was read the article
array:23 [ "pii" => "S0366317520300649" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.05.005" "estado" => "S300" "fechaPublicacion" => "2021-09-01" "aid" => "230" "copyright" => "SECV" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:328-36" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemAnterior" => array:19 [ "pii" => "S0366317520300492" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.04.002" "estado" => "S300" "fechaPublicacion" => "2021-09-01" "aid" => "223" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:318-27" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Synthesis and study of europium doped BaI<span class="elsevierStyleInf">2</span> in glass ceramic form" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "318" "paginaFinal" => "327" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Síntesis y estudio de BaI<span class="elsevierStyleInf">2</span> dopado con europio en forma de vitrocerámica" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0050" "etiqueta" => "Fig. 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 1204 "Ancho" => 1508 "Tamanyo" => 168395 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">EPR spectra measured in glass ceramics samples 3, 4 and 5<span class="elsevierStyleHsp" style=""></span>at <span class="elsevierStyleItalic">T</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>100<span class="elsevierStyleHsp" style=""></span>K. A vertical dashed line stresses the 1250G Eu<span class="elsevierStyleSup">2+</span> glass spectrum transition.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Tatsiana Salamakha, Maksim Buryi, Ekaterina Trusova, Yauhen Tratsiak" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Tatsiana" "apellidos" => "Salamakha" ] 1 => array:2 [ "nombre" => "Maksim" "apellidos" => "Buryi" ] 2 => array:2 [ "nombre" => "Ekaterina" "apellidos" => "Trusova" ] 3 => array:2 [ "nombre" => "Yauhen" "apellidos" => "Tratsiak" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300492?idApp=UINPBA00004N" "url" => "/03663175/0000006000000005/v1_202110020728/S0366317520300492/v1_202110020728/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "328" "paginaFinal" => "336" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Na Li, Kai Yuan, Ya Song, Jinhui Cao, LijianXu, Jianxiong Xu" "autores" => array:6 [ 0 => array:3 [ "nombre" => "Na" "apellidos" => "Li" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 1 => array:3 [ "nombre" => "Kai" "apellidos" => "Yuan" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Ya" "apellidos" => "Song" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Jinhui" "apellidos" => "Cao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:2 [ "apellidos" => "LijianXu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 5 => array:4 [ "nombre" => "Jianxiong" "apellidos" => "Xu" "email" => array:1 [ 0 => "xujianxiong8411@163.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, PR China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "National & Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology, Hunan University of Technology, Zhuzhou 412007, PR China" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Aleaciones de óxido de circonio-2 electrolítico de plasma en soluciones de hidróxido de potasio/silicato de sodio: efectos de las concentraciones de silicato" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1073 "Ancho" => 1258 "Tamanyo" => 158654 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">The potentiodynamic curves of coatings formed for 30<span class="elsevierStyleHsp" style=""></span>min in different concentration of silicate electrolyte.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Surface treatment is a well-adopted method for preparation of advanced functional materials <a class="elsevierStyleCrossRefs" href="#bib0295">[1–8]</a>. Recently, plasma electrolytic oxidation (PEO) as an effective surface treatment process has attracted much attention by scientists working in the fields of surface engineering and corrosion protection <a class="elsevierStyleCrossRefs" href="#bib0335">[9–12]</a>. This technique evolved from conventional anodizing, but demands much higher working voltages to generate plasma discharge on the surface of treated work pieces. Under the high temperature of the plasma discharge, the functional ceramic coatings will be sintered and formed on the surface of the so-called valve metals (Mg, Al, Ti, Zr, etc.) or their alloys <a class="elsevierStyleCrossRefs" href="#bib0355">[13–18]</a>. The technique is largely electrochemical in nature, however, plasma-enhanced physico-chemical processes are also known to participate concurrently in the coating formation process.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Zirconium alloys are commonly used as structural materials for water-cooled nuclear power reactors, where they are subjected to severe environmental conditions. Corrosion and wear are the main factors leading to the degradation of such materials <a class="elsevierStyleCrossRefs" href="#bib0385">[19–24]</a>. Recently, many studies have shown that PEO treatments can be a feasible way to improve the corrosion resistance and wear resistance of these alloys <a class="elsevierStyleCrossRefs" href="#bib0415">[25–27]</a>. More importantly, due to their excellent biocompatibility, high mechanical strength and fracture toughness, reasonably good corrosion resistance, low thermal conductivity, together with low elastic modulus (92<span class="elsevierStyleHsp" style=""></span>GPa) and low magnetic susceptibility <a class="elsevierStyleCrossRefs" href="#bib0430">[28–31]</a>, zirconium alloys are also seen as potential biomaterials. However, appropriate surface treatment is also required in such cases since the native oxide (ZrO<span class="elsevierStyleInf">2</span>) film on the alloys is bio-inert <a class="elsevierStyleCrossRefs" href="#bib0430">[28,32]</a> and the formation of chemical bonds with bone tissue is difficult during implantation, which could be a drawback because an early integration between biomaterial and bone is advantageous for most implant applications <a class="elsevierStyleCrossRef" href="#bib0455">[33]</a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Silicate-based electrolytes are widely used in the PEO of valve metals <a class="elsevierStyleCrossRefs" href="#bib0345">[11,12,14,34]</a>, and they also have been used for the treatment of zirconium and its alloys recently <a class="elsevierStyleCrossRefs" href="#bib0415">[25–27]</a>. The use of silicate electrolytes can incorporate a large amount of Si species into the obtained coatings, which is an efficient way to enhance the biocompatibility of the underlying metals. Silicon (Si) is known to be an essential element for the normal growth and development of bone and connective tissues <a class="elsevierStyleCrossRefs" href="#bib0465">[35–37]</a>. In recent years, an increasing number of evidence has supported the hypothesis that the presence of Si can contribute to the enhanced bioactivity of some bioactive glasses or ceramics, and significantly increase the up-regulation of osteoblast proliferation and gene expression <a class="elsevierStyleCrossRef" href="#bib0480">[38]</a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">PEO coatings on zirconium alloys are mainly consisted of zirconium oxide, which, as a promising engineering material, is known for its good chemical and thermal stability, wear resistance and mechanical strength <a class="elsevierStyleCrossRef" href="#bib0485">[39]</a>. The performances of the coatings are strongly correlated with the phase composition of present zirconia, which could be significantly determined by the processing conditions of PEO such as the electrolyte composition, electrical regime and so on. Among the various electrolytes that are suitable for PEO, silicate-, aluminate- and phosphate-based ones had been widely used. Cheng et al. <a class="elsevierStyleCrossRefs" href="#bib0490">[40,41]</a> studied the phase compositions and microstructures of PEO coatings formed on zirconium alloys in an silicate-based electrolyte, and found that the wear resistance of the coatings was significantly improved because the silicon species that were incorporated into the coating had caused the stabilization of tetragonal zirconia (<span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span>). Although a few researches about investigating the effect of electrolyte composition on PEO process have been reported, a high concentration of electrolyte, especially for Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>, is still rarely applied for PEO studies. In addition, studies on the content of Si in PEO coatings also play an important role in the preparation of biocompatible coatings. Finally, it was also reported that the use of a high concentration of aluminate electrolyte can benefited the wear resistance of the resultant PEO coatings significantly <a class="elsevierStyleCrossRefs" href="#bib0500">[42–44,40]</a>. In this paper, the PEO behaviors of Zircaloy-2 in potassium hydroxide/sodium silicate electrolytes were investigated. The effects of silicate content in electrolytes on the wear and corrosion properties of the resultant coatings were compared for the first time, and our research may provide guidance for obtaining high performance of ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Experimental</span><p id="par0025" class="elsevierStylePara elsevierViewall">Zircaloy-2 alloy was cut into the shape of rolled plate, and then mounted in resin to prepare specimens with a working area of 20<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>mm. The experimental setup was same as the one described in our previous paper <a class="elsevierStyleCrossRef" href="#bib0440">[30]</a>. The compositions of the electrolytes were 1<span class="elsevierStyleHsp" style=""></span>g/L KOH<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">c</span> g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O (<span class="elsevierStyleItalic">c</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>16, 32, 48 or 56). The electrical regime was a pulsed bipolar waveform, using a duty cycle of 20% at 1000<span class="elsevierStyleHsp" style=""></span>Hz <a class="elsevierStyleCrossRef" href="#bib0440">[30]</a>, with the positive and negative current densities kept at 150 and 100<span class="elsevierStyleHsp" style=""></span>mA/cm<span class="elsevierStyleSup">2</span> (rms), respectively.</p><p id="par0030" class="elsevierStylePara elsevierViewall">The thicknesses of the coatings were determined by an eddy current thickness gauge (TT260, Time Group, Beijing). The surfaces and cross-sections of the PEO coatings were characterized by scanning electron microscopy (SEM, QUANTA 2000, FEI, USA, or a JEOL JSM6700F Instrument), and the elemental composition was analyzed by energy-dispersive X-ray spectroscopy (EDS). Phase compositions of the coatings were examined by using a Rigaku D/MAX 2500 X-ray diffractometer (Cu-Kα radiation).</p><p id="par0035" class="elsevierStylePara elsevierViewall">The tribological performance of the PEO coatings was evaluated using a CETR UMT-3 tribometer. The test method utilized a Cr steel ball (diameter 9.5<span class="elsevierStyleHsp" style=""></span>mm, hardness 62 HRC) that slides against a flat PEO-treated specimen in a linear, reciprocating motion. A load of 20<span class="elsevierStyleHsp" style=""></span>N or 30<span class="elsevierStyleHsp" style=""></span>N was applied, with a stroke length of 7.5<span class="elsevierStyleHsp" style=""></span>mm and frequency of oscillation of 5<span class="elsevierStyleHsp" style=""></span>Hz.</p><p id="par0040" class="elsevierStylePara elsevierViewall">Electrochemical behaviors of the samples were evaluated by potentiodynamic polarization curve measurements using a CHI660C electrochemical workstation in 3.5<span class="elsevierStyleHsp" style=""></span>wt% NaCl solution. The electrochemical tests were carried out at room temperature in a conventional three-electrode cell with a test area of 20<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>mm, in which the samples were used as the working electrode, a platinum electrode as the counter electrode and a saturated calomel electrode as the reference electrode. Before the electrochemical analysis, the samples were kept in the solution for 1<span class="elsevierStyleHsp" style=""></span>h to stabilize the open circuit potential (OCP). The voltage applied in the potentiodynamic polarization test was varied in the range of −1.2<span class="elsevierStyleHsp" style=""></span>V to 3<span class="elsevierStyleHsp" style=""></span>V at a scanning rate of 1<span class="elsevierStyleHsp" style=""></span>mV/s.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Results and discussion</span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Cell potential responses and kinetics of coating growth</span><p id="par0045" class="elsevierStylePara elsevierViewall">The cell potential-time curves during the PEO treatment in the electrolytes with different silicate concentrations are presented in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(a). As is shown in the picture, all positive potentials showed a similar rapidly rising trend before reaching up to breakdown potential, after which the increase rates were slowing down. The inflection point in voltage-time response is usually called breakdown point, at which the potential is defined as breakdown potential because plasma sparks could be observed obviously at this stage. It can also be seen that the breakdown potential increased from 310, 357, 379–418<span class="elsevierStyleHsp" style=""></span>V with the increase of electrolyte concentration (16, 32, 48 and 56<span class="elsevierStyleHsp" style=""></span>g/L), respectively. This is due to the fact that the breaking down potential is closely related to the specific resistance of electrolyte; specifically, an electrolyte with higher concentration usually has lower specific resistance, resulting in a lower breakdown potential. Depicted in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(b, c) are the current and potential waveforms of PEO in electrolyte of 16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH. As shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(b), the current waveforms at different stages of PEO remained almost constant, which means the output of the power source is quite stable. Also, the potential of PEO increased gradually because the film thickness, and thus impedance, increased with time, as shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(c). In addition, the relationship between coating thickness and time is shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(d). It is obvious that the coating thickness increased almost linearly along with PEO processing time. After PEO treated for 30<span class="elsevierStyleHsp" style=""></span>min, the coating thickness reached 70.2<span class="elsevierStyleHsp" style=""></span>μm, 78.8<span class="elsevierStyleHsp" style=""></span>μm, 88.3<span class="elsevierStyleHsp" style=""></span>μm and 289.6<span class="elsevierStyleHsp" style=""></span>μm, and the average increasing rate is 2.3<span class="elsevierStyleHsp" style=""></span>μm/min, 2.6<span class="elsevierStyleHsp" style=""></span>μm/min, 2.9<span class="elsevierStyleHsp" style=""></span>μm/min and 9.7<span class="elsevierStyleHsp" style=""></span>μm/min under different Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O concentration of 16, 32, 48 and 56<span class="elsevierStyleHsp" style=""></span>g/L respectively. One possible reason for this phenomenon may be that more substance would participate in the coating formation process at a higher concentration of electrolyte, resulting in a higher coating growth rate. After treated for 30<span class="elsevierStyleHsp" style=""></span>min, the number of sparks shrank while they became more intense and tended to stay at a fixed point longer, giving rise to a higher standard deviation and a rougher surface.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Phase composition of the coatings</span><p id="par0050" class="elsevierStylePara elsevierViewall">ZrO<span class="elsevierStyleInf">2</span> is the main composition of coating formed on Zircaloy-2 alloy by PEO treatment. There are three types of ZrO<span class="elsevierStyleInf">2</span> at different temperature, i.e., monoclinic (<span class="elsevierStyleItalic">m</span>-ZrO<span class="elsevierStyleInf">2</span>), tetragonal (<span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span>), and cubic phase (<span class="elsevierStyleItalic">c</span>-ZrO<span class="elsevierStyleInf">2</span>). Among them, m-ZrO<span class="elsevierStyleInf">2</span> is a stable phase at room temperature, and <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> is also stable but usually formed at high temperature <a class="elsevierStyleCrossRef" href="#bib0515">[45]</a>. During PEO process, the substrate and oxide are melted due to the high temperature generated by plasma sparks, and different kinds of ZrO<span class="elsevierStyleInf">2</span> phases are formed at different stage. <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> shows the XRD results of coatings formed in different concentrations of silicate electrolyte after 30<span class="elsevierStyleHsp" style=""></span>minutes’ PEO treatment. As presented in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>, the amount of <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> in the coatings increased with increase of silicate concentration in the electrolyte, while the amount of <span class="elsevierStyleItalic">m</span>-ZrO<span class="elsevierStyleInf">2</span> decreased. This could be attributed to the fact that in higher concentration of silicate electrolyte more Si species, which are usually considered to be effective for the stabilization of t-ZrO<span class="elsevierStyleInf">2</span>, had incorporated in the resultant coatings, and thus leading to a larger amount of t-ZrO<span class="elsevierStyleInf">2</span><a class="elsevierStyleCrossRefs" href="#bib0520">[46–50]</a>. With the increase of Si content, more <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> would be formed in the coating, which is indicated by the weak diffraction peak of <span class="elsevierStyleItalic">m</span>-ZrO<span class="elsevierStyleInf">2</span> and the dominant peak of <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> in the coating formed in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte. It should be noted that a weak amorphous peak was also detected. Based on the EDS analysis, the amorphous should mainly be SiO<span class="elsevierStyleInf">2</span>, which is quite usual in PEO coatings formed in Si-containing electrolyte because of the good glass forming ability of the element Si. Further, the amorphous phase in PEO coatings is usually considered to exist in an extremely thin amorphous layer at the interface between coating and substrate and in the wall of the large inner pores inside the PEO coatings because of the quenching effect there <a class="elsevierStyleCrossRefs" href="#bib0545">[51–54,12,55–58]</a>.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Morphologies of the coatings</span><p id="par0055" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> shows the surface and cross-sectional morphologies of coatings formed after PEO treated for 30<span class="elsevierStyleHsp" style=""></span>min in electrolyte with different concentrations of silicate. The SEM images of the coating formed in electrolyte with 16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O were shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(a–c). As shown, the micro pores and pancake structures could be clearly observed. In addition, the stacked layered structure also exists in the coating, as indicated in the inset. This typical structure might be formed under the deposition of silicate which comes from the electrolyte. Notably, a white flower-like structure could be seen in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(b), which displays a solidification structure and is a typical feature of the coatings formed in silicate-containing electrolyte on zirconium alloy; however, such structures are not encountered generally in PEO coatings because their formation requires the existence of relatively long-lived melt pools caused by persistent sparks <a class="elsevierStyleCrossRef" href="#bib0495">[41]</a>. As indicated in the cross-sectional images (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(c)), the coating is consisted of a dense barrier layer which is close to the substrate and a porous outer layer. When increasing the concentration of Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O to 32<span class="elsevierStyleHsp" style=""></span>g/L, the surface and cross-sectional of the coating shows similar morphologies, as shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(d–f). Interestingly, the amount of white typical structures is less than that of coating formed in electrolyte with 16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O. Further increasing the silicate concentration to 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O, the <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(g–i) indicate that the surface morphologies are still similar to the above two cases. Nevertheless, there are less micro pores in the coating, as shown in the cross sectional images (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(i)). Based on the results above, it is reasonable to conclude that with the increase of silicate concentration in the electrolyte, more silicate would take part in the coating formation process and then co-deposit with the ZrO<span class="elsevierStyleInf">2</span>, resulting in the formation of a dense layer which is rich in ZrO<span class="elsevierStyleInf">2</span> and SiO<span class="elsevierStyleInf">2</span>.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0060" class="elsevierStylePara elsevierViewall">In order to verify the conclusion that the deposition of silicate increased with increase of electrolyte concentration, the images of coating formed after 30<span class="elsevierStyleHsp" style=""></span>min treatment in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O electrolyte are showed in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(a, b). <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(a) was obtained under the secondary electron mode and <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(b) was obtained under the backscattered mode. In addition, <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(c, d) are EDS analysis results of coatings formed in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte and 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte, respectively. In <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(a), the surface of as-formed coating is quite rough, containing a number of humps. The rough surface area is deeper in color in the backscattered mode (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(b)), which might be attributed to a higher deposition of silicon oxide. EDS analysis (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(c, d)) indicated that the when increasing the concentration of Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O from 48 to 56<span class="elsevierStyleHsp" style=""></span>g/L, the Si content would increase significantly, which is indicative of the deposition of more silicate. To conclude, the increase of concentration of silicate in the electrolyte could lead to the increasing deposition of silicon oxide in the coating, thus hindering the formation of micro cracks and pores, and finally generating a denser coating.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Dry sliding wear behavior of the coatings formed in silicate electrolyte</span><p id="par0065" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>(a) illustrates the relationship between the friction coefficient and friction time obtained by dry slide friction test of the coating after 30<span class="elsevierStyleHsp" style=""></span>min formed in electrolyte with 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH and 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH (the applied force is 20 or 30<span class="elsevierStyleHsp" style=""></span>N). For the curve corresponded to 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH under 20<span class="elsevierStyleHsp" style=""></span>N, at the beginning of the test, the friction coefficient increased quickly, shifting from 0.56 to 0.68 at first 100<span class="elsevierStyleHsp" style=""></span>s. This might be attributed to the rough surface of the coating, in which the protuberance is easy to be worn down by the steel ball, resulting in a quick change of friction coefficient. During 100–600<span class="elsevierStyleHsp" style=""></span>s, the friction coefficient increased slightly from 0.68 to 0.79 and then kept constant at 0.79, which suggests that the transferring layer has been formed and the wear depth has reached the ultimate value. At this stage, only by increasing the load lead to the formation of a deeper wear scar. As for the curve corresponded to 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH under 30<span class="elsevierStyleHsp" style=""></span>N, the friction coefficient increased quickly from 0.7 to 0.9 at the first 73<span class="elsevierStyleHsp" style=""></span>s, after which it dropped suddenly to 0.5, revealing that the coating has been worn out, then the coefficient stayed between 0.4 and 0.56. By contrast, regarding the coating formed in electrolyte with 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH for 30<span class="elsevierStyleHsp" style=""></span>min, under a load of 30<span class="elsevierStyleHsp" style=""></span>N the friction coefficient initially increased from 0.67 to 0.78 in the first 156<span class="elsevierStyleHsp" style=""></span>s, then it dropped to 0.57, and finally fluctuates between 0.57 and 0.67 till the end of the test. Based on <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(d), the difference of coating thicknesses under 30<span class="elsevierStyleHsp" style=""></span>min treatment is slight, being 70 and 78<span class="elsevierStyleHsp" style=""></span>μm respectively; however, the former only lasted for 73<span class="elsevierStyleHsp" style=""></span>s before worn out, while the later was worn out until 156<span class="elsevierStyleHsp" style=""></span>s later under a load of 30<span class="elsevierStyleHsp" style=""></span>N. From <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>, it is obvious that former coating has a lower amount of <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span>. Thus, the reason why the coating formed in the later (32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH) shows a better wear resistance can be reasonably attributed to its higher content of t-ZrO<span class="elsevierStyleInf">2</span> than the former (32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a> (b) shows the relationship between the friction coefficient and friction time obtained by dry slide friction test for coating formed in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH for 20<span class="elsevierStyleHsp" style=""></span>min and 30<span class="elsevierStyleHsp" style=""></span>min (the applied force is 30<span class="elsevierStyleHsp" style=""></span>N). It can be seen that the friction coefficient of the coating formed for 30<span class="elsevierStyleHsp" style=""></span>min fluctuated between 0.55 and 0.7 till the end of the test, and the coating was not worn out. In contrast, the wear resistance of the coating formed for 20<span class="elsevierStyleHsp" style=""></span>min is weaker than the former with worn out under slide drying 20<span class="elsevierStyleHsp" style=""></span>min.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Electrochemical tests</span><p id="par0075" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows the potentiodynamic curves of coatings formed for 30<span class="elsevierStyleHsp" style=""></span>min in electrolyte of different silicate concentration, the relating polarization data derived from polarization curves is summarized in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. Because of their excellent corrosion resistance, zirconium and its alloys only corrode and dissolve in certain strong acids such as HF. Therefore, the passivation reaction occurs first in the corrosive medium, and the specific reactions are as follows:<elsevierMultimedia ident="eq0005"></elsevierMultimedia><elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall">After the oxide film is formed, zirconium alloy can be effectively protected. Subsequently, pitting corrosion occurs, and the passivation film is gradually destroyed. As shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>(c), the pitting corrosion of the bare alloy begins at 0.16<span class="elsevierStyleHsp" style=""></span>V, while the potential of pitting corrosion for the PEO treated samples increased positively (∼1.09<span class="elsevierStyleHsp" style=""></span>V). All the corrosion current (<span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf">corr</span>) are almost lowered by one order of magnitude compared to the one of the bare alloy. Among all the samples, the PEO coating formed in electrolyte of 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH has the lowest corrosion current (<span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf">corr</span>), which means the best corrosion resistance. The reason may be attributed to the fact that the coating formed in this electrolyte has less micro cracks and a larger thickness which hinders the penetration of corrosive media into the barrier layer. For the coating formed in electrolyte with 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH, since it contains obvious cracks in the coating, corrosive media could easily pass through the outer layer and reach the barrier layer. Also, corrosion processes of coatings formed under other conditions almost have the same process. Based on the above results, it is the coating formed in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH that has the best corrosion resistance.</p></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conclusions</span><p id="par0085" class="elsevierStylePara elsevierViewall">In conclusion, we provided a study of plasma electrolytic oxidation of Zircaloy-2 in potassium hydroxide/sodium silicate electrolytes. The effect of the silicate content on the growth behavior, wear and corrosion resistance of resultant coatings were systematically revealed. It was demonstrated that the coating thickness increases continuously on increasing the silicate content in electrolyte. Besides, increasing the silicate content in electrolyte can promote the formation of <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> in the coatings, and thus resulted in the formed ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings with enhanced wear resistance. Differently, the corrosion resistance of the resultant coatings was not positively correlated with the silicate concentration. The coatings formed in the electrolyte with Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span> concentration at 56<span class="elsevierStyleHsp" style=""></span>g/L exhibited the best corrosion resistance depending on their relatively dense structure and less of cracks. Our results provided guidance for obtaining high performance of ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings, which have great potential biological applications.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Conflicts of interest</span><p id="par0090" class="elsevierStylePara elsevierViewall">The authors declared no competing financial interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres1581735" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1423780" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1581736" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1423781" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Experimental" ] 6 => array:3 [ "identificador" => "sec0015" "titulo" => "Results and discussion" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0020" "titulo" => "Cell potential responses and kinetics of coating growth" ] 1 => array:2 [ "identificador" => "sec0025" "titulo" => "Phase composition of the coatings" ] 2 => array:2 [ "identificador" => "sec0030" "titulo" => "Morphologies of the coatings" ] 3 => array:2 [ "identificador" => "sec0035" "titulo" => "Dry sliding wear behavior of the coatings formed in silicate electrolyte" ] 4 => array:2 [ "identificador" => "sec0040" "titulo" => "Electrochemical tests" ] ] ] 7 => array:2 [ "identificador" => "sec0045" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "sec0050" "titulo" => "Conflicts of interest" ] 9 => array:2 [ "identificador" => "xack558690" "titulo" => "Acknowledgments" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-11-28" "fechaAceptado" => "2020-05-28" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1423780" "palabras" => array:4 [ 0 => "Plasma electrolytic oxidation" 1 => "Zircaloy-2" 2 => "Silicate electrolyte" 3 => "Plasma-assisted deposition" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1423781" "palabras" => array:4 [ 0 => "Óxido de plasma" 1 => "Aleaciones de circonio-2" 2 => "Electrolitos de silicato" 3 => "Deposición asistida por plasma" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">This study mainly investigated the effects of silicate concentration at the range of (16<span class="elsevierStyleHsp" style=""></span>g/L to 56<span class="elsevierStyleHsp" style=""></span>g/L) on the plasma electrolytic oxidation of Zircaloy-2 in potassium hydroxide/sodium silicate electrolytes in detail, including the growth behavior, wear and corrosion resistance of as-obtained ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings. It was found that the coating thickness increased continuously on increasing the silicate concentration in electrolyte. Besides, the amount of <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> in the coatings increased with increase of silicate concentration in electrolyte, while the amount of <span class="elsevierStyleItalic">m</span>-ZrO<span class="elsevierStyleInf">2</span> decreased. Comparative studies have shown that the coatings formed in electrolyte with high silicate concentration possessed superior wear and corrosion performance, which could be ascribed to heavy silica deposition associated with the presence of t-ZrO<span class="elsevierStyleInf">2</span> stabilized by SiO<span class="elsevierStyleInf">2</span>. The results may provide guidance for obtaining high performance of ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings. Besides, it is believed that the presence of Si species in zirconia endows the coatings with enhanced bioactivity like bioactive glasses and ceramics coatings and we envision that the as-prepared ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> alloyed coatings have great potential for biological applications.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Este estudio investigó en detalle los efectos de la concentración de silicato en el rango de (16 a 56<span class="elsevierStyleHsp" style=""></span>g/l), en la oxidación electrolítica por plasma de Zircaloy-2 en electrolitos de hidróxido de potasio/silicato de sodio, incluido el modo de crecimiento y la resistencia al desgaste y a la corrosión de los recubrimientos de aleaciones de ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> obtenidos. Se descubrió que el espesor del recubrimiento aumentaba continuamente al aumentar la concentración de silicato en el electrolito. Además, la cantidad de <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> en los recubrimientos aumentó con el aumento de la concentración de silicato en el electrolito, mientras que el contenido de <span class="elsevierStyleItalic">m</span>-ZrO<span class="elsevierStyleInf">2</span> disminuía. Estudios comparativos han demostrado que los recubrimientos formados en electrolito con alta concentración de silicato poseían mayor resistencia al desgaste y a la corrosión, que podría atribuirse a una fuerte deposición de sílice asociada con la presencia de <span class="elsevierStyleItalic">t</span>-ZrO<span class="elsevierStyleInf">2</span> estabilizado por SiO<span class="elsevierStyleInf">2</span>. Los resultados pueden proporcionar guía para obtener un alto rendimiento de los recubrimientos con aleaciones ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span>. Además, se cree que la presencia de especies de Si en la circona dota a los recubrimientos con una bioactividad mejorada como recubrimientos cerámicos o vítreos bioactivos, y prevemos que los recubrimientos de aleaciones ZrO<span class="elsevierStyleInf">2</span>/SiO<span class="elsevierStyleInf">2</span> preparados tienen un gran potencial para aplicaciones biológicas.</p></span>" ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2049 "Ancho" => 2508 "Tamanyo" => 509098 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">(a) Positive and negative (absolute value) peak cell potential-time responses for the PEO of Zircaloy-2 alloy of different concentrated silicate electrolytes, (b) current and (c) voltage waveforms during PEO of Zircaloy-2 at different times in 16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH, (d) dependence of coating thickness on time of PEO for Zircaloy-2 in the different electrolytes. Error bars represent the standard deviations.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 979 "Ancho" => 1258 "Tamanyo" => 191484 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">XRD pattern for the coatings formed on Zircaloy-2 for 30<span class="elsevierStyleHsp" style=""></span>min in different concentrations of silicate electrolyte (from 8<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH to 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>l<span class="elsevierStyleHsp" style=""></span>g/L KOH).</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1864 "Ancho" => 2175 "Tamanyo" => 553023 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Surface and cross-sectional morphologies of the coatings formed for 1800<span class="elsevierStyleHsp" style=""></span>s in the different concentration of silicate electrolyte: secondary (a, d, g) and backscattered (b–c, e–f, h–i) electron images; (a, b and c) 16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH, (d, e and f) 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH, (g, h and i) 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1659 "Ancho" => 2091 "Tamanyo" => 415812 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Surface (a–b) morphologies of a coating formed for 1800<span class="elsevierStyleHsp" style=""></span>s in the 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte; (c) and (d) are EDS analysis of coatings formed in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte and 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH electrolyte, respectively.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 901 "Ancho" => 2175 "Tamanyo" => 193753 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">(a) Coefficient of friction as a function of sliding time under an applied load of 20<span class="elsevierStyleHsp" style=""></span>N or 30<span class="elsevierStyleHsp" style=""></span>N after the corresponding dry sliding tests for a coating formed for 30<span class="elsevierStyleHsp" style=""></span>min in 32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH and 48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH; (b) Coefficient of friction as a function of sliding time under an applied load of 30<span class="elsevierStyleHsp" style=""></span>N after the corresponding dry sliding tests for a coating formed for 20<span class="elsevierStyleHsp" style=""></span>min or 30<span class="elsevierStyleHsp" style=""></span>min in 56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span>·9H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1073 "Ancho" => 1258 "Tamanyo" => 158654 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">The potentiodynamic curves of coatings formed for 30<span class="elsevierStyleHsp" style=""></span>min in different concentration of silicate electrolyte.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Samples \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf">corr</span>/V \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf">corr</span>/A<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−2</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bare alloy \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.580 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.63<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−7</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH 30<span class="elsevierStyleHsp" style=""></span>min \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.085 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.42<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−8</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">32<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH 30<span class="elsevierStyleHsp" style=""></span>min \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.032 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.23<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−8</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH 30<span class="elsevierStyleHsp" style=""></span>min \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.481 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.99<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−8</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">56<span class="elsevierStyleHsp" style=""></span>g/L Na<span class="elsevierStyleInf">2</span>SiO<span class="elsevierStyleInf">3</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>g/L KOH 30<span class="elsevierStyleHsp" style=""></span>min \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.510 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.05<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−8</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2709444.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Polarization data derived from polarization curves (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 5</a>).</p>" ] ] 7 => array:5 [ "identificador" => "eq0005" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "Quimica" => "Anode: Zr<span class="elsevierStyleInf">(S)</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>O<span class="elsevierStyleInf">2(g)</span><span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>ZrO<span class="elsevierStyleInf">2(s)</span>" ] ] 8 => array:5 [ "identificador" => "eq0010" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "Quimica" => "Cathode: O<span class="elsevierStyleInf">2(g)</span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleMonospace">+</span><span class="elsevierStyleHsp" style=""></span>2H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">(l)</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>4e<span class="elsevierStyleSup">−</span><span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>4OH<span class="elsevierStyleSup">−</span><span class="elsevierStyleInf">(l)</span>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:58 [ 0 => array:3 [ "identificador" => "bib0295" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A review on concrete surface treatment Part I: Types and mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "X.Y. Pan" 1 => "Z.G. Shi" 2 => "C.J. Shi" 3 => "T.C. Ling" 4 => "N. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conbuildmat.2016.12.025" "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2017" "volumen" => "132" "paginaInicial" => "578" "paginaFinal" => "590" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0300" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Improvement in adhesion by biochemical surface treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Sviridenok" 1 => "V. Meshkov" 2 => "E. Pisanova" 3 => "V. Kestelman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/00914039508012112" "Revista" => array:5 [ "tituloSerie" => "Int. J. Polym. Mater." "fecha" => "1995" "volumen" => "29" "paginaInicial" => "193" "paginaFinal" => "195" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0305" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surface modification of polymer substrates for biomedical applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "O. Neděla" 1 => "P. Slepička" 2 => "V. Švorčík" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/ma10101115" "Revista" => array:4 [ "tituloSerie" => "Materials" "fecha" => "2017" "volumen" => "10" "paginaInicial" => "1115" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0310" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Design of novel lanthanide-doped core-shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "S.W. Xie" 1 => "G. Gong" 2 => "Y. Song" 3 => "H.H. Tan" 4 => "C.F. Zhang" 5 => "N. Li" 6 => "Y.X. Zhang" 7 => "L.J. Xu" 8 => "J.X. Xu" 9 => "J. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/C9DT01298B" "Revista" => array:6 [ "tituloSerie" => "Dalton Trans." "fecha" => "2019" "volumen" => "48" "paginaInicial" => "6971" "paginaFinal" => "6983" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31044193" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0315" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A review on surface treatment for concrete-Part 2: Performance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "X.Y. Pan" 1 => "Z.G. Shi" 2 => "C.J. Shi" 3 => "T.C. Ling" 4 => "N. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conbuildmat.2016.11.128" "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2017" "volumen" => "133" "paginaInicial" => "81" "paginaFinal" => "90" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0320" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Upconversion nanoparticles@carbon dots@meso-SiO<span class="elsevierStyleInf">2</span> sandwiched core-shell nanohybrids with tunable dual-mode luminescence for 3D anti-counterfeiting barcodes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "H.H. Tan" 1 => "G. Gong" 2 => "S.W. Xie" 3 => "Y. Song" 4 => "C.F. Zhang" 5 => "N. Li" 6 => "D. Zhang" 7 => "L.J. Xu" 8 => "J.X. Xu" 9 => "J. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/ACS.LANGMUIR.9B01919" "Revista" => array:6 [ "tituloSerie" => "Langmuir" "fecha" => "2019" "volumen" => "35" "paginaInicial" => "11503" "paginaFinal" => "11511" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31365824" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0325" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of atmospheric pressure dielectric barrier discharge plasma treatment on the surface properties of wheat straw" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Y. Li" 1 => "X.H. Yang" 2 => "M.Z. Chen" 3 => "L.J. Tang" 4 => "Y. Chen" 5 => "S.N. Jiang" 6 => "X.Y. Zhou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.15376/BIORES.10.1.1024-1036" "Revista" => array:5 [ "tituloSerie" => "BioResources" "fecha" => "2014" "volumen" => "10" "paginaInicial" => "1024" "paginaFinal" => "1036" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0330" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Design of core/active-shell NaYF<span class="elsevierStyleInf">4</span>: Ln<span class="elsevierStyleSup">3+</span>@NaYF<span class="elsevierStyleInf">4</span>: Yb<span class="elsevierStyleSup">3+</span> nanophosphors with enhanced red-green-blue upconversion luminescence for anti-counterfeiting printing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "G. Gong" 1 => "Y. Song" 2 => "H.H. Tan" 3 => "S.W. Xie" 4 => "C.F. Zhang" 5 => "L.J. Xu" 6 => "J.X. Xu" 7 => "J. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.compositesb.2019.107504" "Revista" => array:4 [ "tituloSerie" => "Compos. Part B-Eng." "fecha" => "2019" "volumen" => "179" "paginaInicial" => "107504" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0335" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Aliasghari" 1 => "P. Skeldon" 2 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.apsusc.2014.08.037" "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2014" "volumen" => "316" "paginaInicial" => "463" "paginaFinal" => "476" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0340" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma electrolytic oxidation of monocrystalline silicon using silicate electrolyte containing boric acid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Bordbar-Khiabani" 1 => "S. Ebrahimi" 2 => "B. Yarmand" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.apsusc.2018.08.155" "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2018" "volumen" => "462" "paginaInicial" => "913" "paginaFinal" => "922" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0345" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of plasma electrolytic oxidation of zirconium alloy in silicate- and aluminate-based electrolytes and wear properties of the resulting coatings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "Y.L. Cheng" 1 => "F. Wu" 2 => "J.L. Dong" 3 => "X.Q. Wu" 4 => "Z.G. Xue" 5 => "M. Matykina" 6 => "P. Skeldon" 7 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2012.08.110" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2012" "volumen" => "85" "paginaInicial" => "25" "paginaFinal" => "32" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0350" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The black and white coatings on Ti–6Al–4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.X. Han" 1 => "Y.L. Cheng" 2 => "W.B. Tu" 3 => "T.Y. Zhan" 4 => "Y.L. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.apsusc.2017.09.109" "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2018" "volumen" => "428" "paginaInicial" => "684" "paginaFinal" => "697" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0355" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of graphene nanosheets on the ceramic coatings formed on Ti<span class="elsevierStyleInf">6</span>Al<span class="elsevierStyleInf">4</span>V alloy drill pipe by plasma electrolytic oxidation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "W.Y. Liu" 1 => "C. Blawert" 2 => "M.L. Zheludkevich" 3 => "Y.H. Lin" 4 => "M. Talha" 5 => "Y.S. Shi" 6 => "L. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jallcom.2019.03.060" "Revista" => array:5 [ "tituloSerie" => "J. Alloy. Compd." "fecha" => "2019" "volumen" => "789" "paginaInicial" => "996" "paginaFinal" => "1007" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0360" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Lugovskoy" 1 => "M. Zinigrad" 2 => "A. Kossenko" 3 => "B. Kazanski" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/9781118356074.ch9" "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2013" "volumen" => "264" "paginaInicial" => "743" "paginaFinal" => "747" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0365" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surface morphology, composition and thermal behavior of tungsten-containing anodic spark coatings on aluminium alloy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "I.V. Lukiyanchuk" 1 => "V.S. Rudnev" 2 => "V.G. Kuryavyi" 3 => "D.L. Boguta" 4 => "S.B. Bulanova" 5 => "P.S. Gordienko" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0040-6090(03)01318-X" "Revista" => array:6 [ "tituloSerie" => "Thin Solid Films" "fecha" => "2004" "volumen" => "446" "numero" => "1" "paginaInicial" => "54" "paginaFinal" => "60" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0370" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "W.b. Tu" 1 => "Y.L. Cheng" 2 => "X.Y. Wan" 3 => "T.Y. Zhan" 4 => "J.X. Han" 5 => "Y.L. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jallcom.2017.07.117" "Revista" => array:5 [ "tituloSerie" => "J. Alloy. Compd." "fecha" => "2017" "volumen" => "725" "paginaInicial" => "199" "paginaFinal" => "216" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0375" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An investigation of microstructure evolution for plasma electrolytic oxidation (PEO) coated Al in an alkaline silicate electrolyte" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:12 [ 0 => "Y.K. Wu" 1 => "Z. Yang" 2 => "R.Q. Wang" 3 => "G.R. Wu" 4 => "D. Chen" 5 => "D.D. Wang" 6 => "X.T. Liu" 7 => "D.L. Li" 8 => "C.H. Guo" 9 => "S.X. Yu" 10 => "D.J. Shen" 11 => "P. Nash" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2018.07.055" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Tech." "fecha" => "2018" "volumen" => "351" "paginaInicial" => "136" "paginaFinal" => "152" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0380" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of plasma electrolytic oxidation coating on low carbon steel prepared from silicate electrolyte with Al nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W.B. Yang" 1 => "W.M. Liu" 2 => "Z.J. Peng" 3 => "B.X. Liu" 4 => "J. Liang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2017.09.084" "Revista" => array:6 [ "tituloSerie" => "Ceram. Int." "fecha" => "2017" "volumen" => "43" "numero" => "18" "paginaInicial" => "16851" "paginaFinal" => "16858" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0385" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "L. Wang" 1 => "X. Xie" 2 => "K.N. Dinh" 3 => "Q.Y. Yan" 4 => "J.M. Ma" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ccr.2019.06.015" "Revista" => array:5 [ "tituloSerie" => "Coord. Chem. Rev." "fecha" => "2019" "volumen" => "397" "paginaInicial" => "138" "paginaFinal" => "167" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0390" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A review on non-precious metal electrocatalysts for PEM fuel cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Z.W. Chen" 1 => "D. Higgins" 2 => "A.P. Yu" 3 => "L. Zhang" 4 => "J.J. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c0ee00558d" "Revista" => array:6 [ "tituloSerie" => "Energy Environ. Sci." "fecha" => "2011" "volumen" => "4" "numero" => "9" "paginaInicial" => "3167" "paginaFinal" => "3192" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0395" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nanoindentation studies of zirconium hydride" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Kuroda" 1 => "D. Setoyama" 2 => "M. Uno" 3 => "S. Yamanka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jallcom.2003.08.094" "Revista" => array:6 [ "tituloSerie" => "J. Alloy. Compd." "fecha" => "2004" "volumen" => "368" "numero" => "1–2" "paginaInicial" => "211" "paginaFinal" => "214" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0400" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Materials development and corrosion problems in nuclear fuel reprocessing plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B. Raj" 1 => "U.K. Mudali" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pnucene.2005.07.001" "Revista" => array:6 [ "tituloSerie" => "Prog. Nucl. Energy" "fecha" => "2006" "volumen" => "48" "numero" => "4" "paginaInicial" => "283" "paginaFinal" => "313" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0405" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Corrosion of Zircaloy-4 and its welds in nitric acid medium" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Ravi Shankar" 1 => "V.R. Raju" 2 => "M. Narayana Rao" 3 => "U.K. Mudali" 4 => "H.S. Khatak" 5 => "B. Raj" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.corsci.2007.03.029" "Revista" => array:6 [ "tituloSerie" => "Corros. Sci." "fecha" => "2007" "volumen" => "49" "numero" => "9" "paginaInicial" => "3527" "paginaFinal" => "3538" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0410" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Yilmazbayhan" 1 => "A.T. Motta" 2 => "R.J. Comstock" 3 => "G.P. Sabol" 4 => "B. Lai" 5 => "Z.H. Cai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jnucmat.2003.08.038" "Revista" => array:6 [ "tituloSerie" => "J. Nucl. Mater." "fecha" => "2004" "volumen" => "324" "numero" => "1" "paginaInicial" => "6" "paginaFinal" => "22" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0415" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Z. Chen" 1 => "D. Higgins" 2 => "Z.W. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.carbon.2010.04.038" "Revista" => array:6 [ "tituloSerie" => "Carbon" "fecha" => "2010" "volumen" => "48" "numero" => "11" "paginaInicial" => "3057" "paginaFinal" => "3065" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0420" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma electrolytic oxidation of a zirconium alloy under AC conditions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "E. Matykina" 1 => "R. Arrabal" 2 => "P. Skeldon" 3 => "G.E. Thompson" 4 => "P. Wang" 5 => "P. Wood" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2009.11.042" "Revista" => array:6 [ "tituloSerie" => "Surf. Coat. Tech." "fecha" => "2010" "volumen" => "204" "numero" => "14" "paginaInicial" => "2142" "paginaFinal" => "2151" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0425" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W.B. Xue" 1 => "Q.Z. Zhu" 2 => "Q. Jin" 3 => "M. Hua" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.matchemphys.2009.12.012" "Revista" => array:6 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2010" "volumen" => "120" "numero" => "2–3" "paginaInicial" => "656" "paginaFinal" => "660" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0430" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "K.B. Liew" 1 => "W.R. Daud" 2 => "M. Ghasemi" 3 => "J.X. Leong" 4 => "S.S. Lim" 5 => "M. Ismail" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijhydene.2014.01.062" "Revista" => array:6 [ "tituloSerie" => "Int. J. Hydrogen Energy" "fecha" => "2014" "volumen" => "39" "numero" => "10" "paginaInicial" => "4870" "paginaFinal" => "4883" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0435" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anodic oxidation of zirconium in silicate solutions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W. Simka" 1 => "M. Sowa" 2 => "R.P. Socha" 3 => "A. Maciej" 4 => "J. Michalska" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2012.10.130" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2013" "volumen" => "104" "paginaInicial" => "518" "paginaFinal" => "525" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0440" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure and bioactivity of micro-arc oxidized zirconia films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y.Y. Yan" 1 => "Y. Han" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2006.07.058" "Revista" => array:6 [ "tituloSerie" => "Surf. Coat. Tech." "fecha" => "2007" "volumen" => "201" "numero" => "9–11" "paginaInicial" => "5692" "paginaFinal" => "5695" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0445" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effect of chemical treatment on apatite-forming ability of the macroporous zirconia films formed by micro-arc oxidation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y.Y. Yan" 1 => "Y. Han" 2 => "C.G. Lu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.apsusc.2008.01.117" "Revista" => array:6 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2008" "volumen" => "254" "numero" => "15" "paginaInicial" => "4833" "paginaFinal" => "4839" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0450" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhanced osteoblastic cell response on zirconia by bio-inspired surface modification" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y.T. Liu" 1 => "T.M. Lee" 2 => "T.S. Lui" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.colsurfb.2013.01.023" "Revista" => array:5 [ "tituloSerie" => "Colloids Surf. B" "fecha" => "2013" "volumen" => "106" "paginaInicial" => "37" "paginaFinal" => "45" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0455" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "S. M, P. T, R.B. N, Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium, Appl. Surf. Sci. 317 (2014) 198–209. <a target="_blank" href="doi:10.1016/j.apsusc.2014.08.081">doi:10.1016/j.apsusc.2014.08.081</a>." ] ] ] 33 => array:3 [ "identificador" => "bib0460" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Sowa" 1 => "A. Kazek-Kęsik" 2 => "R.P. Socha" 3 => "G. Dercz" 4 => "J. Michalska" 5 => "W. Simka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2013.10.047" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2013" "volumen" => "114" "paginaInicial" => "627" "paginaFinal" => "636" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0465" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation and cytocompatibility of Si-incorporated nanostructured TiO<span class="elsevierStyleInf">2</span> coating" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H.J. Hu" 1 => "X.Y. Liu" 2 => "C.X. Ding" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/J.SURFCOAT.2010.03.028" "Revista" => array:6 [ "tituloSerie" => "Surf. Coat. Tech." "fecha" => "2010" "volumen" => "204" "numero" => "20" "paginaInicial" => "3265" "paginaFinal" => "3271" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0470" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noninvasive monitoring of bone regeneration using NaYF<span class="elsevierStyleInf">4</span>:Yb<span class="elsevierStyleSup">3+</span>, Er<span class="elsevierStyleSup">3+</span> upconversion hollow microtubes supporting PLGA-PEG-PLGA hydrogel" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "J.X. Xu" 1 => "Y.H. Feng" 2 => "Y.X. Wu" 3 => "Y.J. Li" 4 => "M. Ouyang" 5 => "X.P. Zhang" 6 => "Y. Wang" 7 => "Y.Y. Wang" 8 => "L.J. Xu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.reactfunctpolym.2019.104333" "Revista" => array:4 [ "tituloSerie" => "React. Funct. Polym." "fecha" => "2019" "volumen" => "143" "paginaInicial" => "104333" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0475" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cage-like hierarchically mesoporous hollow silica microspheres templated by mesomorphous polyelectrolyte-surfactant complexes for noble metal nanoparticles immobilization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "G. Du" 1 => "Y. Song" 2 => "N. Li" 3 => "L.J. Xu" 4 => "C. Tong" 5 => "Y.H. Feng" 6 => "T.H. Chen" 7 => "J.X. Xu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.colsurfa.2019.04.088" "Revista" => array:5 [ "tituloSerie" => "Colloids Surf. A" "fecha" => "2019" "volumen" => "575" "paginaInicial" => "129" "paginaFinal" => "139" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0480" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T.J. Gao" 1 => "H.T. Aro" 2 => "H. Ylänen" 3 => "E. Vuorio" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0142-9612(00)00288-X" "Revista" => array:7 [ "tituloSerie" => "Biomaterials" "fecha" => "2001" "volumen" => "22" "numero" => "12" "paginaInicial" => "1475" "paginaFinal" => "1483" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11374446" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0485" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transformation toughening in zirconia-containing ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.H. Hannink" 1 => "P.M. Kelly" 2 => "B.C. Muddle" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1151-2916.2000.tb01221.x" "Revista" => array:6 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "2000" "volumen" => "83" "numero" => "3" "paginaInicial" => "461" "paginaFinal" => "487" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0490" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wear-resistant coatings formed on Zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Y.L. Cheng" 1 => "J.H. Cao" 2 => "Z.M. Peng" 3 => "Q. Wang" 4 => "E. Matykina" 5 => "P. Skeldon" 6 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2013.11.079" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2014" "volumen" => "116" "paginaInicial" => "453" "paginaFinal" => "466" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0495" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of plasma electrolytic oxidation of zirconium alloy in silicate-and aluminate-based electrolytes and wear properties of the resulting coatings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "Y.L. Cheng" 1 => "F. Wu" 2 => "J.L. Dong" 3 => "X.Q. Wu" 4 => "Z.G. Xue" 5 => "E. Matykina" 6 => "P. Skeldon" 7 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2012.08.110" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2012" "volumen" => "85" "paginaInicial" => "25" "paginaFinal" => "32" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0500" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Sandhyarani" 1 => "T. Prasadrao" 2 => "N. Rameshbabu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.apsusc.2014.08.081" "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2014" "volumen" => "317" "paginaInicial" => "198" "paginaFinal" => "209" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0505" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Chen Y, Nie X, Northwood DO. Plasma Electrolytic Oxidation (PEO) coatings on a zirconium alloy for improved wear and corrosion resistance, WIT Trans Eng Sci, 66 (2010) 183–94. <a target="_blank" href="doi:10.2495/TD100161">doi:10.2495/TD100161</a>." ] ] ] 43 => array:3 [ "identificador" => "bib0510" "etiqueta" => "[44]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High growth rate, wear resistant coatings on an Al–Cu–Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes, Surf" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y.L. Cheng" 1 => "J.H. Cao" 2 => "M.K. Mao" 3 => "Z.M. Peng" 4 => "P. Skeldon" 5 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2014.12.078" "Revista" => array:5 [ "tituloSerie" => "Coat. Tech." "fecha" => "2015" "volumen" => "269" "paginaInicial" => "74" "paginaFinal" => "82" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0515" "etiqueta" => "[45]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma electrolytic oxidation of a zirconium alloy under AC conditions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "E. Matykina" 1 => "R. Arrabal" 2 => "P. Skeldon" 3 => "G.E. Thompson" 4 => "P. Wang" 5 => "P. Wood" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2009.11.042" "Revista" => array:4 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2010" "volumen" => "204" "paginaInicial" => "2142" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0520" "etiqueta" => "[46]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transformation toughening in zirconia-containing ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.H.J. Hannink" 1 => "P.M. Kelly" 2 => "B.C. Muddle" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1151-2916.2000.tb01221.x" "Revista" => array:5 [ "tituloSerie" => "J. Am. Ceram. Soc." "fecha" => "2000" "volumen" => "83" "paginaInicial" => "461" "paginaFinal" => "487" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0525" "etiqueta" => "[47]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Y.L. Cheng" 1 => "F. Wu" 2 => "E. Matykina" 3 => "P. Skeldon" 4 => "G.E. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.corsci.2012.03.017" "Revista" => array:5 [ "tituloSerie" => "Corros. Sci." "fecha" => "2012" "volumen" => "59" "paginaInicial" => "307" "paginaFinal" => "315" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0530" "etiqueta" => "[48]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A study of the crystallization of ZrO<span class="elsevierStyleInf">2</span> in the sol–gel system: ZrO<span class="elsevierStyleInf">2</span>–SiO<span class="elsevierStyleInf">2</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "D.H. Aguilar" 1 => "L.C. Torres-Gonzalez" 2 => "L.M. Torres-Martinez" 3 => "T. Lopez" 4 => "P. Quintana" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/jssc.2001.9126" "Revista" => array:5 [ "tituloSerie" => "J. Solid. State. Chem." "fecha" => "2001" "volumen" => "158" "paginaInicial" => "349" "paginaFinal" => "357" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0535" "etiqueta" => "[49]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "G. Monrós" 1 => "M.C. Martí" 2 => "J. Carda" 3 => "M.A. Tena" 4 => "P. Escribano" 5 => "M. Anglada" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/BF00365192" "Revista" => array:5 [ "tituloSerie" => "J. Mater. Sci." "fecha" => "1993" "volumen" => "28" "paginaInicial" => "5852" "paginaFinal" => "5862" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0540" "etiqueta" => "[50]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Morphological evolution of ZrO<span class="elsevierStyleInf">2</span>–SiO<span class="elsevierStyleInf">2</span> composite gel and stability of tetragonal ZrO<span class="elsevierStyleInf">2</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S.W. Wang" 1 => "J.K. Guo" 2 => "X.X. Huang" 3 => "B.S. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/0167-577X(95)00168-9" "Revista" => array:5 [ "tituloSerie" => "Mater. Lett." "fecha" => "1995" "volumen" => "25" "paginaInicial" => "151" "paginaFinal" => "155" ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0545" "etiqueta" => "[51]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Abrasive wear/corrosion properties and TEM analysis of Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> coatings fabricated using plasma electrolysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "X. Nie" 1 => "E.I. Meletis" 2 => "J.C. Jiang" 3 => "A. Leyland" 4 => "A.L. Yerokhin" 5 => "A. Matthews" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0257-8972(01)01453-0" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2002" "volumen" => "149" "paginaInicial" => "245" "paginaFinal" => "251" ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0550" "etiqueta" => "[52]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Yu" 1 => "J.H. Cao" 2 => "Y.L. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2015.07.014" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2015" "volumen" => "276" "paginaInicial" => "266" "paginaFinal" => "278" ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0555" "etiqueta" => "[53]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "X.P. Lu" 1 => "S.P. Sah" 2 => "N. Scharnagl" 3 => "M. Störmer" 4 => "M. Starykevich" 5 => "M. Mohedano" 6 => "G. Blawert" 7 => "M.L. Zheludkevich" 8 => "K.U. Kainer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2014.11.027" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2015" "volumen" => "269" "paginaInicial" => "155" "paginaFinal" => "169" ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0560" "etiqueta" => "[54]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of electrolyte concentration on the structure and corrosion resistance of anodic films formed on magnesium through plasma electrolytic oxidation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S. Ono" 1 => "S. Moronuki" 2 => "Y. Mori" 3 => "A. Koshi" 4 => "J. Liao" 5 => "H. Asoh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2017.04.110" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2017" "volumen" => "240" "paginaInicial" => "415" "paginaFinal" => "423" ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0565" "etiqueta" => "[55]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: effects of electrolytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Q.B. Li" 1 => "W.B. Yang" 2 => "C.C. Liu" 3 => "D.A. Wang" 4 => "J. Liang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2017.03.021" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2017" "volumen" => "316" "paginaInicial" => "162" "paginaFinal" => "170" ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0570" "etiqueta" => "[56]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effect of process parameters on mullite-based plasma electrolytic oxide coatings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H. Kalkanci" 1 => "S.C. Kurnaz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2008.07.015" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2008" "volumen" => "203" "paginaInicial" => "15" "paginaFinal" => "22" ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0575" "etiqueta" => "[57]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The characterization of oxide based ceramic coating synthesized on Al–Si binary alloys by microarc oxidation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Gulec" 1 => "Y. Gencer" 2 => "M. Tarakci" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2014.12.031" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2015" "volumen" => "269" "paginaInicial" => "100" "paginaFinal" => "107" ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0580" "etiqueta" => "[58]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The formation of metallic W and amorphous phase in the plasma electrolytic oxidation coatings on an Al alloy from tungstate-containing electrolyte" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Z.D. Zhu" 1 => "W.B. Tu" 2 => "Y.L. Cheng" 3 => "Y.L. Cheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.surfcoat.2019.01.024" "Revista" => array:5 [ "tituloSerie" => "Surf. Coat. Technol." "fecha" => "2019" "volumen" => "361" "paginaInicial" => "176" "paginaFinal" => "187" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack558690" "titulo" => "Acknowledgments" "texto" => "<p id="par0095" class="elsevierStylePara elsevierViewall">The financial support by <span class="elsevierStyleGrantSponsor" id="gs1">National Natural Science Foundation of China</span> (<span class="elsevierStyleGrantNumber" refid="gs1">51874129</span>), the <span class="elsevierStyleGrantSponsor" id="gs2">Natural Science Foundation of Hunan Province</span> (<span class="elsevierStyleGrantNumber" refid="gs2">2019JJ60049</span>) and the <span class="elsevierStyleGrantSponsor" id="gs3">Scientific Research Foundation of Hunan Provincial Education Department</span> (<span class="elsevierStyleGrantNumber" refid="gs3">19B153</span> and <span class="elsevierStyleGrantNumber" refid="gs3">19B158</span>) is greatly acknowledged.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000006000000005/v1_202110020728/S0366317520300649/v1_202110020728/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/0000006000000005/v1_202110020728/S0366317520300649/v1_202110020728/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300649?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 9 | 0 | 9 |
2024 October | 55 | 17 | 72 |
2024 September | 45 | 10 | 55 |
2024 August | 54 | 12 | 66 |
2024 July | 45 | 2 | 47 |
2024 June | 51 | 21 | 72 |
2024 May | 53 | 16 | 69 |
2024 April | 85 | 20 | 105 |
2024 March | 104 | 20 | 124 |
2024 February | 69 | 42 | 111 |
2024 January | 80 | 18 | 98 |
2023 December | 75 | 13 | 88 |
2023 November | 76 | 10 | 86 |
2023 October | 85 | 15 | 100 |
2023 September | 74 | 6 | 80 |
2023 August | 72 | 7 | 79 |
2023 July | 48 | 9 | 57 |
2023 June | 66 | 8 | 74 |
2023 May | 109 | 13 | 122 |
2023 April | 105 | 5 | 110 |
2023 March | 70 | 14 | 84 |
2023 February | 58 | 4 | 62 |
2023 January | 53 | 3 | 56 |
2022 December | 26 | 8 | 34 |
2022 November | 32 | 8 | 40 |
2022 October | 31 | 17 | 48 |
2022 September | 22 | 18 | 40 |
2022 August | 32 | 21 | 53 |
2022 July | 19 | 25 | 44 |
2022 June | 27 | 16 | 43 |
2022 May | 25 | 18 | 43 |
2022 April | 34 | 10 | 44 |
2022 March | 44 | 10 | 54 |
2022 February | 42 | 9 | 51 |
2022 January | 53 | 18 | 71 |
2021 December | 51 | 14 | 65 |
2021 November | 48 | 25 | 73 |
2021 October | 35 | 20 | 55 |
2021 September | 0 | 16 | 16 |
2021 August | 0 | 9 | 9 |
2021 July | 0 | 10 | 10 |
2021 June | 0 | 10 | 10 |
2021 May | 0 | 5 | 5 |
2021 April | 0 | 17 | 17 |
2021 March | 0 | 18 | 18 |
2021 February | 0 | 6 | 6 |
2021 January | 0 | 14 | 14 |
2020 December | 0 | 6 | 6 |
2020 November | 0 | 5 | 5 |
2020 October | 0 | 7 | 7 |
2020 September | 0 | 11 | 11 |
2020 August | 0 | 8 | 8 |
2020 July | 0 | 16 | 16 |