AGG, por sus siglas en inglés): bióxido de carbono (CO<span class="elsevierStyleInf">2</span>), metano (CH<span class="elsevierStyleInf">4</span>), óxido nitroso (N<span class="elsevierStyleInf">2</span>O) y halocarbonos. Dichas fórmulas permiten calcular el RF global de dichos gases con relación a sus concentraciones preindustriales (1750 A.D.), así como estimar la contribución de México al RF global por sus emisiones de CO<span class="elsevierStyleInf">2</span> (el principal AGG), CH<span class="elsevierStyleInf">4</span> y N<span class="elsevierStyleInf">2</span>O durante el periodo 1990-2011, las cuales son reportadas en el Inventario Nacional de Emisiones de Gases de Efecto Invernadero (INEGEI) (INECC, 2013). En comparación, las emisiones per cápita de Argentina, España y Estados Unidos para 2010 representan el 108.8, 110.8 y 327.0% de las de México, respectivamente, en unidades de CO<span class="elsevierStyleInf">2</span> equivalente. Las emisiones de CO<span class="elsevierStyleInf">2</span> de México retenidas en la atmósfera de 1990 a 2011 son de 4 624 457 Gg, mayores que las de España y Argentina juntas, y 1/12 de las de Estados Unidos. La contribución de México es el 1.47% del RF global debido a CO<span class="elsevierStyleInf">2</span>, con una proporción similar para España y Argentina, pero representa una fracción más pequeña que la de Estados Unidos (1/15). Las principales incertidumbres de nuestros cálculos sobre la contribución de México al RF global provienen de incertidumbres en las emisiones nacionales: el INEGEI indica que en 2010 las emisiones consideradas para el cálculo de incertidumbres representan 89% de las emisiones totales del inventario, lo cual produce una incertidumbre total de ±5.6%. Somos conscientes de que, a consecuencia de lo anterior, el incremento en la concentración de CH<span class="elsevierStyleInf">4</span> y N<span class="elsevierStyleInf">2</span>O debido a las emisiones de México retenidas en la atmósfera (durante el periodo 1990-2011) resultó menor que las respectivas incertidumbres en las concentraciones mundiales hasta 2011: 1.72 vs. 2 ppbv y 0.13 vs. 1 ppbv.</p></span>" ] "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The IPCC (2013) gives simplified formulas to compute the radiative forcing (RF) resulting from the increase in anthropogenic greenhouse gases (AGG): carbon dioxide (CO<span class="elsevierStyleInf">2</span>), methane (CH<span class="elsevierStyleInf">4</span>), nitrous oxide (N<span class="elsevierStyleInf">2</span>O) and halocarbons. These formulas allow to compute the global RF of these gases relative to their pre-industrial (1750 A.D.) concentrations, and are used in this work to estimate the contribution of Mexico to the global RF by its emissions of CO<span class="elsevierStyleInf">2</span> (the most significant of the AGG), CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O during the period 1990-2011, which are reported in the Inventario Nacional de Emisiones de Gases de Efecto Invernadero (National Inventory of Greenhouse Gases Emissions, INEGEI) (INECC, 2013). In comparison, by 2010 the national emissions per capita of Argentina, Spain and the United States were 108.8, 110.8 and 327.0% of the Mexican emissions, respectively, in units of equivalent CO<span class="elsevierStyleInf">2</span>. Mexico's CO<span class="elsevierStyleInf">2</span> emissions retained in the atmosphere during 1990-2011 amount to 4 624 457 Gg; they are higher than those of Spain and Argentina together, and represent 1/12 of the USA contribution. Mexico's contribution is 1.47% of the global RF due to CO<span class="elsevierStyleInf">2</span>, with a similar proportion than<a name="p2"></a> Spain and Argentina, but a smaller fraction compared to that of the USA (1/15). The main uncertainties of our computations for Mexico's contribution to the global RF come from national emissions; the INEGEI indicates that the emissions considered for the calculation of uncertainties represent 89% of the total emissions of the inventory, resulting in a total uncertainty of ±5.6%. We are aware that, as a consequence, the concentration increase of CH<span class="elsevierStyleInf">4</span> and N<span class="elsevierStyleInf">2</span>O due to Mexico's emissions retained in the atmosphere during 1990-2011 is lower than their respective uncertainties for global concentrations: 1.72 vs. 2 ppbv and 0.13 vs. 1 ppbv.</p></span>" ] ] "multimedia" => array:14 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 919 "Ancho" => 1377 "Tamanyo" => 89609 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Gross domestic product (GDP) per capita (USD thousands), and radiative forcing (RF) per capita (10<span class="elsevierStyleSup">–14</span> Wm<span class="elsevierStyleSup">–2</span>) produced by CO<span class="elsevierStyleInf">2</span>, for the USA, Spain (Spa), Argentina (Arg), Mexico (Mex) and the world (Wld) in 2000.</p>" ] ] 1 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table I" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " rowspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Country</th><th class="td" title="table-head " rowspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Country population in relation to the world (%)</th><th class="td" title="table-head " rowspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Per capita emissions in equivalent CO<span class="elsevierStyleInf">2</span> for 2010 (kg)</th><th class="td" title="table-head " colspan="3" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Atmospheric retained emissions in 1990-2011 (Gg)</th><th class="td" title="table-head " colspan="3" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Absolute contribution to global RF %<span class="elsevierStyleItalic">D</span> (percentage points)</th><th class="td" title="table-head " colspan="3" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Relative contribution to global RF %<span class="elsevierStyleItalic">d</span> (%)</th></tr><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CH<span class="elsevierStyleInf">4</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">N<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CH<span class="elsevierStyleInf">4</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">N<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">CH<span class="elsevierStyleInf">4</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">N<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Mexico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">6653 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4624457 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4878 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">997 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.64 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.32 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.47 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.79 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Spain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7372 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2888497 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1210 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">438 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.91 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.35 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Argentina \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7240 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1247691 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">3 246 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1046 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.09 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.83 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">USA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21756 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">56093691 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">23 806 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">6787 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">7.87 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.68 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">21.46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">9.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">5.68 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1513554.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Populations of Mexico, Spain. Argentina and the USA compared to the world for 2010 (%); per capita emissions (in kg of equivalent CO<span class="elsevierStyleInf">2</span>) computed for the same four countries; retained emissions in the atmosphere of the three main AGG between 1990 and 2011, and absolute and relative contribution of each country to the global RF.</p>" ] ] 2 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "χk=MdMk rk" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 1210 "Alto" => 29 "Ancho" => 95 ] ] 3 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "1PgCO2 →0.128 ppmv of CO21PgCH4 →351.7 ppbv of CH41PgN2O →128.2 ppbv of N2O" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 5274 "Alto" => 64 "Ancho" => 209 ] ] 4 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔF = 5.35 lnCC0" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 1561 "Alto" => 29 "Ancho" => 133 ] ] 5 => array:6 [ "identificador" => "eq0020" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔF=0.036M−M0−fM,N0−fM0,N0" "Fichero" => "STRIPIN_si4.jpeg" "Tamanyo" => 3650 "Alto" => 29 "Ancho" => 379 ] ] 6 => array:6 [ "identificador" => "eq0025" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔF=0.12N−N0−fM0,N−fM0,N0" "Fichero" => "STRIPIN_si5.jpeg" "Tamanyo" => 3416 "Alto" => 29 "Ancho" => 368 ] ] 7 => array:6 [ "identificador" => "eq0030" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "fM,N=0.47 ln1+2.01×10−5MN0.75+5.31×10−15MMN1.52" "Fichero" => "STRIPIN_si6.jpeg" "Tamanyo" => 4341 "Alto" => 21 "Ancho" => 496 ] ] 8 => array:6 [ "identificador" => "eq0035" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔF*=5.35 lnC*C0" "Fichero" => "STRIPIN_si7.jpeg" "Tamanyo" => 1524 "Alto" => 29 "Ancho" => 136 ] ] 9 => array:6 [ "identificador" => "eq0040" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔF− =5.35 lnC−C" "Fichero" => "STRIPIN_si8.jpeg" "Tamanyo" => 1539 "Alto" => 29 "Ancho" => 145 ] ] 10 => array:6 [ "identificador" => "eq0045" "etiqueta" => "(9)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "%δ≡ΔF−ΔF*ΔF*×100%" "Fichero" => "STRIPIN_si9.jpeg" "Tamanyo" => 1519 "Alto" => 21 "Ancho" => 159 ] ] 11 => array:6 [ "identificador" => "eq0050" "etiqueta" => "(10)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "%δ−=ΔF−−ΔF*ΔF*×100%" "Fichero" => "STRIPIN_si10.jpeg" "Tamanyo" => 1563 "Alto" => 21 "Ancho" => 177 ] ] 12 => array:6 [ "identificador" => "eq0055" "etiqueta" => "(11)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "%D=%δ−%δ−=ΔF−ΔF−ΔF*×100%" "Fichero" => "STRIPIN_si11.jpeg" "Tamanyo" => 2153 "Alto" => 20 "Ancho" => 261 ] ] 13 => array:6 [ "identificador" => "eq0060" "etiqueta" => "(12)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "%d=%δ−%δ−%δ−×100%=ΔF−ΔF−ΔF−−ΔF*×100%" "Fichero" => "STRIPIN_si12.jpeg" "Tamanyo" => 2653 "Alto" => 23 "Ancho" => 302 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:22 [ 0 => array:3 [ "identificador" => "bib0200" "etiqueta" => "Castelán-Ortega et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modeling methane emissions and methane inventories for cattle production systems in Mexico" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "O.A. Castelán-Ortega" 1 => "J.C. Ku-Vera" 2 => "J.G. Estrada-Flores" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Atmósfera" "fecha" => "2014" "volumen" => "27" "paginaInicial" => "185" "paginaFinal" => "191" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0205" "etiqueta" => "Ciais et al., 2013" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "<a name="p8"></a>" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Carbon and other biogeochemical cycles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:15 [ 0 => "P. Ciais" 1 => "C. Sabine" 2 => "G. Bala" 3 => "L. Bopp" 4 => "V. Brovkin" 5 => "J. Canadell" 6 => "A. Chhabra" 7 => "R. DeFries" 8 => "J. Galloway" 9 => "M. Heimann" 10 => "C. Jones" 11 => "C. Le Quéré" 12 => "R.B. Myneni" 13 => "S. Piao" 14 => "P. Thornton" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:2 [ "titulo" => "Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" "serieFecha" => "2013" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0210" "etiqueta" => "Cruz, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Personal communication. Centro de Ciencias de la Atmósfera" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "X. Cruz" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2015" "editorial" => "Universidad Nacional Autónoma de México" "editorialLocalizacion" => "Mexico" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0215" "etiqueta" => "DGCEAMN, 2014" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "DGCEAMN, 2014. Inventarios nacionales de emisiones a la atmósfera. Dirección General de Calidad y Evaluación Ambiental y Medio Natural, Ministerio de Agricultura, Alimentación y Medio Ambiente, España, 2014. Available at: <a href="http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-es-panol-de-inventario-sei-/Documento_Resumen_In-ventario_1990-2012_tcm7-336746.pdf">http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-es-panol-de-inventario-sei-/Documento_Resumen_In-ventario_1990-2012_tcm7-336746.pdf</a>." ] ] ] 4 => array:3 [ "identificador" => "bib0220" "etiqueta" => "Fundación Bariloche, 2007" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Fundación Bariloche, 2007. Segunda comunicación nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Cap. 7. Inventario de gases de efecto invernadero de la República Argentina, no controlados por el Protocolo de Montreal. Fundación Bariloche, Argentina, pp. 52-84. Available at: unfccc.int/resource/docs/natc/argnc2s.pdf." ] ] ] 5 => array:3 [ "identificador" => "bib0225" "etiqueta" => "Garduño and Adem, 1994" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Initial radiative perturbations and their responses in the Adem thermodynamic model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Garduño" 1 => "J. Adem" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "World Res. Rev" "fecha" => "1994" "volumen" => "6" "paginaInicial" => "343" "paginaFinal" => "349" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0230" "etiqueta" => "González and Ruiz-Suárez, 1995" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Methane emissions from cattle in Mexico: Methodology and mitigation issues" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E. González" 1 => "L.G. Ruiz-Suárez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Interciencia" "fecha" => "1995" "volumen" => "20" "paginaInicial" => "370" "paginaFinal" => "372" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0235" "etiqueta" => "Hansen et al., 1988" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global climate changes as forecast model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "J. Hansen" 1 => "I. Fung" 2 => "A. Lacis" 3 => "D. Rind" 4 => "S. Lebedeff" 5 => "R. Ruedy" 6 => "G. Russell" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Geophys. Res" "fecha" => "1988" "volumen" => "93" "paginaInicial" => "9341" "paginaFinal" => "9364" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0240" "etiqueta" => "INECC, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inventario nacional de emisiones de gases de efecto invernadero 1990-2010" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "INECC" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "2013" "paginaInicial" => "384" "editorial" => "Instituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales" "editorialLocalizacion" => "Mexico" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0245" "etiqueta" => "IPCC, 1990" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate change 1990: The scientific basis" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "I.P.C.C." "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change" "paginaInicial" => "410" "serieFecha" => "1990" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0250" "etiqueta" => "IPCC, 2001" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate change 2001: The scientific basis" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "I.P.C.C." "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change" "paginaInicial" => "881" "serieFecha" => "2001" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0255" "etiqueta" => "IPCC, 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate Change 2007: The Physical Science Basis" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "I.P.C.C." "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change" "paginaInicial" => "996" "serieFecha" => "2007" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0195" "etiqueta" => "IPCC, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate change 2013: The physical science basis" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "I.P.C.C." "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" "paginaInicial" => "1535" "serieFecha" => "2013" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0260" "etiqueta" => "Lee and Sears, 1962" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thermodynamics. An introduction text for engineering students" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.F. Lee" 1 => "F.W. Sears" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1962" "paginaInicial" => "622" "editorial" => "Addison-Wesley" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0265" "etiqueta" => "Myhre et al., 1998" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New estimates of radiative forcing due to well- mixed greenhouse gases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G. Myhre" 1 => "E.J. Highwood" 2 => "K.P. Shine" 3 => "F. Stordal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. Res. Lett." "fecha" => "1998" "volumen" => "25" "paginaInicial" => "2715" "paginaFinal" => "2718" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0270" "etiqueta" => "Myhre et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anthropogenic and natural radiative forcing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:15 [ 0 => "G. Myhre" 1 => "D. Shindell" 2 => "F.-M. Bréon" 3 => "W. Collins" 4 => "J. Fuglestvedt" 5 => "J. Huang" 6 => "D. Koch" 7 => "J.-F. Lamarque" 8 => "D. Lee" 9 => "B. Mendoza" 10 => "T. Nakajima" 11 => "A. Robock" 12 => "G. Stephens" 13 => "T. Takemura" 14 => "H. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:2 [ "titulo" => "In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" "serieFecha" => "2013" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0275" "etiqueta" => "Ramírez, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Personal communication" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "F. Ramírez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2015" "editorial" => "Instituto Nacional de Ecología y Cambio Climático" "editorialLocalizacion" => "Mexico" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0280" "etiqueta" => "Santamarta and Higueras, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Santamarta J. and M. A. Higueras, 2013. Informe de emisiones de gases de efecto invernadero en España 1990-2012. World Wildlife Fund, Spain, 32 pp. Available at: <a href="http://awsassets.wwf.es/downloads/informe_de_emisiones_de_gei_en_espana_1990_2012.pdf">http://awsassets.wwf.es/downloads/informe_de_emisiones_de_gei_en_espana_1990_2012.pdf</a>." ] ] ] 18 => array:3 [ "identificador" => "bib0285" "etiqueta" => "Trenberth and Smith, 2005" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "<a name="p9"></a>" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The mass of the atmosphere: a constraint on global analyses" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.E. Trenberth" 1 => "L. Smith" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Climate" "fecha" => "2005" "volumen" => "18" "paginaInicial" => "864" "paginaFinal" => "875" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0290" "etiqueta" => "UN, 1992" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "UN, 1992. United Nations framework convention on climate change. United Nations, New York. Available at: <a href="http://unfccc.int/essential_background/convention/items/6036.php">http://unfccc.int/essential_background/convention/items/6036.php</a>." ] ] ] 20 => array:3 [ "identificador" => "bib0295" "etiqueta" => "USEPA, 2014" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "USEPA, 2014. Inventory of U. S. greenhouse gas emissions and sinks: 1990-2012. United States Environmental Protection Agency, Washington, DC, 528 pp. Available at: <a href="http://www.epa.gov/climatechange/emissions/usinventoryreport.html">http://www.epa.gov/climatechange/emissions/usinventoryreport.html</a>." ] ] ] 21 => array:3 [ "identificador" => "bib0300" "etiqueta" => "Wigley, 1987" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Relative contributions of different trace gases to the greenhouse effect" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T.M.L. Wigley" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Climate Monitor" "fecha" => "1987" "volumen" => "16" "paginaInicial" => "14" "paginaFinal" => "29" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack299710" "titulo" => "Acknowledgments" "texto" => "<p id="par0195" class="elsevierStylePara elsevierViewall">We are indebted to Carlos Gay (CCA, UNAM) for reviewing the first version and his valuable comments. We also acknowledge Xóchitl Cruz (CCA, UNAM) and Fabiola Ramírez (INECC, México) for clarifying us several subjects about the INEGEI.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/01876236/0000002800000003/v2_201709141210/S0187623617300061/v2_201709141210/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/01876236/0000002800000003/v2_201709141210/S0187623617300061/v2_201709141210/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0187623617300061?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 1 | 4 |
2024 October | 25 | 0 | 25 |
2024 September | 37 | 2 | 39 |
2024 August | 28 | 0 | 28 |
2024 July | 21 | 4 | 25 |
2024 June | 32 | 1 | 33 |
2024 May | 41 | 5 | 46 |
2024 April | 28 | 6 | 34 |
2024 March | 40 | 10 | 50 |
2024 February | 67 | 6 | 73 |
2024 January | 85 | 7 | 92 |
2023 December | 40 | 8 | 48 |
2023 November | 57 | 6 | 63 |
2023 October | 75 | 13 | 88 |
2023 September | 81 | 4 | 85 |
2023 August | 81 | 4 | 85 |
2023 July | 22 | 9 | 31 |
2023 June | 14 | 2 | 16 |
2023 May | 39 | 6 | 45 |
2023 April | 17 | 1 | 18 |
2023 March | 18 | 2 | 20 |
2023 February | 10 | 2 | 12 |
2023 January | 22 | 5 | 27 |
2022 December | 116 | 3 | 119 |
2022 November | 31 | 3 | 34 |
2022 October | 26 | 7 | 33 |
2022 September | 21 | 5 | 26 |
2022 August | 39 | 10 | 49 |
2022 July | 30 | 11 | 41 |
2022 June | 33 | 6 | 39 |
2022 May | 26 | 7 | 33 |
2022 April | 48 | 8 | 56 |
2022 March | 44 | 9 | 53 |
2022 February | 26 | 4 | 30 |
2022 January | 32 | 5 | 37 |
2021 December | 24 | 5 | 29 |
2021 November | 19 | 11 | 30 |
2021 October | 14 | 9 | 23 |
2021 September | 8 | 10 | 18 |
2021 August | 8 | 7 | 15 |
2021 July | 10 | 9 | 19 |
2021 June | 4 | 5 | 9 |
2021 May | 7 | 7 | 14 |
2021 April | 30 | 9 | 39 |
2021 March | 10 | 4 | 14 |
2021 February | 11 | 3 | 14 |
2021 January | 14 | 6 | 20 |
2020 December | 5 | 7 | 12 |
2020 November | 7 | 7 | 14 |
2020 October | 7 | 8 | 15 |
2020 September | 8 | 5 | 13 |
2020 August | 9 | 1 | 10 |
2020 July | 5 | 1 | 6 |
2020 June | 3 | 1 | 4 |
2020 May | 15 | 4 | 19 |
2020 April | 5 | 1 | 6 |
2020 March | 3 | 2 | 5 |
2020 February | 11 | 4 | 15 |
2020 January | 7 | 7 | 14 |
2019 December | 9 | 2 | 11 |
2019 November | 9 | 4 | 13 |
2019 October | 6 | 5 | 11 |
2019 September | 8 | 1 | 9 |
2019 August | 3 | 0 | 3 |
2019 July | 7 | 6 | 13 |
2019 June | 32 | 11 | 43 |
2019 May | 98 | 49 | 147 |
2019 April | 36 | 8 | 44 |
2019 March | 2 | 1 | 3 |
2019 February | 3 | 1 | 4 |
2019 January | 4 | 3 | 7 |
2018 December | 5 | 4 | 9 |
2018 November | 2 | 1 | 3 |
2018 October | 2 | 7 | 9 |
2018 September | 1 | 2 | 3 |
2018 August | 9 | 1 | 10 |
2018 July | 1 | 1 | 2 |
2018 June | 2 | 0 | 2 |
2018 May | 4 | 1 | 5 |
2018 April | 16 | 1 | 17 |
2018 March | 1 | 0 | 1 |
2018 February | 1 | 0 | 1 |
2018 January | 3 | 0 | 3 |
2017 December | 2 | 0 | 2 |
2017 November | 5 | 1 | 6 |
2017 October | 0 | 2 | 2 |
2017 September | 3 | 0 | 3 |
2017 August | 7 | 2 | 9 |
2017 July | 1 | 0 | 1 |
2017 June | 2 | 1 | 3 |
2017 April | 1 | 1 | 2 |
2017 March | 3 | 1 | 4 |