was read the article
array:24 [ "pii" => "S0366317520300248" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.02.002" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "206" "copyright" => "SECV" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:183-93" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:19 [ "pii" => "S0366317520300273" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.03.002" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "209" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:194-204" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Effect of temperature and clay addition on the thermal behavior of phosphate sludge" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "194" "paginaFinal" => "204" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Efecto de la temperatura y la adición de arcilla sobre el comportamiento térmico del lodo de fosfato" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1558 "Ancho" => 2083 "Tamanyo" => 166644 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Illustrated synthesized process of ceramics samples.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Mohamed Amine Harech, Mohamed Mesnaoui, Younes Abouliatim, Youssef EL hafiane, Abdelaziz Benhammou, Abdelkrim Abourriche, Agnes Smith, Lahbib Nibou" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Mohamed Amine" "apellidos" => "Harech" ] 1 => array:2 [ "nombre" => "Mohamed" "apellidos" => "Mesnaoui" ] 2 => array:2 [ "nombre" => "Younes" "apellidos" => "Abouliatim" ] 3 => array:2 [ "nombre" => "Youssef" "apellidos" => "EL hafiane" ] 4 => array:2 [ "nombre" => "Abdelaziz" "apellidos" => "Benhammou" ] 5 => array:2 [ "nombre" => "Abdelkrim" "apellidos" => "Abourriche" ] 6 => array:2 [ "nombre" => "Agnes" "apellidos" => "Smith" ] 7 => array:2 [ "nombre" => "Lahbib" "apellidos" => "Nibou" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300273?idApp=UINPBA00004N" "url" => "/03663175/0000006000000003/v2_202106110717/S0366317520300273/v2_202106110717/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0366317520300224" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.01.014" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "204" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:175-82" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Microstructure and mechanical properties of 4YTZP-SiC composites obtained through colloidal processing and Spark Plasma Sintering" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "175" "paginaFinal" => "182" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Microestructura y propiedades mecánicas de composites 4YTZP-SiC obtenidos por procesamiento coloidal y Spark Plasma Sintering" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 813 "Ancho" => 2091 "Tamanyo" => 141688 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">X-ray diffraction patterns of 4YTZP/SiC freeze-dried powders and bulk-materials after-sintering at 1400<span class="elsevierStyleHsp" style=""></span>°C by SPS: (a) 15<span class="elsevierStyleHsp" style=""></span>wt% SiC and (b) 20<span class="elsevierStyleHsp" style=""></span>wt% SiC.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Amparo Borrell, Lucia Navarro, Carlos F. Gutiérrez-González, Carmen Alcázar, María D. Salvador, Rodrigo Moreno" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Amparo" "apellidos" => "Borrell" ] 1 => array:2 [ "nombre" => "Lucia" "apellidos" => "Navarro" ] 2 => array:2 [ "nombre" => "Carlos F." "apellidos" => "Gutiérrez-González" ] 3 => array:2 [ "nombre" => "Carmen" "apellidos" => "Alcázar" ] 4 => array:2 [ "nombre" => "María D." "apellidos" => "Salvador" ] 5 => array:2 [ "nombre" => "Rodrigo" "apellidos" => "Moreno" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300224?idApp=UINPBA00004N" "url" => "/03663175/0000006000000003/v2_202106110717/S0366317520300224/v2_202106110717/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "183" "paginaFinal" => "193" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Julián Dávalos, Ashley Bonilla, Mónica A. Villaquirán-Caicedo, Ruby M. de Gutiérrez, Jesús Ma. Rincón" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Julián" "apellidos" => "Dávalos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Ashley" "apellidos" => "Bonilla" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:4 [ "nombre" => "Mónica A." "apellidos" => "Villaquirán-Caicedo" "email" => array:1 [ 0 => "monica.villaquiran@correounivalle.edu.co" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 3 => array:3 [ "nombre" => "Ruby M." "apellidos" => "de Gutiérrez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "Jesús Ma." "apellidos" => "Rincón" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Composite Materials Group (CENM), School of Materials Engineering, University of Valle, Calle 13 No.100-00, Cali, Colombia" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Eduardo Torroja Institute for Construction Science, Glassy and Ceramic Materials Laboratory, CSIC, c/ Serrano Galvache 4, 28033 Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Preparación de vitrocerámicas a partir de ceniza de carbón y ceniza de cascarilla de arroz: microestructura, propiedades físicas y mecánicas" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1719 "Ancho" => 2304 "Tamanyo" => 224580 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Appearance of the sintered samples.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Glass–ceramics are ceramic materials formed through the controlled nucleation and crystallization of glass, generally induced by nucleating additives <a class="elsevierStyleCrossRefs" href="#bib0220">[1,2]</a>. They always contain a residual glassy phase and one or more embedded crystalline phases <a class="elsevierStyleCrossRefs" href="#bib0225">[2–4]</a>. Others glass–ceramics can be obtained without the addition of nucleating agents <a class="elsevierStyleCrossRefs" href="#bib0240">[5,6]</a> giving rise to excellent properties. Some of the most important properties of glass–ceramics are their high strength and toughness, they have zero or very low porosity, thermal stability and chemical durability <a class="elsevierStyleCrossRef" href="#bib0225">[2]</a>. Due to their wide range of properties, glass–ceramics have been studied in recent years for different applications, for example, as materials for the dental implants <a class="elsevierStyleCrossRef" href="#bib0250">[7]</a>; luminescent materials based on Eu<span class="elsevierStyleSup">3+</span>-doped aluminosilicates <a class="elsevierStyleCrossRef" href="#bib0255">[8]</a>, and rare-earth-free glass–ceramic-based phosphor <a class="elsevierStyleCrossRef" href="#bib0260">[9]</a>; high-temperature resistant materials (1200<span class="elsevierStyleHsp" style=""></span>°C) based on anorthite and tialite <a class="elsevierStyleCrossRef" href="#bib0265">[10]</a>; glass–ceramic with improves mechanical properties as high micro-hardness, high flexural strength and low friction coefficient <a class="elsevierStyleCrossRef" href="#bib0270">[11]</a>; dielectric materials prepared at ultralow temperatures using alumina, quartz and zirconium <a class="elsevierStyleCrossRef" href="#bib0275">[12]</a>; dielectric materials based on albite structures <a class="elsevierStyleCrossRef" href="#bib0280">[13]</a>; glass–ceramics containing 40% or more ZnO for wastewater decontamination via photocatalysis <a class="elsevierStyleCrossRef" href="#bib0285">[14]</a>; materials for waste vitrification <a class="elsevierStyleCrossRef" href="#bib0235">[4]</a>, among others.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Glass–ceramics as vitrification and devitrification process has been used to neutralize different potentially dangerous industrial wastes <a class="elsevierStyleCrossRefs" href="#bib0290">[15–17]</a>, and to stabilize and reduce the volume of wastes by between 20% and 97% depending on their nature <a class="elsevierStyleCrossRefs" href="#bib0300">[17,18]</a>. In addition, to reducing waste volume, the devitrification process increases the added-value and reduces the environmental impact of different inorganic wastes <a class="elsevierStyleCrossRef" href="#bib0235">[4]</a>. Industrial aluminosilicate wastes and byproducts, which include blast furnace slag, fly ash and ashes from other industrial processes <a class="elsevierStyleCrossRefs" href="#bib0300">[17–22]</a> have been investigated for their use as raw materials to produce glass–ceramics. Recent studies have used ash obtained from incinerating municipal wastes to replace the conventional clays used to synthesize glass–ceramics by taking advantage of its ability to immobilize heavy metals; wastes of incinerator ashes have been mixed with marble sludge to obtain materials with mechanical properties similar to those of commercial glass–ceramics <a class="elsevierStyleCrossRef" href="#bib0330">[23]</a>. Other agricultural wastes with a high content of SiO<span class="elsevierStyleInf">2</span>, such as rice husk ash (RHA), whose annual generation is approximately 132<span class="elsevierStyleHsp" style=""></span>Mt <a class="elsevierStyleCrossRef" href="#bib0335">[24]</a>, can also be used as raw materials to produce glass–ceramics. The different properties of the glass–ceramic materials obtained from RHA can be used for a wide range of applications. Wang <a class="elsevierStyleCrossRef" href="#bib0315">[20]</a> and Zhu <a class="elsevierStyleCrossRef" href="#bib0300">[17]</a> produced glass–ceramic foams that can be used as thermal insulators; the authors reported compressive strengths of 9.84<span class="elsevierStyleHsp" style=""></span>MPa and above 5<span class="elsevierStyleHsp" style=""></span>MPa for materials with bulk densities of 0.98<span class="elsevierStyleHsp" style=""></span>g/cm<span class="elsevierStyleSup">3</span> and 0.46<span class="elsevierStyleHsp" style=""></span>g/cm<span class="elsevierStyleSup">3</span>, respectively. Composite glass–ceramics made with RHA and sugar cane ash have exhibited photoluminescent properties for possible applications in power generation, LEDs and high-temperature applications <a class="elsevierStyleCrossRef" href="#bib0340">[25]</a>. In addition, RHA was also used to prepare bioactive glass–ceramic, potentially suitable material for bone reconstruction and tissue engineering applications <a class="elsevierStyleCrossRef" href="#bib0345">[26]</a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">In Colombia, industrial wastes such as rice husk or coal ashes are not being used and are disposed of in uncontrolled landfills generating high environmental impact. There is a significant interest in finding applications for the development of value-added products. Therefore, the goal of the present investigation is to produce materials with glass–ceramic characteristics using these industrial wastes. In the first stage, glasses with different CaO/SiO<span class="elsevierStyleInf">2</span> molar ratios were designed and produced, and the glass–ceramics were then characterized to determine their physical (density, absorption and porosity) and mechanical (Vickers hardness, Young's modulus and fracture toughness) properties and durability (mass loss after exposure to acids and bases).</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Materials and methodology</span><p id="par0020" class="elsevierStylePara elsevierViewall">The methodology followed in the present investigation for obtaining glass–ceramics is summarized in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>. Raw materials and Design and obtention of glasses and glass–ceramics section explain the process.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Raw materials</span><p id="par0025" class="elsevierStylePara elsevierViewall">The raw materials used to synthesize the original glasses, which were subsequently crystallized to obtain the glass–ceramics, were rice husk ash (RHA), coal ash (CA) and commercial calcium hydroxide (Ca(OH)<span class="elsevierStyleInf">2</span><span class="elsevierStyleGlyphdbnd"></span>CH) (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). The CA was obtained from the furnace of the Lago Verde brick company (southwestern region of Colombia), and the RHA was rice husk that had been burned at 600<span class="elsevierStyleHsp" style=""></span>°C for 2<span class="elsevierStyleHsp" style=""></span>h at the La Esmeralda rice company (Jamundi). The CH was commercially acquired (Corona®, Colombia). The starting materials CA and RHA were mechanically conditioned in a US Stoneware ceramic ball mill. The particle size and distribution of the raw materials was determined with a Mastersizer 2000 laser granulometry device (Malvern Instrument), using water as the dispersing medium. The average particle size of the CA, RHA and CH was 33.48, 21.87 and 41.15<span class="elsevierStyleHsp" style=""></span>μm, respectively, and the particle size distribution can be observed in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>. The density of the raw materials was determined by following the ASTM C127-04 standard and using the pycnometer method; the density of the CA, RHA and CH was 2480, 2000 and 2250<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span>, respectively.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">The chemical composition of the CA, RHA and CH, as presented in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>, was determined with a PANalytical sequential wavelength dispersive X-ray fluorescence spectrometer (WDXRF), model AXIOS mAX, equipped with a rhodium tube and operated with a maximum power of 4.0<span class="elsevierStyleHsp" style=""></span>kW, and the SuperQ software version 5.0<span class="elsevierStyleHsp" style=""></span>L was used. The results show that the CA has an elevated content of SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> (with a SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratio of 4.0), but its alkali level is quite low; the RHA has an elevated content of SiO<span class="elsevierStyleInf">2</span> (95.59<span class="elsevierStyleHsp" style=""></span>wt%).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0035" class="elsevierStylePara elsevierViewall">The mineralogical composition of the CA was determined using a X’Pert MRD PANalytical diffractometer with CuKα radiation generated at 45<span class="elsevierStyleHsp" style=""></span>kV and 40<span class="elsevierStyleHsp" style=""></span>mA; the specimens were scanned between 10 and 60° 2<span class="elsevierStyleItalic">θ</span> with a step size of 0.02°. The X-ray diffraction patterns are shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>, where the presence of traces quartz (<span class="elsevierStyleItalic">Inorganic Crystal Structure Database</span>, ICSD 100341) is observed in the RHA. However, the increasing baseline between 18 and 30° 2<span class="elsevierStyleItalic">θ</span> indicates the presence of a large amount of reactive or amorphous silica. The crystalline phases identified for the CA were quartz (ICSD #100341), hematite (ICSD #066756) and mullite (ICSD #066445).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Design and obtention of glasses and glass–ceramics</span><p id="par0040" class="elsevierStylePara elsevierViewall">The raw materials to produce the glass–ceramics correspond to the (Na<span class="elsevierStyleInf">2</span>O)–CaO–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> ternary system shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>a. Highlighted inside the red circle are the crystalline phases that should be obtained according to the raw material used. The material of interest is then a glass–ceramic containing tridymite, anorthite and pseudowollastonite phases, which in principle, could give to the final glass–ceramic to good mechanical properties and a high hardness <a class="elsevierStyleCrossRefs" href="#bib0220">[1,27]</a>. Anorthite is characterized as having a high chemical resistance in alkaline and acidic environments <a class="elsevierStyleCrossRefs" href="#bib0350">[27,28]</a>. To comply with the above-mentioned recommendations, five mixtures were designed, in which the CaO/SiO<span class="elsevierStyleInf">2</span> molar ratio was varied between 0.25 and 0.39 (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). To synthesize the glass, a powder mixture was prepared comprising 90<span class="elsevierStyleHsp" style=""></span>wt% of the raw materials (according to <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>), 5<span class="elsevierStyleHsp" style=""></span>wt% of the network modifier (ZnO) and 5<span class="elsevierStyleHsp" style=""></span>wt% of sodium tetraborate (Na<span class="elsevierStyleInf">2</span>B<span class="elsevierStyleInf">4</span>O<span class="elsevierStyleInf">7</span>), which acts as the fluxing agent and decreases the viscosity of the molted material <a class="elsevierStyleCrossRef" href="#bib0360">[29]</a>. Due to incorporating the fluxing agent, it is possible after the sintering processes to form sodium-rich crystalline phases, as observed in the Na<span class="elsevierStyleInf">2</span>O–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> diagram (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0045" class="elsevierStylePara elsevierViewall">Considering the proportion of the mixture components (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>), the composition of the designed glasses is presented in <a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>. The parental glasses are identified by the GXX code, and the thermally treated materials (glass–ceramics) are identified by the GCXX code; in both cases, XX represents the CaO/SiO<span class="elsevierStyleInf">2</span> molar ratio used in the mixture.</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0050" class="elsevierStylePara elsevierViewall">The powders (CA, RHA and CH) were previously homogenized and placed in alumina crucibles (Fisherbrand™), which were then subjected to 1450<span class="elsevierStyleHsp" style=""></span>°C in a Nabertherm electric furnace; a heating rate of 15<span class="elsevierStyleHsp" style=""></span>°C/min was used, and the samples were held for 2<span class="elsevierStyleHsp" style=""></span>h at the maximum temperature to completely melt the powders. The viscous fluid obtained was poured into water to produce the parent glass (G) particles. The G particles were then manually ground in a mortar to thus obtain the glass powders, which were then subsequently sintered. To obtain glass–ceramic with good properties, it is necessary to control the process to crystallize the parent glass by determining the optimum temperature for crystal nucleation and growth, by differential thermal analysis. This technique can be used to identify the exothermic crystallization peak (<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">c</span>). Once the crystallization temperatures are identified, the parental glass powders are compacted into circular pellets with 13<span class="elsevierStyleHsp" style=""></span>mm diameters (approximately 0.5<span class="elsevierStyleHsp" style=""></span>g of material). A 10% wt H<span class="elsevierStyleInf">2</span>O solution was used as the binder for compaction, which was performed with a manual press (CrushIR, Pike Technologies) operated with a pressure between 8 and 9<span class="elsevierStyleHsp" style=""></span>tons. After powder compaction, the samples were stored in a desiccator to prevent the inclusion of moisture. Then, the pellets were heating up in one-step until Tc, and maintained during 2<span class="elsevierStyleHsp" style=""></span>h at this temperature. After the glass–ceramics obtained were characterized.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Characterization of parent glasses and glass–ceramics</span><p id="par0055" class="elsevierStylePara elsevierViewall">The following techniques were used:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">-</span><p id="par0060" class="elsevierStylePara elsevierViewall">The thermal analysis test (Differential Scanning Calorimetry) was performed with a TA Instruments STD Q-600 device operated with a nitrogen atmosphere, temperature range of 40–950<span class="elsevierStyleHsp" style=""></span>°C, heating rate of 10<span class="elsevierStyleHsp" style=""></span>°C/min and N<span class="elsevierStyleInf">2</span> flow of 100<span class="elsevierStyleHsp" style=""></span>ml/min.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">-</span><p id="par0065" class="elsevierStylePara elsevierViewall">Scanning electron microscopy (SEM) was used to evaluate the microstructure. This test was performed with a JEOL JSM-6490LV instrument using the backscattered electron method. To observe the thermally treated samples (glass–ceramics), the surface was previously attacked with 5% hydrofluoric acid (HF), which dilutes the amorphous portion and allows the sample microstructure to be observed. Then, the samples were surface coated with gold for 15<span class="elsevierStyleHsp" style=""></span>s using Denton Vacuum equipment (Model Desk IV) to achieve a conducting surface.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">-</span><p id="par0070" class="elsevierStylePara elsevierViewall">The apparent density, percentage of absorption and volume of permeable voids were determined according to a slight modification of the ASTM C642 standard, in which the samples were immersed in water at 100<span class="elsevierStyleHsp" style=""></span>°C for 2<span class="elsevierStyleHsp" style=""></span>h instead of the 5<span class="elsevierStyleHsp" style=""></span>h specified in the standard for Portland cement-based materials. Two samples for every composition were evaluated.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">-</span><p id="par0075" class="elsevierStylePara elsevierViewall">Solutions of NaOH and HCl with concentrations of 0.01<span class="elsevierStyleHsp" style=""></span>M were prepared for the chemical resistance test. The test was performed based on the methodology used by Zhang et al. <a class="elsevierStyleCrossRef" href="#bib0360">[29]</a>, which consists on introducing the pellets into these solutions at 95<span class="elsevierStyleHsp" style=""></span>°C for 6<span class="elsevierStyleHsp" style=""></span>h and monitoring the mass loss every 2<span class="elsevierStyleHsp" style=""></span>h. Two samples for every composition were evaluated.</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">-</span><p id="par0080" class="elsevierStylePara elsevierViewall">The microhardness was evaluated using the Vickers hardness test according to the ASTM C1327-15 standard. The equipment used for this test was a THV-1D digital microhardness tester from Beijing Time High Technology Ltda. The load used was 1<span class="elsevierStyleHsp" style=""></span>kg<span class="elsevierStyleHsp" style=""></span>F. In addition, the Young's modulus (<span class="elsevierStyleItalic">E</span>) was evaluated by the instrumented nanoindentation test (Hysitron TI950 TriboIndenter, Bruker) with a Berkovich diamond tip and a 5<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>5 matrix. Each consecutive indentation was separated by 4.5<span class="elsevierStyleHsp" style=""></span>μm to prevent the residual stresses of the adjacent imprints from interfering with each other. The calibration test was performed with fused silica sample with a maximum load 300<span class="elsevierStyleHsp" style=""></span>mN. The force–displacement curves were used to determine the elastic moduli. The <span class="elsevierStyleItalic">E</span> determined for each indentation was calculated using the standard methods of Oliver and Pharr with Equation 1 given in the <a class="elsevierStyleCrossRef" href="#bib0370">[31]</a> reference:<elsevierMultimedia ident="eq0005"></elsevierMultimedia>where <span class="elsevierStyleItalic">ν</span> corresponds to the Poisson's ratio, estimated to be 0.245 for a glass–ceramic of the CaO–SiO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> system <a class="elsevierStyleCrossRef" href="#bib0375">[32]</a>, <span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf">r</span> (GPa) corresponds to the reduced modulus of the studied glass–ceramics, and <span class="elsevierStyleItalic">ν</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> (0.07) and <span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> (1141<span class="elsevierStyleHsp" style=""></span>GPa) are the data associated with the Berkovich indenter. The applied load was in the unloading mode from 10,000<span class="elsevierStyleHsp" style=""></span>μN down to 160<span class="elsevierStyleHsp" style=""></span>μN. The hardness values (<span class="elsevierStyleItalic">H</span>) were calculated by following the procedure of Oliver and Pharr, and therefore, these values correspond to the averages obtained for each group of indentations. The fracture toughness (<span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span>) was calculated using the model of Anstis et al. <a class="elsevierStyleCrossRef" href="#bib0380">[33]</a> according to Eq. <a class="elsevierStyleCrossRef" href="#eq0010">(2)</a>, which is based on the measured length of the cracks coming from the corners of the Vickers notches:<elsevierMultimedia ident="eq0010"></elsevierMultimedia>where <span class="elsevierStyleItalic">P</span> is the load in newtons, <span class="elsevierStyleItalic">c</span> is the crack length from the center of the indent to the crack tip in meters, <span class="elsevierStyleItalic">E</span> is the Young's modulus and <span class="elsevierStyleItalic">H</span> is the Vickers hardness in GPa.</p></li></ul></p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Results and analysis</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Microstructure of the ceramics obtained from the glasses with different CaO/SiO<span class="elsevierStyleInf">2</span> ratios</span><p id="par0085" class="elsevierStylePara elsevierViewall">The Differential Scanning Calorimetry (DSC) curves of the parent glasses are shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>. Although the DSC tests do not show that the glasses obtained have high devitrification capacities, the crystallization temperature (<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">c</span>) for samples were selected from the obtained graphs. In general, these <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">c</span> temperatures range between 850<span class="elsevierStyleHsp" style=""></span>°C and 930<span class="elsevierStyleHsp" style=""></span>°C. <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows images of the materials obtained after the sintering processes, where it can be observed that at a higher SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratio, the samples have a brighter appearance and rounded edges, which is due to the low viscosity of the glassy phase. The GC0.35 and GC0.39 samples are appearing opaquer and have well-defined edges, just these samples have high CaO/SiO<span class="elsevierStyleInf">2</span> molar ratio and low SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratio. Note that the samples with glassy appearance correspond to the samples with higher SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall">The XRD patterns obtained for the sintered samples are shown in <a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>. Anorthite (CaAl<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">8</span>) and albite (Na,Ca)(Si,Al)<span class="elsevierStyleInf">4</span>O<span class="elsevierStyleInf">8</span> are mainly observed to form in the sintered samples GC0.29, GC0.35 and GC0.39, which correspond to the mixtures with lower SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios (5.98, 9.15 and 5.48, respectively). In contrast, the XRD patterns of the samples GC0.25 and GC0.33, which correspond to the higher SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios, 13.74 and 12.76, respectively, showed small peaks corresponding to cristobalite (SiO<span class="elsevierStyleInf">2</span>) and a higher content of the glassy phase. Notably, wollastonite (Ca<span class="elsevierStyleInf">3</span>Si<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">9</span>) was expected to form in these mixtures. The absence of wollastonite can be attributed to the high contents of Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> in CA and to the low percentage of CaO present in the mixtures. Soares et al., obtained wollastonite at temperatures of approximately 900<span class="elsevierStyleHsp" style=""></span>°C but observed higher contents of Ca in the mixture <a class="elsevierStyleCrossRef" href="#bib0390">[35]</a>. In conventional sintered glasses, small crystals grow in size, and phases with anorthite or plagioclase crystals are common <a class="elsevierStyleCrossRefs" href="#bib0350">[27,36]</a>. Therefore, both the CaO/SiO<span class="elsevierStyleInf">2</span> and SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios affect the formation of the crystalline phases and have to be considered simultaneously in the material design.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0095" class="elsevierStylePara elsevierViewall">The albite crystalline phase is found in the Na<span class="elsevierStyleInf">2</span>O–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> system, and its formation is due to incorporating Na<span class="elsevierStyleInf">2</span>O as a fluxing agent. The sodium atoms are introduced into the silica and alumina tetrahedral structure, which are found in the same region in the CaO–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> and NaO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> ternary diagrams, as shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>b.</p><p id="par0100" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a> shows the SEM images of the sintered samples. The presence of the glassy phase is mainly observed in the GC0.25 (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>a) and GC0.33 (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>c) samples. The XRD patterns of these samples contained small crystalline peaks associated with traces of cristobalite. For the GC0.29 and GC0.35 samples, the formation of the lamellar anorthite crystals and albite is confirmed by the needle-shape morphology, which has been identified by other authors <a class="elsevierStyleCrossRefs" href="#bib0350">[27,37]</a>. The glassy phase is also observed in GC0.39; additionally, the size crystals is smaller compared with GC0.29 and GC0.35.</p><elsevierMultimedia ident="fig0040"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Physical and mechanical properties of glass–ceramics</span><p id="par0105" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a> shows the variation of the bulk density and water absorption of the glass–ceramics obtained with respect to the SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratio used to design the glasses (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). In general, the bulk density of glass–ceramics is between 2607<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>100 and 2739<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>60<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span>; these values are similar to the reported bulk densities of wollastonite glass–ceramics <a class="elsevierStyleCrossRef" href="#bib0220">[1]</a>. The results presented in <a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a> show that higher densities are obtained in the glass–ceramic as there is a higher content of crystalline phases (GC0.29, GC0.39) (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>). Although this is not true for GC0.35. In general, these three samples showed less water absorption. The opposite is seen in samples of vitreous character, which correspond to those of greater molar ratio SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> (Si/Al). In general, the results of water absorption (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>b) were between 0.13<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.02 and 0.48<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.05%.</p><elsevierMultimedia ident="fig0045"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">The Vickers microhardness values of the glass–ceramics GC0.29, GC0.33, GC0.35 and GC0.39 were of 643<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>29<span class="elsevierStyleHsp" style=""></span>MPa, 570<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>14<span class="elsevierStyleHsp" style=""></span>MPa, 640<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>17<span class="elsevierStyleHsp" style=""></span>MPa and 622<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>27<span class="elsevierStyleHsp" style=""></span>MPa respectively. Yang <a class="elsevierStyleCrossRef" href="#bib0395">[36]</a> and Liu <a class="elsevierStyleCrossRef" href="#bib0405">[38]</a> found that increasing the CaO/SiO<span class="elsevierStyleInf">2</span> ratio promotes glass crystallization. However, in this investigation the SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> is an important parameter to control the crystallization process. Even samples with high CaO/SiO<span class="elsevierStyleInf">2</span> and SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratio such GC0.33 did not show ease of crystallization and mostly showed vitreous phase. Wollastonite-based glass–ceramics have usually, hardness values of 600<span class="elsevierStyleHsp" style=""></span>MPa <a class="elsevierStyleCrossRef" href="#bib0220">[1]</a>, but wollastonite was not observed in any of the studied mixtures.</p><p id="par0115" class="elsevierStylePara elsevierViewall">The nanoindentation tests results for samples with higher crystal phases contents are shown in <a class="elsevierStyleCrossRef" href="#tbl0020">Table 4</a>. The fracture toughness (<span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span>) was determined by measuring the crack length obtained in the Vickers hardness test, and the E was determined by the nanoindentation test. The <span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span> was between 0.39 and 0.59<span class="elsevierStyleHsp" style=""></span>MPa<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">1/2</span>, and similar values were reported by Montoya-Quesada using fly ash <a class="elsevierStyleCrossRef" href="#bib0320">[21]</a>. <a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10</a>a and b shows that although the Berkovich tip did not cause plastic deformation of the imprint, the imprints contain different phases, and the elastic modulus data obtained are homogenous. The hardness of the studied samples determined by nanoindentation (9.13–9.77<span class="elsevierStyleHsp" style=""></span>GPa) was higher relative to that reported for lithium silicate glasses (6.5<span class="elsevierStyleHsp" style=""></span>GPa) and their respective glass–ceramics (8.3<span class="elsevierStyleHsp" style=""></span>GPa) <a class="elsevierStyleCrossRef" href="#bib0385">[34]</a>. In general, the <span class="elsevierStyleItalic">E</span> was ∼96<span class="elsevierStyleHsp" style=""></span>GPa for the evaluated GC mixtures. Note that the SEM image of the glass–ceramics (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>) showed that these samples are partially crystallized, that is, they contain a residual glassy phase. In this regard, an elastic modulus of 133<span class="elsevierStyleHsp" style=""></span>GPa has been reported for fully crystalized glass–ceramic samples <a class="elsevierStyleCrossRef" href="#bib0385">[34]</a>. The <span class="elsevierStyleItalic">E</span> reported for the commercial glass–ceramic, Neopariés, is 86<span class="elsevierStyleHsp" style=""></span>GPa, whereas that of marble and natural granite is 75<span class="elsevierStyleHsp" style=""></span>GPa and 51<span class="elsevierStyleHsp" style=""></span>GPa, respectively <a class="elsevierStyleCrossRef" href="#bib0410">[39]</a>, which indicates that the <span class="elsevierStyleItalic">E</span> of the glass–ceramics produced in this study was 10.6% higher than that of the commercial Neopariés glass–ceramic. An additional advantage is that the glass–ceramics produced in this work were obtained from industrial wastes such as CA and RHA. <a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10</a>c shows the direct correlation between fracture toughness (<span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span>) and the density of the glass–ceramics evaluated.</p><elsevierMultimedia ident="tbl0020"></elsevierMultimedia><elsevierMultimedia ident="fig0050"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Durability in HCl and NaOH solutions</span><p id="par0120" class="elsevierStylePara elsevierViewall">With respect to the application in construction the chemical durability is an important property of glass–ceramics, given that these materials are used as coatings, facades and elements that can be in contact with the environment. In acidic solutions, the hydrogen ions replace the alkaline ions in the glass structure, whereas in alkaline solutions, the silica structure is attacked <a class="elsevierStyleCrossRef" href="#bib0350">[27]</a>. Sample GC0.33 was the sample with the highest mass loss in the presence of HCl and NaOH and also contains the highest volume of permeable voids (<a class="elsevierStyleCrossRef" href="#fig0055">Fig. 11</a>a and b). This sample exhibited a lower proportion of crystalline phases, and as observed by the dynamic recrystallization test, the main phase was cristobalite.</p><elsevierMultimedia ident="fig0055"></elsevierMultimedia><p id="par0125" class="elsevierStylePara elsevierViewall">The mass loss of the glass–ceramics GC0.29, GC0.33, GC0.35 and GC0.39 produced by acidic environment was 0.540, 0.503, 0.507 and 0.517<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>, respectively. These mass losses are lower than the mass loss reported by Toya et al. <a class="elsevierStyleCrossRef" href="#bib0355">[28]</a>, for glass–ceramics containing the anorthite and diopside phases and obtained from kaolin and dolomite wastes, 1.3<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>. In the presence of NaOH, the mass losses of GC0.29, GC0.33, GC0.35 and GC0.39 were 0.529, 0.523, 0.484 and 0.522<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>, respectively, which are also lower than the loss reported by Toya et al. (1.4<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>) <a class="elsevierStyleCrossRef" href="#bib0355">[28]</a>. Lim et al. <a class="elsevierStyleCrossRef" href="#bib0415">[40]</a> reported mass losses above 30% for ceramics based on anorthite and exposed to acid solutions (10% HCl); in the present investigation, the mass loss values do not exceed 1.1% (<a class="elsevierStyleCrossRef" href="#fig0055">Fig. 11</a>a). The same authors report that in the presence of alkaline solutions (10% KOH), the mass loss was ∼0.43% after 5<span class="elsevierStyleHsp" style=""></span>h at 80<span class="elsevierStyleHsp" style=""></span>°C <a class="elsevierStyleCrossRef" href="#bib0415">[40]</a>; the glass–ceramics produced in this investigation (<a class="elsevierStyleCrossRef" href="#fig0055">Fig. 11</a>b) did not exceed a mass loss of 0.15%. Froberg et al. <a class="elsevierStyleCrossRef" href="#bib0350">[27]</a> found that the acid attack of the glass–ceramic samples containing the anorthite phase was relatively mild, since anorthite is formed in glasses with high corundum contents, and the glassy phase had a high alumina content, thus tending to increase the surface durability.</p><p id="par0130" class="elsevierStylePara elsevierViewall">The reported mass losses of a commercial Neoparis glass–ceramic were 3.4<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span> in acidic environments and 1.4<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span> in alkaline environments <a class="elsevierStyleCrossRef" href="#bib0420">[41]</a>. Based on the results of previous investigations and the reported durability of commercial glass–ceramics, the glass–ceramics produced in this work are considered to have a high chemical durability. <a class="elsevierStyleCrossRef" href="#fig0060">Fig. 12</a>(left) demonstrates the change in color of the samples after immersion in HCl, showing some points of attack (pits) on the surface and a higher opacity and roughness. Over time, the material is expected to trap dust, lowering its cleaning capacity <a class="elsevierStyleCrossRefs" href="#bib0425">[42,43]</a>.</p><elsevierMultimedia ident="fig0060"></elsevierMultimedia></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Conclusions</span><p id="par0135" class="elsevierStylePara elsevierViewall">From the results here obtained, it can be concluded that was possible synthesizing glass–ceramics containing crystalline phases such as anorthite, albite and cristobalite from proper amounts of industrial wastes such as RHA and coal ash.</p><p id="par0140" class="elsevierStylePara elsevierViewall">The CaO/SiO<span class="elsevierStyleInf">2</span> ratio, as well as the SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratio, contributes to the forming the crystalline phases. For this reason, samples with higher CaO/SiO<span class="elsevierStyleInf">2</span> molar ratios but lower SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratios result in anorthite and albite forming (GC0.29, GC0.35 and GC0.39). On the contrary, increasing the SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratio (GC0.33) inhibits the crystallization of these phases, which significantly affects the final properties of the material.</p><p id="par0145" class="elsevierStylePara elsevierViewall">The glass–ceramics obtained (GC0.29, GC0.35 and GC0.39) had densities between 2607 and 2739<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span> and a water absorption below 0.1%. The Vickers hardness was above 600<span class="elsevierStyleHsp" style=""></span>MPa, and the stiffness of the materials, determined by the nanoindentation test, was ∼96<span class="elsevierStyleHsp" style=""></span>GPa. The fracture toughness <span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span> was between 0.39 and 0.59<span class="elsevierStyleHsp" style=""></span>MPa<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">1/2</span>. The chemical durability of these glass–ceramics exposed to HCl and NaOH was considered excellent (approximately 0.5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>), so they are good candidates for applications as construction materials, tiles, ceramic plates, coatings, among others.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1524497" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1382334" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1524496" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1382335" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methodology" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Raw materials" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Design and obtention of glasses and glass–ceramics" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Characterization of parent glasses and glass–ceramics" ] ] ] 6 => array:3 [ "identificador" => "sec0030" "titulo" => "Results and analysis" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Microstructure of the ceramics obtained from the glasses with different CaO/SiO ratios" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "Physical and mechanical properties of glass–ceramics" ] 2 => array:2 [ "identificador" => "sec0045" "titulo" => "Durability in HCl and NaOH solutions" ] ] ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "xack535383" "titulo" => "Acknowledgments" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-12-11" "fechaAceptado" => "2020-02-21" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1382334" "palabras" => array:6 [ 0 => "Glass" 1 => "Glass–ceramic" 2 => "Rice husk ash" 3 => "Coal ash" 4 => "Microstructure" 5 => "Mechanical properties" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1382335" "palabras" => array:6 [ 0 => "Vidrio" 1 => "Vitrocerámica" 2 => "Ceniza de cáscara de arroz" 3 => "Ceniza de carbón" 4 => "Microestructura" 5 => "Propiedades mecánicas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Wastes such as coal and rice husk ashes, which are widely available in Colombia, were successfully used to synthesize glass-ceramics in the (Na<span class="elsevierStyleInf">2</span>O)–CaO–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> system, which are obtained from thermally treating the parent glasses. The raw materials were mechanically conditioned, and the glasses were designed based on the CaO/SiO<span class="elsevierStyleInf">2</span> molar ratio, which was varied between 0.25 and 0.39. The glasses were obtained by melting the powders at 1450<span class="elsevierStyleHsp" style=""></span>°C for 2<span class="elsevierStyleHsp" style=""></span>h, and the melted powder was then poured into water. To obtain the glass–ceramic material, the temperature of the glass thermal treatment, which was generally lower than 1000<span class="elsevierStyleHsp" style=""></span>°C in all cases, was determined by differential thermal analysis. The glass-ceramics obtained were microstructurally, physically and mechanically characterized. In addition, the durability was determined in acidic and alkaline environments (HCl and NaOH solutions). Glass–ceramics with densities of 2607–2739<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span>, water absorption below 0.1%, Vickers hardness above 600<span class="elsevierStyleHsp" style=""></span>MPa and elastic modulus of ∼96<span class="elsevierStyleHsp" style=""></span>GPa were obtained. The fracture toughness <span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span> was in the range of 0.39–0.59<span class="elsevierStyleHsp" style=""></span>MPa<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">1/2</span>. The chemical durability was considered excellent (with mass losses of ∼0.5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>), therefore these glass–ceramics can be good candidates for different applications in the construction sector.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Residuos sólidos como ceniza de carbón y ceniza de cascarilla de arroz, los cuales se encuentran disponibles en grandes cantidades en Colombia, se emplearon para la síntesis (a partir de vidrios parental) de materiales vitrocerámicos dentro del sistema SiO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–CaO(Na<span class="elsevierStyleInf">2</span>O). Las materias primas se acondicionaron mecánicamente y los vidrios se diseñaron basados en la relación molar CaO/SiO<span class="elsevierStyleInf">2</span>, la cual varió entre 0,25 y 0,29. Los vidrios se obtuvieron por fusión a 1.450<span class="elsevierStyleHsp" style=""></span>°C por 2<span class="elsevierStyleHsp" style=""></span>h y el material fundido se enfrió en agua. Para obtener la vitrocerámica, el vidrio fue analizado por análisis térmico diferencial para identificar la temperatura de cristalización, que fue menor de 1.000<span class="elsevierStyleHsp" style=""></span>°C para todos los vidrios en estudio. Las vitrocerámicas obtenidas fueron caracterizadas microestructural, física y mecánicamente. Además, la durabilidad fue determinada en ambiente ácidos y básicos en soluciones de HCl y NaOH. Se obtuvieron vitrocerámicas con densidades entre 2.607 y 2.739<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span>, con absorción de agua menor al 0,1%, dureza Vickers de 600<span class="elsevierStyleHsp" style=""></span>MPa y módulo de elasticidad de ∼96<span class="elsevierStyleHsp" style=""></span>GPa. La tenacidad a la fractura <span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span> estuvo en el rango de 0,39-0,59<span class="elsevierStyleHsp" style=""></span>MPa<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">1/2</span> y la durabilidad química fue considerada como muy buena debido a las pérdidas de masa de tan solo ∼0,5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">2</span>. Con estos resultados, las vitrocerámicas obtenidas se consideran buenas candidatas para aplicaciones en el sector de la construcción.</p></span>" ] ] "multimedia" => array:18 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 687 "Ancho" => 3333 "Tamanyo" => 181959 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Procedure used to prepare coal ash-RHA-based glass–ceramics (CA: coal ash, CH: calcium hydroxide, RHA: rice husk ash).</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 704 "Ancho" => 2167 "Tamanyo" => 163945 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Particle size distribution of the raw materials.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1453 "Ancho" => 1583 "Tamanyo" => 195015 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">X-ray diffraction patterns of the raw materials.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1432 "Ancho" => 3083 "Tamanyo" => 400317 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">(a) Ternary SiO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–CaO diagram <a class="elsevierStyleCrossRef" href="#bib0220">[1]</a>. (b) SiO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–Na<span class="elsevierStyleInf">2</span>O diagram <a class="elsevierStyleCrossRef" href="#bib0365">[30]</a>.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1243 "Ancho" => 1583 "Tamanyo" => 163388 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">DSC curves obtained for the glasses, was used to determine the <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">c</span>. The select <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">c</span> is marked with (x).</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1719 "Ancho" => 2304 "Tamanyo" => 224580 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Appearance of the sintered samples.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1404 "Ancho" => 1667 "Tamanyo" => 249470 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">X-ray diffraction pattern of the sintered samples.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 2768 "Ancho" => 2500 "Tamanyo" => 930697 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">SEM images of the sintered samples.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 1202 "Ancho" => 2660 "Tamanyo" => 163796 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">(a) Bulk density and (b) water absorption of the glass–ceramics.</p>" ] ] 9 => array:7 [ "identificador" => "fig0050" "etiqueta" => "Fig. 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 2823 "Ancho" => 2500 "Tamanyo" => 342293 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Images of the glass–ceramic samples, with marked locations of the indents on (a) GC0.39, (b) GC0.29 and (c) correlation between bulk density and <span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span>.</p>" ] ] 10 => array:7 [ "identificador" => "fig0055" "etiqueta" => "Fig. 11" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr11.jpeg" "Alto" => 1218 "Ancho" => 3083 "Tamanyo" => 291758 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Volume of permeable voids in the glass–ceramics vs mass loss after 6<span class="elsevierStyleHsp" style=""></span>h exposures to 0.01<span class="elsevierStyleHsp" style=""></span>M HCl and NaOH solutions.</p>" ] ] 11 => array:7 [ "identificador" => "fig0060" "etiqueta" => "Fig. 12" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr12.jpeg" "Alto" => 934 "Ancho" => 1583 "Tamanyo" => 146280 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Appearance of GC0.29 after immersion in HCl (left) and NaOH (right) solutions for 6<span class="elsevierStyleHsp" style=""></span>h.</p>" ] ] 12 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Component \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CH (wt%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CA (wt%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">RHA (wt%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SiO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62.13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95.59 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26.36 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.19 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CaO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">71.47 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.27 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.65 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Na<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.27 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.07 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fe<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.07 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.88 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.18 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">K<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.16 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MgO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.51 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CuO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ZnO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TiO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">P<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SO<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cl \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SrO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Loss on ignition (1000<span class="elsevierStyleHsp" style=""></span>°C) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.66 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2620348.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Chemical composition of the raw materials.</p>" ] ] 13 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">ID sample \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CA, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">RHA, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CH, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CaO/SiO<span class="elsevierStyleInf">2</span> molar ratio \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratio \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.74 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.29 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.29 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.98 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12.76 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.15 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.54 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2620347.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Mixture design used to obtain the glasses.</p>" ] ] 14 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Glass ID \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SiO<span class="elsevierStyleInf">2</span>, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CaO, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Na<span class="elsevierStyleInf">2</span>O, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">K<span class="elsevierStyleInf">2</span>O, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">ZnO, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Fe<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>, wt% \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">G0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">64.91 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.46 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">G0.29 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">55.85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.86 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.49 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.93 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">G0.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60.32 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.53 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.46 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">G0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">57.30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.63 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.32 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">G0.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">51.26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.86 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.49 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.93 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2620346.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">Chemical compositions of the designed glasses.</p>" ] ] 15 => array:8 [ "identificador" => "tbl0020" "etiqueta" => "Table 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at4" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Sample \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">E</span> (GPa) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">H</span> (GPa) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">K</span><span class="elsevierStyleInf">ic</span> (MPa<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">1/2</span>) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GC0.29 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96.20<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>13.97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.13<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.46<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.08 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GC0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95.05<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>5.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.34<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.39<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.03 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GC0.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96.12<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>15.74 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.77<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.59<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.07 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2620345.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">Mechanical properties determined by the nanoindentation test.</p>" ] ] 16 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "E=(1−ν2)1Er−vi2Ei−1" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 1885 "Alto" => 42 "Ancho" => 162 ] ] 17 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Kic=0.016EHPc3/2" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 2202 "Alto" => 43 "Ancho" => 157 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:43 [ 0 => array:3 [ "identificador" => "bib0220" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Glass–Ceramic Technology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "W. Höland" 1 => "G.H. Beall" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/9781118265987" "Libro" => array:4 [ "edicion" => "second ed." "fecha" => "2012" "editorial" => "The American Ceramic Society" "editorialLocalizacion" => "Westerville" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0225" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A bright future for glass–ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E.D. Zanotoo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Am. Ceram. Soc. Bull." "fecha" => "2010" "volumen" => "89" "paginaInicial" => "19" "paginaFinal" => "27" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0230" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of Cr<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> on the crystallization behavior of synthetic diopside and characterization of Cr-doped diopside glass ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Zhang" 1 => "Y. Zhang" 2 => "T. Wu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2018.02.231" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2018" "volumen" => "44" "paginaInicial" => "10119" "paginaFinal" => "10129" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0235" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of SiO<span class="elsevierStyleInf">2</span>/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R. Jia" 1 => "L. Deng" 2 => "F. Yun" 3 => "H. Li" 4 => "X. Zhang" 5 => "X. Jia" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.matchemphys.2019.05.065" "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2019" "volumen" => "233" "paginaInicial" => "155" "paginaFinal" => "162" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0240" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microstructure and mechanical properties of a nucleant-free basaltic glass–ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J.M. Klein" 1 => "K.M.S. da Silva" 2 => "A.P. Titton" 3 => "R.C.D. Cruz" 4 => "C.A. Perottoni" 5 => "J.E. Zorzi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/02670836.2019.1572317" "Revista" => array:5 [ "tituloSerie" => "Mater. Sci. Technol. (United Kingdom)" "fecha" => "2019" "volumen" => "35" "paginaInicial" => "544" "paginaFinal" => "551" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0245" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microstructure and mechanical properties of nucleant-free Li<span class="elsevierStyleInf">2</span>O–CaO–SiO<span class="elsevierStyleInf">2</span> glass–ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.G. Santos" 1 => "F.C. Serbena" 2 => "V.M. Fokin" 3 => "E.D. Zanotto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.actamat.2017.03.010" "Revista" => array:5 [ "tituloSerie" => "Acta Mater." "fecha" => "2017" "volumen" => "130" "paginaInicial" => "347" "paginaFinal" => "360" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0250" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bioactive Glass/Glass Ceramics for Dental Applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.S. Dahiya" 1 => "V.K. Tomer" 2 => "S. Duhan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/b978-0-12-813742-0.00001-8" "Libro" => array:2 [ "fecha" => "2018" "editorial" => "Elsevier Inc." ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0255" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Luminescent properties of Eu-doped calcium aluminosilicate glass–ceramics: a potential tunable luminophore" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Bouchouicha" 1 => "G. Panczer" 2 => "D. de Ligny" 3 => "Y. Guyot" 4 => "R. Ternane" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.optmat.2018.08.006" "Revista" => array:5 [ "tituloSerie" => "Opt. Mater. (Amst.)" "fecha" => "2018" "volumen" => "85" "paginaInicial" => "41" "paginaFinal" => "47" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0260" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhanced luminescence in rare-earth-free fast-sintering glass–ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "V. Fuertes" 1 => "J.F. Fernández" 2 => "E. Enríquez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1364/optica.6.000668" "Revista" => array:4 [ "tituloSerie" => "Optica" "fecha" => "2019" "volumen" => "6" "paginaInicial" => "668" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0265" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High-temperature resistant glass–ceramics based on Sr-anorthite and tialite phases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "L.A. Orlova" 1 => "N.V. Popovich" 2 => "N.E. Uvarova" 3 => "A. Paleari" 4 => "P.D. Sarkisov" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2012.05.049" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2012" "volumen" => "38" "paginaInicial" => "6629" "paginaFinal" => "6634" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0270" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhanced wear resistance of engineered glass–ceramic by nanostructured self-lubrication" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "V. Fuertes" 1 => "M.J. Cabrera" 2 => "J. Seores" 3 => "D. Muñoz" 4 => "J.F. Fernández" 5 => "E. Enríquez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/J.MATDES. 2019.107623" "Revista" => array:4 [ "tituloSerie" => "Mater. Des." "fecha" => "2019" "volumen" => "168" "paginaInicial" => "107623" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0275" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sintering behavior and dielectric properties of ultra-low temperature glass/ceramic composites" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Chen" 1 => "L.K. Liu" 2 => "W. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.materresbull.2019.02.030" "Revista" => array:5 [ "tituloSerie" => "Mater. Res. Bull." "fecha" => "2019" "volumen" => "114" "paginaInicial" => "107" "paginaFinal" => "111" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0280" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hierarchical micro-nanostructured albite-based glass–ceramic for high dielectric strength insulators" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "V. Fuertes" 1 => "M.J. Cabrera" 2 => "J. Seores" 3 => "D. Muñoz" 4 => "J.F. Fernández" 5 => "E. Enríquez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jeurceramsoc.2018.02.009" "Revista" => array:5 [ "tituloSerie" => "J. Eur. Ceram. Soc." "fecha" => "2018" "volumen" => "38" "paginaInicial" => "2759" "paginaFinal" => "2766" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0285" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ZnO enriched transparent glass–ceramics for wastewater decontamination" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F.H. Margha" 1 => "M.I. Badawy" 2 => "T.A. Gad-Allah" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ep.12482" "Revista" => array:5 [ "tituloSerie" => "Environ. Prog. Sustain. Energy" "fecha" => "2017" "volumen" => "36" "paginaInicial" => "442" "paginaFinal" => "447" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0290" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characteristics and properties of glass–ceramics using lead fuming slag" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "D. Pan" 1 => "L. Li" 2 => "Y. Wu" 3 => "T. Liu" 4 => "H. Yu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jclepro.2017.12.030" "Revista" => array:5 [ "tituloSerie" => "J. Clean. Prod." "fecha" => "2018" "volumen" => "175" "paginaInicial" => "251" "paginaFinal" => "256" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0295" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation of glass–ceramic foams using extracted titanium tailing and glass waste as raw materials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "C. Xi" 1 => "F. Zheng" 2 => "J. Xu" 3 => "W. Yang" 4 => "Y. Peng" 5 => "Y. Li" 6 => "P. Li" 7 => "Q. Zhen" 8 => "S. Bashir" 9 => "J.L. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conbuildmat.2018.09.170" "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2018" "volumen" => "190" "paginaInicial" => "896" "paginaFinal" => "909" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0300" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Zhu" 1 => "R. Ji" 2 => "Z. Li" 3 => "H. Wang" 4 => "L. Liu" 5 => "Z. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conbuildmat.2016.02.183" "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2016" "volumen" => "112" "paginaInicial" => "398" "paginaFinal" => "405" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0305" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Functional glasses and glass–ceramics from solid waste materials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Karmakar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/b978-0-12-805056-9.00009-x" "Revista" => array:4 [ "tituloSerie" => "Funct. Glas. Glas." "fecha" => "2017" "paginaInicial" => "295" "paginaFinal" => "315" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0310" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Energy efficient production of glass–ceramics using photovoltaic (P/V) glass and lignite fly ash" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "V. Savvilotidou" 1 => "A. Kritikaki" 2 => "A. Stratakis" 3 => "K. Komnitsas" 4 => "E. Gidarakos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wasman.2019.04.022" "Revista" => array:5 [ "tituloSerie" => "Waste Manag." "fecha" => "2019" "volumen" => "90" "paginaInicial" => "46" "paginaFinal" => "58" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0315" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Wang" 1 => "Z. Chen" 2 => "R. Ji" 3 => "L. Liu" 4 => "X. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2018.04.207" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2018" "volumen" => "44" "paginaInicial" => "13681" "paginaFinal" => "13688" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0320" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of ZnO content on the physical, mechanical and chemical properties of glass–ceramics in the CaO–SiO<span class="elsevierStyleInf">2</span>–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Montoya-Quesada" 1 => "M.A. Villaquirán-Caicedo" 2 => "R. Mejía de Gutiérrez" 3 => "J. Muñoz-Saldaña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2019.10.154" "Revista" => array:2 [ "tituloSerie" => "Ceram. Int." "fecha" => "2019" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0325" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of alumina source on the densification, phase evolution, and strengthening of sintered mullite-based ceramics from milled coal fly ash" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Lu" 1 => "Z. Zhang" 2 => "Y. Li" 3 => "Z. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conbuildmat.2019.116851" "Revista" => array:4 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2019" "volumen" => "229" "paginaInicial" => "116851" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0330" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rustic ceramic covering tiles obtained by recycling of marble residues and MSW fly ash" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Jordán" 1 => "M.A. Montero" 2 => "B. Rincón-Mora" 3 => "J. Rincón" 4 => "T. Sanfeliu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Fresen. Environ. Bull." "fecha" => "2014" "volumen" => "24" "paginaInicial" => "533" "paginaFinal" => "538" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0335" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Technological properties of glass–ceramic tiles obtained using rice husk ash as silica precursor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "F. Andreola" 1 => "M.I. Martín" 2 => "A.M. Ferrari" 3 => "I. Lancellotti" 4 => "F. Bondioli" 5 => "J.M. Rincón" 6 => "M. Romero" 7 => "L. Barbieri" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2012.12.050" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2013" "volumen" => "39" "paginaInicial" => "5427" "paginaFinal" => "5435" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0340" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optical and thermal properties of glasses and glass–ceramics derived from agricultural wastes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Sharma" 1 => "S.K. Arya" 2 => "K. Singh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2017.10.027" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2018" "volumen" => "44" "paginaInicial" => "947" "paginaFinal" => "952" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0345" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rice husk derived bioactive glass–ceramic as a functional bioceramic: synthesis, characterization and biological testing, J" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "F. Naghizadeh" 1 => "M.R. Abdul Kadir" 2 => "A. Doostmohammadi" 3 => "F. Roozbahani" 4 => "N. Iqbal" 5 => "M.M. Taheri" 6 => "S.V. Naveen" 7 => "T. Kamarul" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jnoncrysol.2015.07.017" "Revista" => array:5 [ "tituloSerie" => "Non Cryst. Solids" "fecha" => "2015" "volumen" => "427" "paginaInicial" => "54" "paginaFinal" => "61" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0350" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Corrosion of the crystalline phases of matte glazes in aqueous solutions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Froberg" 1 => "L. Hupa" 2 => "M. Hupa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jeurceramsoc.2008.04.037" "Revista" => array:5 [ "tituloSerie" => "Eur. Ceram. Soc." "fecha" => "2009" "volumen" => "29" "paginaInicial" => "7" "paginaFinal" => "14" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0355" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation and properties of CaO–MgO–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> glass–ceramics from kaolin clay refining waste (Kira) and dolomite" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Toya" 1 => "Y. Tamura" 2 => "Y. Kameshima" 3 => "K. Okada" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/J.CERAMINT.2003.11.005" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2004" "volumen" => "30" "paginaInicial" => "983" "paginaFinal" => "989" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0360" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utilization of coal fly ash in the glass–ceramic production" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Zhang" 1 => "W. Dong" 2 => "J. Li" 3 => "L. Qiao" 4 => "J. Zheng" 5 => "J. Sheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2007.07.044" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2007" "volumen" => "149" "paginaInicial" => "523" "paginaFinal" => "526" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17764838" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0365" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Using quartzofeldspathic waste to obtain foamed glass material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "I. Vereshchagin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.reffit.2016.05.001" "Revista" => array:5 [ "tituloSerie" => "Resour. Technol." "fecha" => "2016" "volumen" => "2" "paginaInicial" => "23" "paginaFinal" => "29" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0370" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nano-mechanical behaviour of lithium metasilicate glass–ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.R. Alao" 1 => "L. Yin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jmbbm.2015.05.002" "Revista" => array:6 [ "tituloSerie" => "J. Mech. Behav. Biomed. Mater." "fecha" => "2015" "volumen" => "49" "paginaInicial" => "162" "paginaFinal" => "174" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26022201" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0375" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stress analysis of CaO–Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>–SiO<span class="elsevierStyleInf">2</span> system glass–ceramic with different thickness" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Cheng" 1 => "J. Xie" 2 => "F. He" 3 => "S. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/BF02841303" "Revista" => array:5 [ "tituloSerie" => "J. Wuhan Univ. Technol. Mater. Sci. Ed." "fecha" => "2005" "volumen" => "20" "paginaInicial" => "126" "paginaFinal" => "127" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0380" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.R. Anstis" 1 => "P. Chantikul" 2 => "B.R. Lawn" 3 => "D.B. Marshall" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "1981" "volumen" => "64" "paginaInicial" => "533" "paginaFinal" => "538" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0385" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Crystallization toughening of a model glass–ceramic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F.C. Serbena" 1 => "I. Mathias" 2 => "C.E. Foerster" 3 => "E.D. Zanotto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.actamat.2014.12.007" "Revista" => array:5 [ "tituloSerie" => "Acta Mater." "fecha" => "2015" "volumen" => "86" "paginaInicial" => "216" "paginaFinal" => "228" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0390" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New sintered wollastonite glass–ceramic for biomedical applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "V.O. Soares" 1 => "J.K.M.B. Daguano" 2 => "C.B. Lombello" 3 => "O.S. Bianchin" 4 => "L.M.G. Gonçalves" 5 => "E.D. Zanotto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2018.07.275" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2018" "volumen" => "44" "paginaInicial" => "20019" "paginaFinal" => "20027" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0395" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of CaO/SiO<span class="elsevierStyleInf">2</span> ratio on the preparation and crystallization of glass–ceramics from copper slag" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z. Yang" 1 => "Q. Lin" 2 => "S. Lu" 3 => "Y. He" 4 => "G. Liao" 5 => "Y. Ke" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2013.12.071" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2014" "volumen" => "40" "paginaInicial" => "7297" "paginaFinal" => "7305" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0400" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Crystallization of anorthite-seeded albite glass by solid-state epitaxy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Chunling" 1 => "K. Sridhar" 2 => "R. Rustum" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1151-2916.1992.tb05486.x" "Revista" => array:5 [ "tituloSerie" => "Am. Ceram. Soc." "fecha" => "1992" "volumen" => "75" "paginaInicial" => "2665" "paginaFinal" => "2670" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0405" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of (CaO<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>MgO)/SiO<span class="elsevierStyleInf">2</span> ratio on crystallisation and properties of slag glass–ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Z.B. Liu" 1 => "Y.B. Zong" 2 => "H.Y. Ma" 3 => "W.B. Dai" 4 => "S.H. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1179/1743676114Y. 0000000187" "Revista" => array:5 [ "tituloSerie" => "Adv. Appl. Ceram." "fecha" => "2014" "volumen" => "113" "paginaInicial" => "411" "paginaFinal" => "418" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0410" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NEOPARIÉS Glass–Ceramic Building Materials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Nippon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2019" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0415" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chemical durability of anorthite-based low temperature co-fired ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W.B. Lim" 1 => "D.W. Shin" 2 => "B.C. Mohanty" 3 => "Y.J. Park" 4 => "Y.S. Cho" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2109/jcersj2.117.1138" "Revista" => array:5 [ "tituloSerie" => "J. Ceram. Soc. Jpn." "fecha" => "2009" "volumen" => "117" "paginaInicial" => "1138" "paginaFinal" => "1140" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0420" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Z. Strand" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "1986" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0425" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Durability of mat glazes in hydrochloric acid solution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T. Kronberg" 1 => "L. Hupa" 2 => "K. Fröberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4028/www.scientific.net/KEM.264-268.1565" "Revista" => array:5 [ "tituloSerie" => "Key Eng. Mater." "fecha" => "2004" "volumen" => "264–268" "paginaInicial" => "1565" "paginaFinal" => "1568" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0430" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chemical resistance and cleanability of glazed surfaces" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "L. Hupa" 1 => "R. Bergman" 2 => "L. Fröberg" 3 => "S. Vane-Tempest" 4 => "M. Hupa" 5 => "T. Kronberg" 6 => "E. Pesonen-Leinonen" 7 => "A.-M. Sjöberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/J.SUSC.2004.11.048" "Revista" => array:5 [ "tituloSerie" => "Surf. Sci." "fecha" => "2005" "volumen" => "584" "paginaInicial" => "113" "paginaFinal" => "118" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack535383" "titulo" => "Acknowledgments" "texto" => "<p id="par0150" class="elsevierStylePara elsevierViewall">The authors thank <span class="elsevierStyleGrantSponsor" id="gs1">Universidad del Valle</span> for financing this investigation through the Vicerectoria de Investigaciones. In addition, the authors thank Dr. Juan Muñoz (CINVESTAV Querétaro-México) for supporting the nanoindentation tests.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000006000000003/v2_202106110717/S0366317520300248/v2_202106110717/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/0000006000000003/v2_202106110717/S0366317520300248/v2_202106110717/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300248?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 22 | 0 | 22 |
2024 October | 125 | 9 | 134 |
2024 September | 142 | 7 | 149 |
2024 August | 137 | 20 | 157 |
2024 July | 112 | 8 | 120 |
2024 June | 131 | 24 | 155 |
2024 May | 166 | 27 | 193 |
2024 April | 169 | 20 | 189 |
2024 March | 160 | 27 | 187 |
2024 February | 186 | 45 | 231 |
2024 January | 352 | 20 | 372 |
2023 December | 234 | 29 | 263 |
2023 November | 254 | 32 | 286 |
2023 October | 286 | 48 | 334 |
2023 September | 229 | 36 | 265 |
2023 August | 196 | 17 | 213 |
2023 July | 181 | 33 | 214 |
2023 June | 180 | 36 | 216 |
2023 May | 282 | 44 | 326 |
2023 April | 215 | 40 | 255 |
2023 March | 226 | 43 | 269 |
2023 February | 201 | 25 | 226 |
2023 January | 139 | 36 | 175 |
2022 December | 126 | 52 | 178 |
2022 November | 132 | 45 | 177 |
2022 October | 125 | 46 | 171 |
2022 September | 160 | 41 | 201 |
2022 August | 159 | 45 | 204 |
2022 July | 87 | 49 | 136 |
2022 June | 143 | 47 | 190 |
2022 May | 133 | 33 | 166 |
2022 April | 201 | 21 | 222 |
2022 March | 314 | 55 | 369 |
2022 February | 262 | 36 | 298 |
2022 January | 256 | 62 | 318 |
2021 December | 172 | 46 | 218 |
2021 November | 257 | 59 | 316 |
2021 October | 201 | 63 | 264 |
2021 September | 148 | 57 | 205 |
2021 August | 224 | 41 | 265 |
2021 July | 128 | 36 | 164 |
2021 June | 152 | 48 | 200 |
2021 May | 81 | 29 | 110 |
2021 April | 387 | 34 | 421 |
2021 March | 88 | 27 | 115 |
2021 February | 52 | 31 | 83 |
2021 January | 62 | 16 | 78 |
2020 December | 50 | 28 | 78 |
2020 November | 50 | 34 | 84 |
2020 October | 29 | 28 | 57 |
2020 September | 33 | 27 | 60 |
2020 August | 30 | 22 | 52 |
2020 July | 18 | 14 | 32 |
2020 June | 17 | 8 | 25 |
2020 May | 23 | 15 | 38 |
2020 April | 13 | 13 | 26 |