was read the article
array:24 [ "pii" => "S0366317519300524" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2019.07.002" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "164" "copyright" => "SECV" "copyrightAnyo" => "2019" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2020;59:81-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 254 "formatos" => array:3 [ "EPUB" => 25 "HTML" => 149 "PDF" => 80 ] ] "itemSiguiente" => array:18 [ "pii" => "S0366317519300809" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2019.09.004" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "176" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2020;59:88-92" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 16 "formatos" => array:2 [ "EPUB" => 5 "PDF" => 11 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Fluorine-induced in situ crystallization route to mesoporous Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbell-like structures" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "88" "paginaFinal" => "92" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Ruta de cristalización in situ inducida por flúor a estructuras de hidrato de Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> mesoporoso en forma de mancuernas" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2549 "Ancho" => 3083 "Tamanyo" => 989140 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">FE-SEM images and corresponding XRD patterns of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate products prepared at different NH<span class="elsevierStyleInf">4</span>F content: (a) 0, (b) 0.074, (c) 0.148 and (d) 0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F, (e) corresponding spot and area EDS patterns in magnified views of d2 and d3, (f) 0.592<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F; and (g) the XRD patterns.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Hui Zhang, Jinxiao Wang, Jianfeng Yang" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Hui" "apellidos" => "Zhang" ] 1 => array:2 [ "nombre" => "Jinxiao" "apellidos" => "Wang" ] 2 => array:2 [ "nombre" => "Jianfeng" "apellidos" => "Yang" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317519300809?idApp=UINPBA00004N" "url" => "/03663175/0000005900000002/v1_202004071154/S0366317519300809/v1_202004071154/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0366317519300640" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2019.08.001" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "168" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2020;59:73-80" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 196 "formatos" => array:3 [ "EPUB" => 30 "HTML" => 96 "PDF" => 70 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "73" "paginaFinal" => "80" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Comportamiento de sinterización de hidroxiapatita carbonatada preparada en diferentes proporciones de carbonato y fosfato" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2931 "Ancho" => 1508 "Tamanyo" => 441085 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Comparison of Rietveld analysis patterns for sintered samples obtained from the XRD data revealing the good agreement between the observed (<span class="elsevierStyleItalic">I<span class="elsevierStyleInf">O</span></span>) and calculated (<span class="elsevierStyleItalic">I<span class="elsevierStyleInf">C</span></span>) patterns.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Marjan Safarzadeh, S. Ramesh, C.Y. Tan, Hari Chandran, Y.C. Ching, Ahmad Fauzi Mohd Noor, S. Krishnasamy, W.D. Teng" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Marjan" "apellidos" => "Safarzadeh" ] 1 => array:2 [ "nombre" => "S." "apellidos" => "Ramesh" ] 2 => array:2 [ "nombre" => "C.Y." "apellidos" => "Tan" ] 3 => array:2 [ "nombre" => "Hari" "apellidos" => "Chandran" ] 4 => array:2 [ "nombre" => "Y.C." "apellidos" => "Ching" ] 5 => array:2 [ "nombre" => "Ahmad Fauzi Mohd" "apellidos" => "Noor" ] 6 => array:2 [ "nombre" => "S." "apellidos" => "Krishnasamy" ] 7 => array:2 [ "nombre" => "W.D." "apellidos" => "Teng" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317519300640?idApp=UINPBA00004N" "url" => "/03663175/0000005900000002/v1_202004071154/S0366317519300640/v1_202004071154/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Two-step doping approach releasing the piezoelectric response of BiFeO<span class="elsevierStyleInf">3</span> bulk ceramics co-doped with titanium and samarium" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "81" "paginaFinal" => "87" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Carlos Gumiel, Mara S. Bernardo, Pablo G. Villanueva, David G. Calatayud, Marco Peiteado, Teresa Jardiel" "autores" => array:6 [ 0 => array:3 [ "nombre" => "Carlos" "apellidos" => "Gumiel" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Mara S." "apellidos" => "Bernardo" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Pablo G." "apellidos" => "Villanueva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "David G." "apellidos" => "Calatayud" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "Marco" "apellidos" => "Peiteado" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 5 => array:4 [ "nombre" => "Teresa" "apellidos" => "Jardiel" "email" => array:1 [ 0 => "jardiel@icv.csic.es" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "POEMMA-CEMDATIC, ETSI Telecomunicación (UPM), Avd. Complutense 30, 28040 Madrid, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Electroceramics, Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, 28049 Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Desarrollo de una estrategia de dopado en dos etapas para liberar la respuesta piezoeléctrica de cerámicas en volumen de BiFeO<span class="elsevierStyleInf">3</span> co-dopado con titanio y samario" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1119 "Ancho" => 3169 "Tamanyo" => 158342 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Piezoelectric coefficients d<span class="elsevierStyleInf">31</span> and d<span class="elsevierStyleInf">33</span> for the BSFTO-m sample as measured by the resonance-antiresonance methodology.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">In addition to its well-investigated multiferroic possibilities, single phase BiFeO<span class="elsevierStyleInf">3</span> also withstands as a promising candidate for lead-free piezoelectric applications <a class="elsevierStyleCrossRefs" href="#bib0225">[1–4]</a>. The stereochemically active lone-pair electrons of Bi<span class="elsevierStyleSup">3+</span> are responsible for the displacement of these cations along the [111] pseudo-cubic axis of the perovskite structure, bringing about a non-centrosymmetric polarization which results in the piezoelectric property <a class="elsevierStyleCrossRefs" href="#bib0245">[5–7]</a>. However, although such displacements of the A-sites are rather large (relative to the centrosymmetric cubic perovskite structure), the obtained polarizations are indeed too small in the pure BiFeO<span class="elsevierStyleInf">3</span> compound and so doping becomes a compulsory option <a class="elsevierStyleCrossRefs" href="#bib0260">[8–12]</a>. Rare earths are among the most helpful dopants in this sense, since they can lead to the formation of a morphotropic phase boundary (MPB) when replacing the Bi<span class="elsevierStyleSup">3+</span> ions in the A-sites <a class="elsevierStyleCrossRefs" href="#bib0285">[13–15]</a>. Moreover, a material in the vicinity of the phase boundary usually exhibits significant physical responses in reaction to relatively weak external stimulus <a class="elsevierStyleCrossRefs" href="#bib0300">[16–19]</a>. Specifically, the isovalent substitution of bismuth for samarium, Bi<span class="elsevierStyleInf">1−<span class="elsevierStyleItalic">x</span></span>Sm<span class="elsevierStyleInf"><span class="elsevierStyleItalic">x</span></span>FeO<span class="elsevierStyleInf">3</span>, can produce a significant enhancement of the piezoelectric properties in the compositional range 0.12<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">x</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.16, where a polar-to-non-polar MPB has been postulated by several authors <a class="elsevierStyleCrossRefs" href="#bib0230">[2,16,20–24]</a>. Unfortunately, the incorporation alone of samarium cannot completely suppress the intrinsic conductivity of the material (high leakage current) and so the electromechanical properties of Sm-modified BiFeO<span class="elsevierStyleInf">3</span> bulk ceramics typically remain inaccessible <a class="elsevierStyleCrossRefs" href="#bib0345">[25–27]</a>. The simultaneous addition of titanium may unblock this condition <a class="elsevierStyleCrossRefs" href="#bib0360">[28–31]</a>. Upon Ti-doping a specific micro-nanostructure is generated within the BiFeO<span class="elsevierStyleInf">3</span> bulk material which is then composed by small grains of nanometric size separated by titanium-rich areas <a class="elsevierStyleCrossRefs" href="#bib0380">[32,33]</a>. Just a limited concentration of Ti<span class="elsevierStyleSup">4+</span> is incorporated into the perovskite crystal lattice and the titanium-rich interfaces behave like highly resistive layers, increasing the direct-current (dc) resistivity of the whole material <a class="elsevierStyleCrossRefs" href="#bib0380">[32,34]</a>. From the point of view of piezoelectric functionality, there is however one limiting setback in this scenario: the nanostructured configuration severely impedes the mobility of the ferroelectric domains, hence leading to a low degree of polarization and a poor piezoelectric response <a class="elsevierStyleCrossRef" href="#bib0395">[35]</a>. An intermediate situation in which such nanostructure would be reasonably coarsened while preserving the structural/electronic configuration of the formulated composition, would be ideal, and here is where processing becomes a valuable tool: we can use processing to purposely engineer the microstructure of the material and further capitalize on its intrinsic properties. Aiming this goal, in this contribution we have devised a specific a two-step doping processing approach that, by deliberately coarsening the microstructure of the BiFeO<span class="elsevierStyleInf">3</span> co-doped system, allows for an effective domain mobility while having a low conductivity, hence giving access to a functional piezoelectric response.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Experimental procedure</span><p id="par0010" class="elsevierStylePara elsevierViewall">Ceramic powders with nominal composition Bi<span class="elsevierStyleInf">0.88</span>Sm<span class="elsevierStyleInf">0.12</span>Fe<span class="elsevierStyleInf">0.95</span>Ti<span class="elsevierStyleInf">0.05</span>O<span class="elsevierStyleInf">3.025</span> (BSFTO hereafter) were prepared using two different methodologies. In a first routine, a conventional solid state process is practiced by mixing the corresponding amounts of the oxide precursors, Bi<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> (Aldrich, 99.9%), Fe<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> (Sigma–Aldrich, >99%), Sm<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> (Aldrich 99.9%) and TiO<span class="elsevierStyleInf">2</span> (anatase structure, Sigma–Aldrich, >99%), and subjecting them to 2<span class="elsevierStyleHsp" style=""></span>h of attrition milling with YSZ (yttria-stabilized zirconia) balls and ethanol as liquid medium. As described elsewhere <a class="elsevierStyleCrossRef" href="#bib0400">[36]</a>, the dried mixture is sieved under a 100<span class="elsevierStyleHsp" style=""></span>μm mesh and heated up to 800<span class="elsevierStyleHsp" style=""></span>°C during 2<span class="elsevierStyleHsp" style=""></span>h in order to produce the synthesis of the perovskite phase. The obtained solid is again milled to crush the as-formed agglomerates and aggregates (as much as possible), and once dried it is again sieved to render a loose powder ready for sintering. The second methodology also starts from the standard solid state routine, although the incorporation of the dopants is produced in two steps. In a first step just the oxide precursor of samarium is mixed (milled) with those of bismuth and iron and heated at 800<span class="elsevierStyleHsp" style=""></span>°C/2<span class="elsevierStyleHsp" style=""></span>h for the synthesis of a nominal Sm-doped BiFeO<span class="elsevierStyleInf">3</span> material. Like in the previous method the obtained solid is fragmented with a new milling stage, but once dried it is now dispersed in absolute ethanol. The corresponding amount of titanium (IV) isopropoxide (Aldrich, 99.9%) is then dripped into the dispersion while stirring the mixture with a high speed disperser (IKA Ultra-Turrax T25). After 15<span class="elsevierStyleHsp" style=""></span>min at 11,000<span class="elsevierStyleHsp" style=""></span>rpm, the mixture is dried and sieved (100<span class="elsevierStyleHsp" style=""></span>μm), yielding also a ready-to-sinter ceramic powder. This second approach will produce a sort of titanium-rich coating on the surface of the previously formed Sm-doped bismuth ferrite particles, and as a straight consequence a different grain growth evolution is to be expected. The FESEM and TEM images in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> evidence how this coating looks like in the obtained powder, which hereafter will be referred as BSFTO-m (<span class="elsevierStyleItalic">m</span> stands for <span class="elsevierStyleItalic">s</span>urface modified powder).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0015" class="elsevierStylePara elsevierViewall">Samples of the two powders were next sintered in the form of isostatically pressed pellets (<span class="elsevierStyleItalic">ϕ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.8<span class="elsevierStyleHsp" style=""></span>cm, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>250<span class="elsevierStyleHsp" style=""></span>MPa). An optimum density above 95% of the BiFeO<span class="elsevierStyleInf">3</span> theoretical density was attained under the following sintering conditions: 925<span class="elsevierStyleHsp" style=""></span>°C during 8<span class="elsevierStyleHsp" style=""></span>h for the BSFTO powder and 1000<span class="elsevierStyleHsp" style=""></span>°C during 2<span class="elsevierStyleHsp" style=""></span>h for the modified BSFTO-m material. Notice that in both compositions the sintering temperature is well-above the peritectic point of pure BFO, but this never affects the distribution, purity and/or stoichiometry of the crystallized phases. For comparison issues, the following 3 reference compositions were as well prepared applying the conventional solid state process: undoped BiFeO<span class="elsevierStyleInf">3</span> (BFO), Ti-doped BiFeO<span class="elsevierStyleInf">3</span> (BFTO) and Sm-doped BiFeO<span class="elsevierStyleInf">3</span> (BSFO).</p><p id="par0020" class="elsevierStylePara elsevierViewall">The structural characterization of the sintered ceramics was carried out by means of X-ray diffraction (XRD) measurements on a Bruker D8 Advance diffractometer using CuKα radiation; patterns were collected between 2<span class="elsevierStyleItalic">θ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>15° and 2<span class="elsevierStyleItalic">θ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>65°, in steps of 0.015° and with a counting time of 0.5<span class="elsevierStyleHsp" style=""></span>s per step. The FullProf 2k program <a class="elsevierStyleCrossRef" href="#bib0405">[37]</a> and its graphical interface WinPLOTR <a class="elsevierStyleCrossRef" href="#bib0410">[38]</a> were operated to refine the experimental XRD data (Le Bail method). The densification behavior of the sintered pellets was followed by measuring the Archimedes density in water. The microstructure of the samples was observed on polished and chemically (aq. diluted HCl) etched surfaces by Field Emission Scanning Electron Microscopy (FESEM), using a Hitachi S-4700 microscope equipped with EDS. Transmission Electron Microscopy (TEM) was used to further characterize the synthesized powders, using a JEOL 2100F microscope (TEM/STEM) operating at 200<span class="elsevierStyleHsp" style=""></span>kV and equipped with a field-emission electron gun. Grain size measurements were evaluated from the FESEM micrographs by an image processing and analysis program (Leica) that measures the surface of each BiFeO<span class="elsevierStyleInf">3</span> grain and transforms its irregularly shaped area into a circle of equivalent diameter. The electrical characterization was carried out on Ag-Pd electroded discs. Direct-current (dc) conductivity measurements were performed at 220<span class="elsevierStyleHsp" style=""></span>°C in a voltage range between 20<span class="elsevierStyleHsp" style=""></span>V and 200<span class="elsevierStyleHsp" style=""></span>V, using a Keithley Model 2410 power multimeter. The ferroelectric loops and the piezoelectric coefficients d<span class="elsevierStyleInf">31</span> and d<span class="elsevierStyleInf">33</span> were determined by respectively using a RT6000HVS hysteresimeter (Radiant technologies) and an impedance analyzer (Agilent 4294A) with the resonance-anti-resonance technique.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Results and discussion</span><p id="par0025" class="elsevierStylePara elsevierViewall">The XRD characterization revealed an almost pure BiFeO<span class="elsevierStyleInf">3</span> composition for all the doped formulations after the sintering stage. <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> specifically shows the 2<span class="elsevierStyleItalic">θ</span> region between 31° and 33° for the undoped material and the two co-doped samples. For the parent BFO composition this area shows a double <span class="elsevierStyleItalic">hkl</span> reflection profile which is attributed to the <span class="elsevierStyleItalic">R3c</span> rhombohedral phase of BiFeO<span class="elsevierStyleInf">3</span>, <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>a. In the doped samples the two Bragg peaks of the <span class="elsevierStyleItalic">R3c</span> phase have characteristically converged into a single <span class="elsevierStyleItalic">hkl</span> reflection <a class="elsevierStyleCrossRefs" href="#bib0330">[22,33]</a>, coinciding also with the entering of the <span class="elsevierStyleItalic">Pbam</span> orthorhombic symmetry of BiFeO<span class="elsevierStyleInf">3</span>, <a class="elsevierStyleCrossRef" href="#fig0010">Figs. 2</a>b and c. Both phases indeed constitute the mentioned MPB of the Sm-doped BiFeO<span class="elsevierStyleInf">3</span> formulation, which is consonance with the Sm-content used for this study (<span class="elsevierStyleItalic">x</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.12, i.e. right in the edge of the reported MPB region <a class="elsevierStyleCrossRefs" href="#bib0320">[20–24]</a>). The refined cell parameters of the co-doped materials are listed in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>, where they are compared with the undoped and the mono-doped compositions of reference. These data confirm that whereas titanium is hardly incorporated to the <span class="elsevierStyleItalic">R3c</span> lattice, samarium more easily gets into the perovskite structure, leading to a considerable decrease of the primitive cell volume. But moreover, the calculations also evidence that at this point the processing routine has no major influence on the structural evolution of the materials, all the Sm-containing samples practically displaying the same lattice parameters.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">The FESEM images in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> however evidence the microstructural differences between the two tested procedures. The conventionally processed BSFTO sample displays the described micro-nanostructure which is obtained upon Ti-doping, composed of uniformly dispersed nanograins with a very narrow size distribution (average size around 50<span class="elsevierStyleHsp" style=""></span>nm, <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>a). As reported, this is a straight consequence of the segregation of titanium to the grain boundaries, in a diffusion-controlled process which leads to a solute-drag effect that inhibits the growth of the BiFeO<span class="elsevierStyleInf">3</span> grains <a class="elsevierStyleCrossRefs" href="#bib0380">[32,39]</a>. On the contrary, the surface modified BSFTO-m composition shows the projected coarsened disposition in which the BiFeO<span class="elsevierStyleInf">3</span> grains have noticeably increased their size. The histogram depicted inside the FESEM image of <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b also evidences a significantly broader grain size distribution, pointing even to a bimodal-like tendency where most of the grains now display an average size close to 1.2 microns, but larger grains of around 3 micros and beyond are also frequently observed. Visibly, the modification introduced in the “standard” processing of the material is behind this microstructural alteration, and it should be attributed to the fact that the titanium being incorporated in the second step is not accessing the pre-synthesized powders in a homogeneous way. A plausible mechanism is described as follows: In the BSFTO material, the Ti-precursor is homogenously mixed with the other precursors from the very beginning, and thus during the synthesis stage it is well distributed all over the material. As described, right after the synthesis a new milling process is conducted that crushes the obtained solid into a mixture of de-agglomerated particles, some persistent agglomerates and some aggregates which cannot be broken during the milling (not enough energy to fragment them). But even then, the titanium is present everywhere in this BSFTO powder, i.e. in the discrete units but also inside the agglomerates and the aggregates of particles; hence, upon the subsequent sintering it can efficiently inhibit the growth of the BiFeO<span class="elsevierStyleInf">3</span> grains, segregating to all the grain boundaries to exert the mentioned solute-drag constraining effect <a class="elsevierStyleCrossRefs" href="#bib0380">[32,39]</a>, and eventually producing the observed nanostructure, <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>a. In the surface modified BSFTO-m material, however, no titanium is present during the initial synthesis at 800<span class="elsevierStyleHsp" style=""></span>°C/2<span class="elsevierStyleHsp" style=""></span>h. It is later incorporated after the re-milling stage, as a liquid that impregnates the fragmented mixture of particles, agglomerates and aggregates (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), and so we can initially presume that we have no titanium in the inner areas of those agglomerates and aggregates. Moreover, the situation is not likely to change substantially during the sintering, provided that titanium generally has a poor inertia to diffuse <a class="elsevierStyleCrossRef" href="#bib0420">[40]</a>. Consequently, upon sintering, this worst (less homogeneous) distribution of titanium trough the material will allow many of the existing agglomerates and aggregates of particles to freely densify without further inhibition, leading to the anticipated coarsening of the microstructure in which grains have unevenly grown up to two orders of magnitude, <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b. The sketch depicted in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a> has been conceived to better picture this distinct microstructural evolution of the two co-doped compositions; as indicated, a red coloration is used which highlights the differentiating Ti-enriched regions being generated by the two processing routes under examination in this study.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0035" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a> shows the results of the <span class="elsevierStyleItalic">dc</span> conductivity measurements performed on the two co-doped samples and compared with the BSFO reference composition which contains no titanium. These measurements were conducted by registering the current density as a function of the (applied) electric field and, as depicted, in all cases a linear behavior is observed within the whole working range, which allows for assuming an ohmic conduction in the three tested materials. The <span class="elsevierStyleItalic">dc</span> resistivity values were then estimated from the slope of the straight line obtained by a least-square fitting methodology, rendering resistivities in the range of 10<span class="elsevierStyleSup">4</span><span class="elsevierStyleHsp" style=""></span>Ω<span class="elsevierStyleHsp" style=""></span>cm for the BSFO material, 10<span class="elsevierStyleSup">7</span><span class="elsevierStyleHsp" style=""></span>Ω<span class="elsevierStyleHsp" style=""></span>cm for the BSFTO sample and 10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>Ω<span class="elsevierStyleHsp" style=""></span>cm for the BSFTO-m surface modified material. As discussed in the introduction, doping only with samarium cannot completely suppress the intrinsic conductivity of BiFeO<span class="elsevierStyleInf">3</span>, explaining why the BSFO composition is by far the most conductive. The conductivity significantly decreases when the titanium is incorporated to the starting formulation; quite largely for the conventionally processed BSFTO sample, and less pronouncedly for the surface modified BSFTO-m material. The different size of the BiFeO<span class="elsevierStyleInf">3</span> perovskite grains is behind this dissimilar behavior. In both samples the titanium segregates to the grain boundaries, which then behave as insulating barriers that control the macroscopic conductivity of the material <a class="elsevierStyleCrossRef" href="#bib0380">[32]</a>. Indeed, the formation of highly resistive layers by donor/acceptor interfacial segregation is the basis for important boundary-layer devices (PTCR thermistors, internal boundary layer capacitors, varistors), which exhibit the following relation between the electrical behavior and the grain size: the conductivity rises as the grain size increases, provided this implies a lower amount of (insulating) grain boundaries <a class="elsevierStyleCrossRefs" href="#bib0425">[41–44]</a>. This is exactly the relation that we observe in the BSFTO-m composition, which has a coarsened microstructure (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b) and, consequently, a higher conductivity than the BSFTO conventionally processed sample (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>). The point here is that this detrimental circumstance caused by the bigger size of the perovskite grains, may simultaneously have a positive counterbalance in the material's piezoelectric possibilities, this being the main goal of our investigation. The ferroelectric characterization of the co-doped samples was then attempted by means of polarization vs. electric field measurements, but no printable results were obtained since the corresponding P-E hysteresis loops were far from saturation. Subsequently, both samples were poled at poled at 60<span class="elsevierStyleHsp" style=""></span>kV/cm and 100<span class="elsevierStyleHsp" style=""></span>°C and the macroscopic piezoelectric response was assessed by the resonance-antiresonance method. The obtained results are very conclusive: as expected, the nanostructured configuration displayed by the BiFeO<span class="elsevierStyleInf">3</span> nano-grains in the BSFTO conventionally processed material is a critical impediment for the mobility of the ferroelectric domains, in such a way that no piezoelectric coefficients could be measured for this sample; on the contrary, the bigger size of the perovskite grains in the surface modified BSFTO-m co-doped material allows for and increased domain mobility and hence releases the postulated piezoelectricity of this co-doped formulation, returning a d<span class="elsevierStyleInf">31</span> coefficient of 14·10<span class="elsevierStyleSup">–12</span><span class="elsevierStyleHsp" style=""></span>C/N and a d<span class="elsevierStyleInf">33</span> of 21·10<span class="elsevierStyleSup">–12</span><span class="elsevierStyleHsp" style=""></span>C/N, as depicted in <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conclusions</span><p id="par0040" class="elsevierStylePara elsevierViewall">In summary, the two-step doping strategy here proposed to produce bulk Ti,Sm co-doped BiFeO<span class="elsevierStyleInf">3</span> ceramics, modifies the <span class="elsevierStyleItalic">conventional</span> microstructural development of the material and leads to a coarsened configuration that better capitalizes on the benefits provided by the two dopants: a low conductivity is yet preserved which results from the presence of titanium at the grain boundaries, but, simultaneously, the incorporation of samarium into the big perovskite grains allows for an enhanced domain mobility, subsequently releasing the piezoelectric potential of this specific composition.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1324798" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1221368" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1324799" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1221369" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Experimental procedure" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Results and discussion" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "xack457144" "titulo" => "Acknowledgements" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-06-03" "fechaAceptado" => "2019-07-01" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1221368" "palabras" => array:5 [ 0 => "BiFeO3" 1 => "Processing" 2 => "Microstructure" 3 => "Electrical conductivity" 4 => "Piezoelectricity" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1221369" "palabras" => array:5 [ 0 => "BiFeO<span class="elsevierStyleInf">3</span>" 1 => "Procesamiento" 2 => "Microestructura" 3 => "Conductividad eléctrica" 4 => "Piezoelectricidad" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The conventional solid state processing of bulk Ti,Sm co-doped BiFeO<span class="elsevierStyleInf">3</span> ceramics typically produces a complex micro-nanostructure which exhibits an effective decrease of the leakage conductivity. This same nanostructured configuration however confines the mobility of the ferroelectric domains and in this way the potential piezoelectric response of the formulated composition remains restrained. Hereby, a two-step doping strategy based on a simple surface modification approach is proposed which eventually allows for suitably engineering the microstructural development of the material, leading to a coarsened configuration where the conductivity is kept in low levels while the piezoelectric response is satisfactorily released for practical purposes.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">El procesamiento convencional en estado sólido de materiales cerámicos en volumen de BiFeO<span class="elsevierStyleInf">3</span> co-dopado con Ti y Sm, típicamente produce una compleja micro-nanoestructura que permite una reducción efectiva de la conductividad eléctrica del material (corrientes de fuga). Sin embargo, esta misma configuración nano-estructurada también reduce la movilidad de los dominios ferroeléctricos y por ello, la potencial respuesta piezoeléctrica de la composición formulada permanece confinada. En este trabajo se propone el empleo de una estrategia de dopado en dos etapas, basada en una sencilla aproximación de modificación superficial, con la cual es posible diseñar y controlar adecuadamente el desarrollo microestructural del sistema, dando lugar a un engrosamiento de la microestructura que permite mantener la conductividad del material en bajos niveles al tiempo que libera satisfactoriamente su respuesta piezoeléctrica.</p></span>" ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1752 "Ancho" => 2500 "Tamanyo" => 326778 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">FESEM and TEM images of the BSFTO-m powder, right after the impregnation with titanium isopropoxide. Individual particles, agglomerates and aggregates persisting after the previous milling step, are all fully coated by a thin layer of the liquid Ti-precursor.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 785 "Ancho" => 2927 "Tamanyo" => 114967 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">XRD patterns in the 31–33° 2<span class="elsevierStyleItalic">θ</span> region for the (a) BFO, (b) BSFTO and (c) BSFTO-m sintered samples, showing the presence of the rhombohedral <span class="elsevierStyleItalic">R3c</span> and the orthorhombic <span class="elsevierStyleItalic">Pbam</span> phases of BiFeO<span class="elsevierStyleInf">3</span>.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 850 "Ancho" => 2500 "Tamanyo" => 262954 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Main microstructural features of the co-doped samples: FESEM image and grain size distribution of (a) the BSFTO conventional sample sintered at 925<span class="elsevierStyleHsp" style=""></span>°C/8<span class="elsevierStyleHsp" style=""></span>h and (b) the BSFTO-m sample sintered at 1000<span class="elsevierStyleHsp" style=""></span>°C/2<span class="elsevierStyleHsp" style=""></span>h.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1474 "Ancho" => 2929 "Tamanyo" => 318017 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Schematic diagram illustrating the distinct microstructural evolution experienced by the two co-doped samples as a consequence of the different incorporation of the Ti dopant (different processing route). The red coloration denotes a Ti-enriched region (see further explanation in the text).</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1128 "Ancho" => 1592 "Tamanyo" => 77357 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Evolution of the current density as a function of the applied <span class="elsevierStyleItalic">dc</span> electric field (i.e., <span class="elsevierStyleItalic">dc</span> conductivity) for the BSFO, BSFTO and BSFTO-m sintered materials.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1119 "Ancho" => 3169 "Tamanyo" => 158342 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Piezoelectric coefficients d<span class="elsevierStyleInf">31</span> and d<span class="elsevierStyleInf">33</span> for the BSFTO-m sample as measured by the resonance-antiresonance methodology.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">a</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">b</span> (Å) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">c</span> (Å) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">V</span> (Å<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf">p</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf">wp</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BFO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.575 (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.860 (5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">373.05 (3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BFTO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.577 (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.840 (5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">372.75 (3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BSFO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.567 (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.780 (7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">369.85 (4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BSFTO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.58 (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.69 (9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">369.1 (3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BSFTO-m \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.57 (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.77 (5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">369.7 (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2270804.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Lattice parameters, volume of the <span class="elsevierStyleItalic">R3c</span> primitive cell and reliability factors for the five sintered samples, as obtained from the Le Bail structural fitting of the corresponding XRD patterns.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:44 [ 0 => array:3 [ "identificador" => "bib0225" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perspective on the development of lead-free piezoceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Rödel" 1 => "W. Jo" 2 => "K.T.P. Seifert" 3 => "E. Anton" 4 => "T. Granzow" 5 => "D. Damjanovic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "2009" "volumen" => "92" "paginaInicial" => "1153" "paginaFinal" => "1177" "itemHostRev" => array:3 [ "pii" => "S0091674910015666" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0230" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure, ferroelectricity and piezoelectricity evolutions of Bi<span class="elsevierStyleInf">1−<span class="elsevierStyleItalic">x</span></span>Sm<span class="elsevierStyleInf"><span class="elsevierStyleItalic">x</span></span>FeO<span class="elsevierStyleInf">3</span> at various temperatures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "X. Chen" 1 => "Y. Wang" 2 => "Y. Yang" 3 => "G. Yuan" 4 => "J. Yin" 5 => "Z. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Solid State Commun." "fecha" => "2012" "volumen" => "152" "paginaInicial" => "497" "paginaFinal" => "500" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0235" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of piezoelectric properties if Bi<span class="elsevierStyleInf">4</span>Ti<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">12</span>-based ceramics at high temperature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Villegas" 1 => "A.C. Caballero" 2 => "T. Jardiel" 3 => "C. Aragó" 4 => "J. Maudes" 5 => "I. Caro" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ferroelectrics" "fecha" => "2009" "volumen" => "393" "paginaInicial" => "44" "paginaFinal" => "53" "itemHostRev" => array:3 [ "pii" => "S0091674913018368" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0240" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Piezoelectric response of BiFeO<span class="elsevierStyleInf">3</span> ceramics at elevated temperatures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Rojac" 1 => "M. Makarovic" 2 => "J. Walker" 3 => "H. Ursic" 4 => "D. Damjanovic" 5 => "T. Kos" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Appl. Phys. Lett." "fecha" => "2016" "volumen" => "109" "paginaInicial" => "042904" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0245" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physics and applications of bismuth ferrite" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Catalan" 1 => "J.F. Scott" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Mater." "fecha" => "2009" "volumen" => "21" "paginaInicial" => "2463" "paginaFinal" => "2485" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0250" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Domain structure Bi<span class="elsevierStyleInf">4</span>Ti<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">12</span> ceramics revealed by chemical etching" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Jardiel" 1 => "A.C. Caballero" 2 => "J.F. Fernández" 3 => "M. Villegas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Eur. Ceram. Soc." "fecha" => "2006" "volumen" => "26" "paginaInicial" => "2823" "paginaFinal" => "2826" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0255" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sintering kinetic of Bi<span class="elsevierStyleInf">4</span>Ti<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">12</span> based ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T. Jardiel" 1 => "A.C. Caballero" 2 => "M. Villegas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. Vidr." "fecha" => "2006" "volumen" => "45" "paginaInicial" => "202" "paginaFinal" => "206" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0260" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Theoretical investigation of magnetoelectric behavior in BiFeO<span class="elsevierStyleInf">3</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "P. Ravindran" 1 => "R. Vidya" 2 => "A. Kjekshus" 3 => "H. Fjellvag" 4 => "O. Eriksson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Phys. Rev. B" "fecha" => "2006" "volumen" => "74" "paginaInicial" => "224412" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0265" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Doping BiFeO<span class="elsevierStyleInf">3</span>: approaches and enhanced functionality" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C.H. Yang" 1 => "D. Kan" 2 => "I. Takeuchi" 3 => "V. Nagarajan" 4 => "J. Seidel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c2cp43082g" "Revista" => array:6 [ "tituloSerie" => "Phys. Chem. Chem. Phys." "fecha" => "2012" "volumen" => "14" "paginaInicial" => "15953" "paginaFinal" => "15962" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23108014" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0270" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Doping strategies for increased performance in BiFeO<span class="elsevierStyleInf">3</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:14 [ 0 => "V.A. Khomchenko" 1 => "D.A. Kiselev" 2 => "M. Kopcewicz" 3 => "M. Maglione" 4 => "V.V. Shvartsman" 5 => "P. Borisov" 6 => "W. Kleemann" 7 => "A.M.L. Lopes" 8 => "Y.G. Pogorelov" 9 => "J.P. Araujo" 10 => "R.M. Rubinger" 11 => "N.A. Sobolev" 12 => "J.M. Vieira" 13 => "A.L. Kholkin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Magn. Magn. Mater." "fecha" => "2009" "volumen" => "321" "paginaInicial" => "1692" "paginaFinal" => "9168" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0275" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and microstructural evolution of BiFeO<span class="elsevierStyleInf">3</span> ceramics modified with ZnO" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.S. Bernardo" 1 => "T. Jardiel" 2 => "M. Villegas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. Vidr." "fecha" => "2010" "volumen" => "49" "paginaInicial" => "47" "paginaFinal" => "52" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0280" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metastable nature of donor-doped BiFeO<span class="elsevierStyleInf">3</span> obtained by mechanochemical synthesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.S. Bernardo" 1 => "T. Jardiel" 2 => "M. Peiteado" 3 => "A.C. Caballero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Ceram. Soc. Jpn." "fecha" => "2016" "volumen" => "124" "paginaInicial" => "92" "paginaFinal" => "97" "itemHostRev" => array:3 [ "pii" => "S0091674918303932" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0285" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Composition-driven structural phase transitions in rare-earth-doped BiFeO<span class="elsevierStyleInf">3</span> ceramics: a review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D. Arnold" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1109/TUFFC.2014.006668" "Revista" => array:6 [ "tituloSerie" => "IEEE Trans. Ultrason. Ferroelectr. Freq. Control." "fecha" => "2015" "volumen" => "62" "paginaInicial" => "62" "paginaFinal" => "82" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25585391" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0290" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lead-free rare earth-modified BiFeO<span class="elsevierStyleInf">3</span> ceramics: phase structure and electrical properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Tao" 1 => "J. Lv" 2 => "R. Zhang" 3 => "R. Xiang" 4 => "J. Wu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Des." "fecha" => "2017" "volumen" => "120" "paginaInicial" => "83" "paginaFinal" => "89" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0295" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Composition and thermal structural evolution in Pr modified bismuth ferrite near the morphotropic phase boundary" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "C.S. Tu" 1 => "C.S. Chen" 2 => "P.Y. Chen" 3 => "Y.L. Hsieh" 4 => "R.R. Chien" 5 => "V.H. Schmidt" 6 => "K.C. Feng" 7 => "H.W. Chang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Alloy. Compd." "fecha" => "2018" "volumen" => "168" "paginaInicial" => "903" "paginaFinal" => "913" "itemHostRev" => array:3 [ "pii" => "S0091674912016557" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0300" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis-phase-composition relationship and high electric-field-induced electromechanical behavior of samarium-modified BiFeO<span class="elsevierStyleInf">3</span> ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "J. Walker" 1 => "P. Bryant" 2 => "V. Kurusingal" 3 => "C. Sorrell" 4 => "D. Kuscer" 5 => "G. Drazic" 6 => "A. Bencan" 7 => "V. Nagarajan" 8 => "T. Rojac" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Mater." "fecha" => "2015" "volumen" => "83" "paginaInicial" => "149" "paginaFinal" => "159" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0305" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structural, magnetic and ferroelectric properties of Sm and Mn co-substituted BiFeO<span class="elsevierStyleInf">3</span> ceramics with composition near the morphotropic phase boundary" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S.D. Zhou" 1 => "Y.G. Wang" 2 => "Y. Li" 3 => "H. Ji" 4 => "H. Wu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2018" "volumen" => "44" "paginaInicial" => "13090" "paginaFinal" => "13096" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0310" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reversible phase transition induced large piezoelectric response in Sm-doped BiFeO<span class="elsevierStyleInf">3</span> with a composition near the morphotropic phase boundary" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "Z. Liao" 1 => "F. Xue" 2 => "W. Sun" 3 => "D. Song" 4 => "Q. Zhang" 5 => "J.F. Li" 6 => "L.Q. Chen" 7 => "J. Zhu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Phys. Rev. B" "fecha" => "2017" "volumen" => "95" "paginaInicial" => "214101" "itemHostRev" => array:3 [ "pii" => "S0091674918301982" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0315" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of Cr<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> and Fe<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> doping on the thermal activation of un-polarized PZT charge carriers" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Adel" 1 => "B. Cherifa" 2 => "D.D. Elhak" 3 => "B. Mounira" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. Vidr." "fecha" => "2018" "volumen" => "57" "paginaInicial" => "124" "paginaFinal" => "131" "itemHostRev" => array:3 [ "pii" => "S0091674909011191" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0320" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Phase evolution and electrical behavior of samarium-substituted bismuth ferrite ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "C. Yu" 1 => "G. Viola" 2 => "D. Zhang" 3 => "K. Zhou" 4 => "V. Koval" 5 => "A. Mahajan" 6 => "R.M. Wilson" 7 => "N.V. Tarakina" 8 => "I. Abrahams" 9 => "H. Yan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Eur. Ceram. Soc." "fecha" => "2018" "volumen" => "38" "paginaInicial" => "1374" "paginaFinal" => "1380" "itemHostRev" => array:3 [ "pii" => "S0091674911007627" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0325" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "J. Walker" 1 => "H. Ursic" 2 => "A. Bencan" 3 => "B. Malic" 4 => "H. Simons" 5 => "I. Reaney" 6 => "G. Viola" 7 => "V. Nagarajan" 8 => "T. Rojac" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem. C" "fecha" => "2016" "volumen" => "33" "paginaInicial" => "7859" "paginaFinal" => "7868" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0330" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:11 [ 0 => "J. Walker" 1 => "H. Simons" 2 => "D.O. Alikin" 3 => "A.P. Turygin" 4 => "V.Y. Shur" 5 => "A.L. Kholkin" 6 => "H. Ursic" 7 => "A. Bencan" 8 => "B. Malic" 9 => "V. Nagarajan" 10 => "T. Rojac" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep19630" "Revista" => array:6 [ "tituloSerie" => "Sci. Rep." "fecha" => "2016" "volumen" => "6" "paginaInicial" => "19630" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26791098" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673613603098" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0335" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure and piezoelectric properties of Sm-doped BiFeO<span class="elsevierStyleInf">3</span> ceramics near the morphotropic phase boundary" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:11 [ 0 => "D.V. Karpinsky" 1 => "I.O. Troyanchuk" 2 => "A.V. Trukhanov" 3 => "M. Willinger" 4 => "V.A. Khomchenko" 5 => "A.L. Kholkin" 6 => "V. Sikolenko" 7 => "T. Maniecki" 8 => "W. Maniukiewicz" 9 => "S.V. Dubkov" 10 => "M.V. Silibin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Res. Bull." "fecha" => "2019" "volumen" => "112" "paginaInicial" => "420" "paginaFinal" => "425" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0340" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thin film composites in the BiFeO<span class="elsevierStyleInf">3</span>-Bi<span class="elsevierStyleInf">4</span>Ti<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">12</span> system obtained by an aqueous solution-gel deposition methodology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "C. Gumiel" 1 => "T. Vranken" 2 => "M.S. Bernardo" 3 => "T. Jardiel" 4 => "A. Hardy" 5 => "M.K. Van Bael" 6 => "M. Peiteado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. Vidr." "fecha" => "2018" "volumen" => "57" "paginaInicial" => "19" "paginaFinal" => "28" "itemHostRev" => array:3 [ "pii" => "S0091674904021967" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0345" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "BiFeO<span class="elsevierStyleInf">3</span> ceramics: processing, electrical and electromechanical properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "T. Rojac" 1 => "A. Bencan" 2 => "B. Malic" 3 => "G. Tutuncu" 4 => "J.L. Jones" 5 => "J.E. Daniels" 6 => "D. Damjanovic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "2014" "volumen" => "97" "paginaInicial" => "1993" "paginaFinal" => "2011" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0350" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Observation of enhanced multiferroic, magnetoelectric and photocatalytic properties in Sm-Co codoped BiFeO<span class="elsevierStyleInf">3</span> nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G. Arya" 1 => "J. Yogiraj" 2 => "N.S. Negi" 3 => "J. Shah" 4 => "R.K. Kotnala" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Alloy Compd." "fecha" => "2017" "volumen" => "723" "paginaInicial" => "983" "paginaFinal" => "994" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0355" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structural and multiferroic properties of Bi<span class="elsevierStyleInf">0.885</span>Sm<span class="elsevierStyleInf">0.115</span>FeO<span class="elsevierStyleInf">3</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Sharma" 1 => "P. Saxena" 2 => "A. Kumar" 3 => "D. Varshney" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Alloy Compd." "fecha" => "2017" "volumen" => "706" "paginaInicial" => "609" "paginaFinal" => "615" "itemHostRev" => array:3 [ "pii" => "S0091674907017769" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0360" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "P.K. Jha" 1 => "P.A. Jha" 2 => "P. Singh" 3 => "R. Ranjan" 4 => "R.K. Dwivedi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c7cp01849e" "Revista" => array:7 [ "tituloSerie" => "Phys. Chem. Chem. Phys." "fecha" => "2017" "volumen" => "19" "paginaInicial" => "26285" "paginaFinal" => "26295" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28933470" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S2213219816300113" "estado" => "S300" "issn" => "22132198" ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0365" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Improved microstructure and ferroelectric properties in B-site Ti<span class="elsevierStyleSup">4+</span>-substituted (Bi<span class="elsevierStyleInf">0.86</span>Sm<span class="elsevierStyleInf">0.14</span>)FeO<span class="elsevierStyleInf">3</span> polycrystalline ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H. Mana-ay" 1 => "J. Anthoniappen" 2 => "C.S. Tu" 3 => "R. Sarmiento Jr." 4 => "C.S. Chen" 5 => "P.Y. Chen" 6 => "F.M. Ruiz" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2019" "volumen" => "225" "paginaInicial" => "272" "paginaFinal" => "278" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0370" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "From bulk to nano: a comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO<span class="elsevierStyleInf">3</span> multiferroics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Anwar" 1 => "M.A. Basith" 2 => "S. Choudhury" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Res. Bull." "fecha" => "2019" "volumen" => "111" "paginaInicial" => "93" "paginaFinal" => "101" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0375" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Leakage current characteristics and Sm/Ti doping effect in BiFeO<span class="elsevierStyleInf">3</span> thin films on silicon wafers" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W. Sun" 1 => "Z. Zhou" 2 => "J. Luo" 3 => "K. Wang" 4 => "J.F. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "J. Appl. Phys." "fecha" => "2017" "volumen" => "121" "paginaInicial" => "064101" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0380" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO<span class="elsevierStyleInf">3</span>: microstructure development and multiferroic properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "M.S. Bernardo" 1 => "T. Jardiel" 2 => "M. Peiteado" 3 => "F.J. Mompean" 4 => "M. Garcia-Hernandez" 5 => "M.A. Garcia" 6 => "M. Villegas" 7 => "A.C. Caballero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Mater." "fecha" => "2013" "volumen" => "25" "paginaInicial" => "1533" "paginaFinal" => "1541" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0385" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Combination of structural and microstructural effects in the multiferroic response of Nd and Ti co-doped BiFeO<span class="elsevierStyleInf">3</span> bulk ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "C. Gumiel" 1 => "T. Jardiel" 2 => "M.S. Bernardo" 3 => "P.G. Villanueva" 4 => "U. Urdiroz" 5 => "F. Cebollada" 6 => "C. Arago" 7 => "A.C. Caballero" 8 => "M. Peiteado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2019" "volumen" => "45" "paginaInicial" => "5276" "paginaFinal" => "5283" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0390" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Titanium doping of BiFeO<span class="elsevierStyleInf">3</span> ceramics and identification of minor phases by Raman spectroscopy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.S. Bernardo" 1 => "D.G. Calatayud" 2 => "T. Jardiel" 3 => "D. Makovec" 4 => "M. Peiteado" 5 => "A.C. Caballero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Raman Spectrosc." "fecha" => "2017" "volumen" => "48" "paginaInicial" => "884" "paginaFinal" => "890" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0395" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structural, microstructural and electrical properties of BiFeO<span class="elsevierStyleInf">3</span>-BaTiO<span class="elsevierStyleInf">3</span> ceramics with high thermal stability" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H. Yang" 1 => "C. Zhou" 2 => "X. Liu" 3 => "Q. Zhou" 4 => "G. Chen" 5 => "H. Wang" 6 => "W. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Res. Bull." "fecha" => "2012" "volumen" => "47" "paginaInicial" => "4233" "paginaFinal" => "4239" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0400" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sintering and microstructural characterization of W<span class="elsevierStyleSup">6+</span>, Nb<span class="elsevierStyleSup">5+</span> and Ti<span class="elsevierStyleSup">4+</span> iron-substituted BiFeO<span class="elsevierStyleInf">3</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M.S. Bernardo" 1 => "T. Jardiel" 2 => "M. Peiteado" 3 => "A.C. Caballero" 4 => "M. Villegas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Alloy Compd." "fecha" => "2011" "volumen" => "509" "paginaInicial" => "7290" "paginaFinal" => "7296" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0405" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recent advances in magnetic-structure determination by neutron powder diffraction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Rodríguez-Carvajal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Phys. B Condens. Matter" "fecha" => "1993" "volumen" => "192" "paginaInicial" => "55" "paginaFinal" => "69" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0410" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "WinPLOTR: a Windows tool for powder diffraction pattern analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T. Roisnel" 1 => "J. Rodríquez-Carvajal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Sci. Forum" "fecha" => "2001" "volumen" => "378" "paginaInicial" => "118" "paginaFinal" => "123" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0415" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ceramics Processing and Sintering" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.N. Rahaman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1995" "editorial" => "Marcel Dekker Inc" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0420" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Solid state diffusion and reactivity in the multiferroic BiFeO<span class="elsevierStyleInf">3</span>-Bi<span class="elsevierStyleInf">4</span>Ti<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">12</span> composite system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "C. Gumiel" 1 => "M.S. Bernardo" 2 => "P.G. Villanueva" 3 => "T. Jardiel" 4 => "J. De Frutos" 5 => "A.C. Caballero" 6 => "M. Peiteado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Sci." "fecha" => "2017" "volumen" => "52" "paginaInicial" => "4042" "paginaFinal" => "4051" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0425" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interfacial segregation in perovskites: IV, Internal boundary-layer devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.B. Desu" 1 => "D.A. Payne" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "1990" "volumen" => "73" "paginaInicial" => "3416" "paginaFinal" => "3421" "itemHostRev" => array:3 [ "pii" => "S0091674915007861" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0430" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thick film ZnO based varistors prepared by screen printing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "M.A. De la Rubia" 1 => "M. Peiteado" 2 => "J.F. Fernandez" 3 => "A.C. Caballero" 4 => "J. Holc" 5 => "S. Drnovsek" 6 => "D. Kuscer" 7 => "S. Macek" 8 => "M. Kosec" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Eur. Ceram. Soc." "fecha" => "2006" "volumen" => "26" "paginaInicial" => "2985" "paginaFinal" => "2989" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0435" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sodium impurities in ZnO-Bi<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>-Sb<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> based varistors prepared by screen printing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Peiteado" 1 => "Y. Iglesias" 2 => "A.C. Caballero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ceram. Int." "fecha" => "2011" "volumen" => "37" "paginaInicial" => "819" "paginaFinal" => "824" "itemHostRev" => array:3 [ "pii" => "S0091674910005750" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0440" "etiqueta" => "[44]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interfacial segregation in perovskites: III, Microstructure and electrical properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.D. Desu" 1 => "D.A. Payne" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "1990" "volumen" => "73" "paginaInicial" => "3407" "paginaFinal" => "3415" "itemHostRev" => array:3 [ "pii" => "S0091674908022306" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack457144" "titulo" => "Acknowledgements" "texto" => "<p id="par0045" class="elsevierStylePara elsevierViewall">This work was supported by the <span class="elsevierStyleGrantSponsor" id="gs1">Spanish Ministry of Economy and Competitiveness</span> (MINECO) through MAT2016-80182-R and MAT2014-59210-JIN projects. Dr. T. Jardiel acknowledges the European Science Foundation (<span class="elsevierStyleGrantSponsor" id="gs2">ESF</span>) and the <span class="elsevierStyleGrantSponsor" id="gs3">Ramon y Cajal Program of MINECO</span> for the financial support. Dr. D.G. Calatayud also acknowledges the <span class="elsevierStyleGrantSponsor" id="gs4">Fundación General CSIC (ComFuturo Program)</span> for the financial support.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000005900000002/v1_202004071154/S0366317519300524/v1_202004071154/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/0000005900000002/v1_202004071154/S0366317519300524/v1_202004071154/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317519300524?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 1 | 5 |
2024 October | 26 | 3 | 29 |
2024 September | 27 | 29 | 56 |
2024 August | 36 | 22 | 58 |
2024 July | 16 | 5 | 21 |
2024 June | 35 | 11 | 46 |
2024 May | 42 | 16 | 58 |
2024 April | 47 | 2 | 49 |
2024 March | 32 | 8 | 40 |
2024 February | 69 | 10 | 79 |
2024 January | 34 | 12 | 46 |
2023 December | 25 | 6 | 31 |
2023 November | 16 | 12 | 28 |
2023 October | 37 | 11 | 48 |
2023 September | 37 | 4 | 41 |
2023 August | 47 | 7 | 54 |
2023 July | 20 | 4 | 24 |
2023 June | 29 | 4 | 33 |
2023 May | 67 | 5 | 72 |
2023 April | 64 | 4 | 68 |
2023 March | 71 | 3 | 74 |
2023 February | 46 | 7 | 53 |
2023 January | 47 | 7 | 54 |
2022 December | 39 | 9 | 48 |
2022 November | 32 | 10 | 42 |
2022 October | 32 | 12 | 44 |
2022 September | 37 | 16 | 53 |
2022 August | 56 | 20 | 76 |
2022 July | 47 | 17 | 64 |
2022 June | 60 | 25 | 85 |
2022 May | 33 | 7 | 40 |
2022 April | 26 | 15 | 41 |
2022 March | 50 | 14 | 64 |
2022 February | 37 | 35 | 72 |
2022 January | 69 | 42 | 111 |
2021 December | 56 | 26 | 82 |
2021 November | 65 | 16 | 81 |
2021 October | 71 | 18 | 89 |
2021 September | 27 | 24 | 51 |
2021 August | 35 | 30 | 65 |
2021 July | 32 | 19 | 51 |
2021 June | 29 | 12 | 41 |
2021 May | 47 | 9 | 56 |
2021 April | 88 | 40 | 128 |
2021 March | 68 | 13 | 81 |
2021 February | 25 | 11 | 36 |
2021 January | 37 | 19 | 56 |
2020 December | 43 | 16 | 59 |
2020 November | 51 | 14 | 65 |
2020 October | 27 | 17 | 44 |
2020 September | 41 | 12 | 53 |
2020 August | 65 | 17 | 82 |
2020 July | 80 | 8 | 88 |
2020 June | 60 | 14 | 74 |
2020 May | 66 | 32 | 98 |
2020 April | 58 | 24 | 82 |
2020 March | 24 | 5 | 29 |
2020 February | 25 | 15 | 40 |
2020 January | 20 | 10 | 30 |
2019 December | 30 | 4 | 34 |
2019 November | 21 | 12 | 33 |
2019 October | 27 | 12 | 39 |
2019 September | 31 | 18 | 49 |
2019 August | 9 | 15 | 24 |