was read the article
array:22 [ "pii" => "S0366317519300809" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2019.09.004" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "176" "copyrightAnyo" => "2019" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2020;59:88-92" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 16 "formatos" => array:2 [ "EPUB" => 5 "PDF" => 11 ] ] "itemAnterior" => array:19 [ "pii" => "S0366317519300524" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2019.07.002" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "164" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2020;59:81-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 254 "formatos" => array:3 [ "EPUB" => 25 "HTML" => 149 "PDF" => 80 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Two-step doping approach releasing the piezoelectric response of BiFeO<span class="elsevierStyleInf">3</span> bulk ceramics co-doped with titanium and samarium" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "81" "paginaFinal" => "87" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Desarrollo de una estrategia de dopado en dos etapas para liberar la respuesta piezoeléctrica de cerámicas en volumen de BiFeO<span class="elsevierStyleInf">3</span> co-dopado con titanio y samario" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1119 "Ancho" => 3169 "Tamanyo" => 158342 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Piezoelectric coefficients d<span class="elsevierStyleInf">31</span> and d<span class="elsevierStyleInf">33</span> for the BSFTO-m sample as measured by the resonance-antiresonance methodology.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Carlos Gumiel, Mara S. Bernardo, Pablo G. Villanueva, David G. Calatayud, Marco Peiteado, Teresa Jardiel" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Carlos" "apellidos" => "Gumiel" ] 1 => array:2 [ "nombre" => "Mara S." "apellidos" => "Bernardo" ] 2 => array:2 [ "nombre" => "Pablo G." "apellidos" => "Villanueva" ] 3 => array:2 [ "nombre" => "David G." "apellidos" => "Calatayud" ] 4 => array:2 [ "nombre" => "Marco" "apellidos" => "Peiteado" ] 5 => array:2 [ "nombre" => "Teresa" "apellidos" => "Jardiel" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317519300524?idApp=UINPBA00004N" "url" => "/03663175/0000005900000002/v1_202004071154/S0366317519300524/v1_202004071154/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Fluorine-induced in situ crystallization route to mesoporous Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbell-like structures" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "88" "paginaFinal" => "92" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Hui Zhang, Jinxiao Wang, Jianfeng Yang" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Hui" "apellidos" => "Zhang" ] 1 => array:2 [ "nombre" => "Jinxiao" "apellidos" => "Wang" ] 2 => array:4 [ "nombre" => "Jianfeng" "apellidos" => "Yang" "email" => array:1 [ 0 => "yangjianfeng51@163.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Ruta de cristalización in situ inducida por flúor a estructuras de hidrato de Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> mesoporoso en forma de mancuernas" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2549 "Ancho" => 3083 "Tamanyo" => 989140 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">FE-SEM images and corresponding XRD patterns of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate products prepared at different NH<span class="elsevierStyleInf">4</span>F content: (a) 0, (b) 0.074, (c) 0.148 and (d) 0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F, (e) corresponding spot and area EDS patterns in magnified views of d2 and d3, (f) 0.592<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F; and (g) the XRD patterns.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> is considered to be one of the most promising functional materials in many areas, such as dentistry, CO<span class="elsevierStyleInf">2</span> adsorption, tritium breeders and so on <a class="elsevierStyleCrossRefs" href="#bib0110">[1–3]</a>. Research in these areas is closely related to the synthetically controlled morphologies that represent the key modulation in the properties of final products that largely determine the field of material capability <a class="elsevierStyleCrossRefs" href="#bib0125">[4–6]</a>. Conventionally, direct solid-state reaction or chemical precipitation processes are the most common methods for obtaining granular Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> powders <a class="elsevierStyleCrossRefs" href="#bib0140">[7,8]</a>. However, these strategies are solely effective for relative dense Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> bulk crystals without pores, because the rapidly short-length diffusion of lithium arouses compact surface layers formed on pristine particles. An alternative route is to deposit 2D sheet-like Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> nanostructures through a mild hydrothermal process, which endows a useful function <a class="elsevierStyleCrossRefs" href="#bib0150">[9,10]</a>. Despite the success in functional enhancements, it still faces problems of fairly low surface area, resulting in heavy loss of other functions. Up to now, little success has been achieved in constructing functional Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hierarchical structures owing to the difficulty in simultaneously controlling the growth of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> and their properties. Herein, we reported a fluorine-induced in situ crystallization route to synthesize a novel type of mesoporous dumbbell-like Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate structures with large surface area and potential methylene blue (denoted as MB) adsorption function.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Experimental</span><p id="par0010" class="elsevierStylePara elsevierViewall">Typically, a certain weight of NH<span class="elsevierStyleInf">4</span>F (0, 0.074, 0.148, 0.296, 0.592<span class="elsevierStyleHsp" style=""></span>g) was dissolved in 75<span class="elsevierStyleHsp" style=""></span>mL of deionized water and magnetically stirred, followed by addition of 0.2<span class="elsevierStyleHsp" style=""></span>M LiOH·H<span class="elsevierStyleInf">2</span>O and TEOS with Li/Si<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1. After vigorously stirring for 30<span class="elsevierStyleHsp" style=""></span>min, the solution was transferred into a 100<span class="elsevierStyleHsp" style=""></span>mL Teflon-lined autoclave and maintained at 180<span class="elsevierStyleHsp" style=""></span>°C for 48<span class="elsevierStyleHsp" style=""></span>h. The as-obtained white products were collected by washing several times with alcohol, and then dried at 80<span class="elsevierStyleHsp" style=""></span>°C for 24<span class="elsevierStyleHsp" style=""></span>h.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Results and discussion</span><p id="par0015" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows the morphological details and phase composition of the product prepared at 0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F. The product presented dumbbell-like structure from the panoramic image (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>a). The two lobe brushes of the dumbbell radiated symmetrically from the center with diameter of about 2.5<span class="elsevierStyleHsp" style=""></span>μm, resulting in a total size of about 25<span class="elsevierStyleHsp" style=""></span>μm. It could be found that the brushes were constructed by flocky nanowires of about 200<span class="elsevierStyleHsp" style=""></span>nm (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>b). From the magnified TEM image and SAED patterns (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>c), it could be seen that the single flocky nanowire exhibited composite structure consisting of highly crystallized single-crystalline gracile nanowire with agglomerated polycrystalline nanoparticles coated on. Notably, the plenty of agglomerated nanoparticles formed a mesoporous structure. The XRD peaks in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(d) could be well indexed to the pure orthorhombic structure of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate crystals (Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span>·2H<span class="elsevierStyleInf">2</span>O) (JCPDS No. 33-0816), indicating a high crystallinity in consistent with the TEM result.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0020" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> shows the morphological evolution and phase composition of at different NH<span class="elsevierStyleInf">4</span>F content. In the absence of NH<span class="elsevierStyleInf">4</span>F, only Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate clusters assembled by multidirectional prismatic rods radiating from the center were observed (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>a). Increasing the NH<span class="elsevierStyleInf">4</span>F content to 0.074<span class="elsevierStyleHsp" style=""></span>g, Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate rod-nanoparticle composites were derived and packed together to form delicate brushes that were radially but symmetrically arranged and bundled at one center (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>b). Adjusting the content to 0.148<span class="elsevierStyleHsp" style=""></span>g, dumbbell-like Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate structures that composed of two symmetrical lobes were formed (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>c). When 0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F was introduced, the two lobes of the dumbbell derived into two hemispherical brushes with high-density nanowire-nanoparticles as shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(d1). From the enlarged views (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(d2–d3)), it could be visibly observed that numerous bigger white nanoparticles were adhered on the pristine Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate nanoparticles. This might be ascribed to amorphous SiO<span class="elsevierStyleInf">2</span> by the EDS results in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(e), in agreement with the amorphous characteristics in the XRD domain peaks from 20 to 25° (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(g)) that differed from the product at 0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F. However, when 0.592<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F was introduced, only cubic LiF (JCPDS No. 04-0857, <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(g)) blocks were formed accompanied with a spot of amorphous SiO<span class="elsevierStyleInf">2</span> (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(f)).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0025" class="elsevierStylePara elsevierViewall">Apparently, NH<span class="elsevierStyleInf">4</span>F played a decisive role in directing the Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate structures. On the basis of previous studies <a class="elsevierStyleCrossRefs" href="#bib0160">[11–13]</a>, the growth of dumbbell-like structures was highly related to an in situ crystallization process that occurred solely along the crystal facet direction adsorbing fluorine due to the lower surface energy. In this process, NH<span class="elsevierStyleInf">4</span>F hydrolyzed into ammonia acting as a pH buffer to slowly release OH<span class="elsevierStyleSup">−</span><a class="elsevierStyleCrossRefs" href="#bib0175">[14,15]</a>. The surfaces of early formed Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate nanowires were unsaturated charged and surface Li<span class="elsevierStyleSup">+</span> could interact with fluorine to form Si-O-Li-F complexes as confirmed by the XPS spectra of surface composition containing O, Si, F and Li (Fig. S1). The hydrogen bonding between Si-O-Li-F complexes and ammonia in the solution made the complexes act as anchor sites to capture OH<span class="elsevierStyleSup">−</span>. OH<span class="elsevierStyleSup">−</span> exchanged with fluorine resulting in chemical defects that benefited heterogeneous nucleation on the nanowires <a class="elsevierStyleCrossRefs" href="#bib0185">[16–18]</a>. The more the NH<span class="elsevierStyleInf">4</span>F content was, the more nucleation sites on the surfaces formed, accelerating the nuclei deposition and leading to further quantities of nanowires derived (0.296<span class="elsevierStyleHsp" style=""></span>g) and vice versa (0.074<span class="elsevierStyleHsp" style=""></span>g). Importantly, excess consumption of OH<span class="elsevierStyleSup">−</span> by ammonia led to the surplus of TEOS due to Li<span class="elsevierStyleSup">+</span>/OH<span class="elsevierStyleSup">−</span>/Si<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1 for Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span>·2H<span class="elsevierStyleInf">2</span>O, thereby SiO<span class="elsevierStyleInf">2</span> nanoparticles formed. When using 0.592<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F (Li/F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1), the reaction between NH<span class="elsevierStyleInf">4</span>F and LiOH dominated because the supersaturation toward LiF was satisfied, resulting in a mixture of amorphous SiO<span class="elsevierStyleInf">2</span> nanoparticles and highly crystallized LiF.</p><p id="par0030" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> compares the BET parameters of the dumbbells (0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F) with the product of NH<span class="elsevierStyleInf">4</span>F-free. The specific surface area of the dumbbells was 76.61<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>·g<span class="elsevierStyleSup">−1</span>, 4.09 times that of NH<span class="elsevierStyleInf">4</span>F-free product and higher than that of other related report <a class="elsevierStyleCrossRef" href="#bib0200">[19]</a>. The average pore diameter and pore volume were 12.46<span class="elsevierStyleHsp" style=""></span>nm and 17.08<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−2</span><span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>·g<span class="elsevierStyleSup">−1</span>, respectively, indicating that the product was mesoporous material <a class="elsevierStyleCrossRef" href="#bib0205">[20]</a> in agreement with the TEM result.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0035" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> compares the MB adsorption kinetics of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate products at different NH<span class="elsevierStyleInf">4</span>F content. The MB adsorbance of all the products rose rapidly at the very beginning (0–20<span class="elsevierStyleHsp" style=""></span>min) due to the strong electrostatic interaction between chromophoric groups of MB and surfaces of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate and a large number of unoccupied vacant surface. Then the adsorption rate gradually slowed down until equilibrium (4<span class="elsevierStyleHsp" style=""></span>h) due to the remaining vacant surface sites were difficult to be occupied resulted from the steric barrier between MB molecules on the surface <a class="elsevierStyleCrossRef" href="#bib0210">[21]</a>. Distinctly, the adsorption rate of products at 0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F was slower than that of other products and the MB desorption occurred after equilibrium. It might be explained that numerous amorphous SiO<span class="elsevierStyleInf">2</span> strong adhesion on dumbbells might occupy the active sites and reduce the electrostatic interaction between MB molecules and Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate surfaces. The MB equilibrium adsorbance of these products were 55.89 (NH<span class="elsevierStyleInf">4</span>F-free), 64.87 (0.074<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F), 66.09 (0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F) and 62.26<span class="elsevierStyleHsp" style=""></span>mg/g<span class="elsevierStyleSup">−1</span> (0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F), respectively. It could also be found that Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbells (0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F) showed the largest adsorbance attributed to the enlarged specific surface area owing to the cavities between nanoparticles and nanowires resulted porous structure, implying a potential application in effluent treatment.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conclusion</span><p id="par0040" class="elsevierStylePara elsevierViewall">Novel mesoporous Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbell-like structures were conveniently synthesized by a facile fluorine-induced in situ crystallization route, which featured a largest specific surface area of 76.71<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>·g<span class="elsevierStyleSup">−1</span> ever reported to date on Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> structures. Benefiting from its unique mesoporous structure, Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbells presented a strong methylene blue adsorbance to 66.09<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleSup">−1</span>, offering attractive benefits for promising functional application in effluent treatment.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1324801" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1221370" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1324800" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1221371" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Experimental" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Results and discussion" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Conclusion" ] 8 => array:2 [ "identificador" => "xack457145" "titulo" => "Acknowledgments" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-06-18" "fechaAceptado" => "2019-09-11" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1221370" "palabras" => array:4 [ 0 => "NH<span class="elsevierStyleInf">4</span>F" 1 => "Hydrothermal synthesis" 2 => "Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbells" 3 => "Methylene blue adsorption" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1221371" "palabras" => array:4 [ 0 => "NH<span class="elsevierStyleInf">4</span>F" 1 => "Síntesis hidrotérmica" 2 => "Mancuernas de hidrato de Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span>" 3 => "Adsorción de azul de metileno" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Herein, mesoporous Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbell-like structures were for the first time fabricated by a fluorine-induced in situ crystallization route. The obtained dumbbells assembled by nanowire-nanoparticles featured highly porous structures with mesoporous pores below 13<span class="elsevierStyleHsp" style=""></span>nm, enabling a remarkably large surface area of 76.71<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>·g<span class="elsevierStyleSup">−1</span> which was 4.09 times that of the structures in NH<span class="elsevierStyleInf">4</span>F-free solution and represented one of highest values reported to date on Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> structures. The novel mesoporous structures revealed a new strategy to enhance the methylene blue adsorbance to 66.09<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleSup">−1</span>, allowing for their promising functional application in effluent treatment.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Aquí, un hidrato de Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> mesoporoso en forma de mancuernas fue obtenido por primera vez usando una ruta de cristalización in situ inducida por flúor. Las mancuernas obtenidas, formadas por el ensamblaje de nanopartículas en forma de nanohilos, presentaron una porosidad elevada, con mesoporos por debajo de los 13<span class="elsevierStyleHsp" style=""></span>nm, habilitando un área superficial particularmente grande, de 76,71<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>·g<span class="elsevierStyleSup">−1</span>, siendo este valor 4,09 veces el de las estructuras obtenidas sin el empleo de NH4F, lo que representa uno de los valores más altos descritos hasta la fecha en estructuras de Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span>. Las nuevas estructuras mesoporosas revelaron una estrategia novedosa para mejorar la adsorción de azul de metileno a 66,09<span class="elsevierStyleHsp" style=""></span>mg·g<span class="elsevierStyleSup">−1</span>, lo que supone una prometedora aplicación en el tratamiento de efluentes.</p></span>" ] ] "multimedia" => array:4 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2075 "Ancho" => 2917 "Tamanyo" => 596658 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">(a) The integral and (b) the high-magnification FE-SEM images, (c) the single nanowire and its corresponding TEM image, (d) XRD pattern of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate dumbbells prepared at 0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F. Insets in (c) are the SAED patterns of two counterparts showing polycrystalline nanoparticles and single-crystal nanowire in the dumbbell, respectively.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2549 "Ancho" => 3083 "Tamanyo" => 989140 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">FE-SEM images and corresponding XRD patterns of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate products prepared at different NH<span class="elsevierStyleInf">4</span>F content: (a) 0, (b) 0.074, (c) 0.148 and (d) 0.296<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F, (e) corresponding spot and area EDS patterns in magnified views of d2 and d3, (f) 0.592<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F; and (g) the XRD patterns.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1311 "Ancho" => 1625 "Tamanyo" => 147912 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">The MB adsorption curves of Li<span class="elsevierStyleInf">2</span>Si<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> hydrate products prepared at different NH<span class="elsevierStyleInf">4</span>F content.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Parameters \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Samples \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">With NH<span class="elsevierStyleInf">4</span>F \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">NH<span class="elsevierStyleInf">4</span>F-free \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Specific surface area (m<span class="elsevierStyleSup">2</span>·g<span class="elsevierStyleSup">−1</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">76.71 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.74 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Average pore diameter (nm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12.46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.92 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pore volume (cm<span class="elsevierStyleSup">3</span>·g<span class="elsevierStyleSup">−1</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17.08<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.84<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2270805.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The BET parameters of dumbbell-like structures (0.148<span class="elsevierStyleHsp" style=""></span>g NH<span class="elsevierStyleInf">4</span>F) compared with rod clusters (NH<span class="elsevierStyleInf">4</span>F-free).</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:21 [ 0 => array:3 [ "identificador" => "bib0110" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H. Lammert" 1 => "M. Kunow" 2 => "A. Heuer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1103/PhysRevLett.90.215901" "Revista" => array:6 [ "tituloSerie" => "Phys. Rev. Lett." "fecha" => "2003" "volumen" => "90" "paginaInicial" => "215901" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12786564" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0091674913004909" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0115" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "B.N. Nair" 1 => "R.P. Burwood" 2 => "V.J. Goh" 3 => "K. Nakagawa" 4 => "T. Yamaguchi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Prog. Mater. Sci." "fecha" => "2009" "volumen" => "54" "paginaInicial" => "511" "paginaFinal" => "541" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0120" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Cruz" 1 => "S. Bulbulian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Nucl. Mater." "fecha" => "2003" "volumen" => "312" "paginaInicial" => "262" "paginaFinal" => "265" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0125" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. BMao" 1 => "S.S. Wong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/ja0607483" "Revista" => array:6 [ "tituloSerie" => "J. Am. Chem. Soc." "fecha" => "2006" "volumen" => "128" "paginaInicial" => "8217" "paginaFinal" => "8226" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16787086" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0130" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Riss" 1 => "T. Berger" 2 => "S. Stankic" 3 => "J. Bernardi" 4 => "E. Knözinger" 5 => "O. Diwald" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Angew. Chem. Int. Ed." "fecha" => "2008" "volumen" => "47" "paginaInicial" => "1496" "paginaFinal" => "1499" "itemHostRev" => array:3 [ "pii" => "S0091674911003022" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0135" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C.T. Dinh" 1 => "Y. Seo" 2 => "T.D. Nguyen" 3 => "F. Kleitz" 4 => "T.O. Do" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Angew. Chem. Int. Ed." "fecha" => "2012" "volumen" => "51" "paginaInicial" => "6608" "paginaFinal" => "6612" "itemHostRev" => array:3 [ "pii" => "S0091674914008999" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0140" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H. Pfeiffer" 1 => "P. Bosch" 2 => "S. Bulbulian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Nucl. Mater." "fecha" => "1998" "volumen" => "257" "paginaInicial" => "309" "paginaFinal" => "317" "itemHostRev" => array:3 [ "pii" => "S0091674915007836" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0145" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Li" 1 => "L.F. Francis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Sci." "fecha" => "1995" "volumen" => "30" "paginaInicial" => "6192" "paginaFinal" => "6204" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0150" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Alemi" 1 => "S. Khademinia" 2 => "M. Dolatyari" 3 => "A. Bakhtiari" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Int. Nano Lett." "fecha" => "2012" "volumen" => "2" "paginaInicial" => "1" "paginaFinal" => "9" "itemHostRev" => array:3 [ "pii" => "S0091674908007781" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0155" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Alemi" 1 => "S. Khademinia" 2 => "S.W. Joo" 3 => "M. Dolatyari" 4 => "A. Bakhtiari" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. Nano Lett." "fecha" => "2013" "volumen" => "3" "paginaInicial" => "1" "paginaFinal" => "11" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0160" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "H.K. Wang" 1 => "K.P. Dou" 2 => "W.Y. Teoh" 3 => "Y.W. Zhan" 4 => "T.F. Hung" 5 => "F.H. Zhang" 6 => "J.Q. Xu" 7 => "R.Q. Zhang" 8 => "A.L. Rogach" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Funct. Mater." "fecha" => "2013" "volumen" => "23" "paginaInicial" => "4847" "paginaFinal" => "4853" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0165" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H.M. Zhang" 1 => "Y.H. Han" 2 => "P.R. Liu" 3 => "H. Yu" 4 => "S.Q. Zhang" 5 => "C.D. Yao" 6 => "H.J. Zhao" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Chem. Commun." "fecha" => "2010" "volumen" => "46" "paginaInicial" => "8395" "paginaFinal" => "8397" "itemHostRev" => array:3 [ "pii" => "S0091674911004313" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0170" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "G. Liu" 1 => "H.G. Yang" 2 => "X.W. Wang" 3 => "L.N. Cheng" 4 => "J. Pan" 5 => "G.Q. Lu" 6 => "H.M. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/ja903463q" "Revista" => array:6 [ "tituloSerie" => "J. Am. Chem. Soc." "fecha" => "2009" "volumen" => "131" "paginaInicial" => "12868" "paginaFinal" => "12869" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19697930" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0175" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Kollman" 1 => "I. Kuntz" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Am. Chem. Soc." "fecha" => "1976" "volumen" => "98" "paginaInicial" => "8295" "paginaFinal" => "8296" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0180" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z. Wen" 1 => "L.P. Zhu" 2 => "L. Li" 3 => "L.W. Sun" 4 => "H. Cai" 5 => "Z.Z. Ye" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c3dt51994e" "Revista" => array:6 [ "tituloSerie" => "Dalton Trans." "fecha" => "2013" "volumen" => "42" "paginaInicial" => "15551" "paginaFinal" => "15554" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24076616" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0185" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y. Wang" 1 => "H. Xia" 2 => "L. Lu" 3 => "J.Y. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/nn9012675" "Revista" => array:6 [ "tituloSerie" => "ACS Nano" "fecha" => "2010" "volumen" => "4" "paginaInicial" => "1425" "paginaFinal" => "1432" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20146455" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0190" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Jiang" 1 => "J.H. Zhu" 2 => "R.M. Ding" 3 => "Y.Y. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem." "fecha" => "2011" "volumen" => "21" "paginaInicial" => "15969" "paginaFinal" => "15974" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0195" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W.M. Mei" 1 => "J. Huang" 2 => "L.P. Zhu" 3 => "Z.Z. Ye" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem." "fecha" => "2012" "volumen" => "22" "paginaInicial" => "9315" "paginaFinal" => "9321" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0200" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "X.Y. Li" 1 => "H.M. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Cryst. Eng. Comm." "fecha" => "2014" "volumen" => "16" "paginaInicial" => "4501" "paginaFinal" => "4507" "itemHostRev" => array:3 [ "pii" => "S0091674910011401" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0205" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Kamari" 1 => "W.S. Wan Ngah" 2 => "M.Y. Chong" 3 => "M.L. Cheah" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Desalination" "fecha" => "2009" "volumen" => "249" "paginaInicial" => "1180" "paginaFinal" => "1189" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0210" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Senthilkumaar" 1 => "P.R. Varatharajan" 2 => "K. Porkodi" 3 => "C.V. Subbhuraam" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcis.2004.09.027" "Revista" => array:7 [ "tituloSerie" => "J. Colloid Interface Sci." "fecha" => "2005" "volumen" => "284" "paginaInicial" => "78" "paginaFinal" => "82" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15752787" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0091674996702051" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack457145" "titulo" => "Acknowledgments" "texto" => "<p id="par0045" class="elsevierStylePara elsevierViewall">We thank the <span class="elsevierStyleGrantSponsor" id="gs1">National Key R&D Program of China</span> (Grant No. <span class="elsevierStyleGrantNumber" refid="gs1">2017YFB0310300</span>), the <span class="elsevierStyleGrantSponsor" id="gs2">National Natural Science Foundation of China</span> (Grant No. <span class="elsevierStyleGrantNumber" refid="gs2">51672209</span>) for the support of this work.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000005900000002/v1_202004071154/S0366317519300809/v1_202004071154/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/0000005900000002/v1_202004071154/S0366317519300809/v1_202004071154/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317519300809?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 0 | 2 |
2024 October | 18 | 11 | 29 |
2024 September | 25 | 14 | 39 |
2024 August | 23 | 21 | 44 |
2024 July | 18 | 6 | 24 |
2024 June | 19 | 6 | 25 |
2024 May | 31 | 5 | 36 |
2024 April | 41 | 9 | 50 |
2024 March | 38 | 8 | 46 |
2024 February | 18 | 4 | 22 |
2024 January | 12 | 7 | 19 |
2023 December | 21 | 11 | 32 |
2023 November | 33 | 8 | 41 |
2023 October | 33 | 6 | 39 |
2023 September | 22 | 0 | 22 |
2023 August | 15 | 4 | 19 |
2023 July | 24 | 3 | 27 |
2023 June | 21 | 1 | 22 |
2023 May | 45 | 1 | 46 |
2023 April | 60 | 3 | 63 |
2023 March | 48 | 4 | 52 |
2023 February | 26 | 6 | 32 |
2023 January | 14 | 5 | 19 |
2022 December | 12 | 7 | 19 |
2022 November | 15 | 5 | 20 |
2022 October | 18 | 10 | 28 |
2022 September | 17 | 13 | 30 |
2022 August | 18 | 9 | 27 |
2022 July | 19 | 14 | 33 |
2022 June | 13 | 9 | 22 |
2022 May | 18 | 8 | 26 |
2022 April | 12 | 13 | 25 |
2022 March | 43 | 10 | 53 |
2022 February | 24 | 12 | 36 |
2022 January | 39 | 12 | 51 |
2021 December | 23 | 13 | 36 |
2021 November | 13 | 15 | 28 |
2021 October | 22 | 20 | 42 |
2021 September | 16 | 12 | 28 |
2021 August | 17 | 8 | 25 |
2021 July | 15 | 13 | 28 |
2021 June | 15 | 10 | 25 |
2021 May | 28 | 9 | 37 |
2021 April | 35 | 28 | 63 |
2021 March | 25 | 22 | 47 |
2021 February | 35 | 14 | 49 |
2021 January | 35 | 13 | 48 |
2020 December | 26 | 18 | 44 |
2020 November | 22 | 9 | 31 |
2020 October | 12 | 22 | 34 |
2020 September | 20 | 8 | 28 |
2020 August | 41 | 14 | 55 |
2020 July | 48 | 24 | 72 |
2020 June | 34 | 8 | 42 |
2020 May | 32 | 18 | 50 |
2020 April | 42 | 28 | 70 |
2020 March | 0 | 1 | 1 |
2020 February | 0 | 4 | 4 |
2019 December | 0 | 8 | 8 |