was read the article
array:23 [ "pii" => "S0366317520300650" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.06.002" "estado" => "S300" "fechaPublicacion" => "2021-11-01" "aid" => "231" "copyright" => "SECV" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:391-400" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemAnterior" => array:19 [ "pii" => "S0366317520300625" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2020.05.004" "estado" => "S300" "fechaPublicacion" => "2021-11-01" "aid" => "228" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2021;60:380-90" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Investigation of absorber and heterojunction in the pure sulphide kesterite" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "380" "paginaFinal" => "390" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Investigación del absorbente y la heterojunction en el sulfuro puro kesterita" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1713 "Ancho" => 1508 "Tamanyo" => 237319 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">XRD diffractograms of the CZTS thin film, (a) raw sample CTB01, (b) heat treated sample CTB01S.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Charif Tamin, Denis Chaumont, Olivier Heintz, Remi Chassagnon, Aymeric Leray, Nicolas Geoffroy, Maxime Guerineau, Mohamed Adnane" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Charif" "apellidos" => "Tamin" ] 1 => array:2 [ "nombre" => "Denis" "apellidos" => "Chaumont" ] 2 => array:2 [ "nombre" => "Olivier" "apellidos" => "Heintz" ] 3 => array:2 [ "nombre" => "Remi" "apellidos" => "Chassagnon" ] 4 => array:2 [ "nombre" => "Aymeric" "apellidos" => "Leray" ] 5 => array:2 [ "nombre" => "Nicolas" "apellidos" => "Geoffroy" ] 6 => array:2 [ "nombre" => "Maxime" "apellidos" => "Guerineau" ] 7 => array:2 [ "nombre" => "Mohamed" "apellidos" => "Adnane" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300625?idApp=UINPBA00004N" "url" => "/03663175/0000006000000006/v1_202111210546/S0366317520300625/v1_202111210546/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Nanostructured MgO-enhanced catalytic ozonation of petrochemical wastewater" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "391" "paginaFinal" => "400" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Leili Mohamadi, Edris Bazrafshan, Abbas Rahdar, Geórgia Labuto, Ali Reza Kamali" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Leili" "apellidos" => "Mohamadi" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Edris" "apellidos" => "Bazrafshan" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Abbas" "apellidos" => "Rahdar" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Geórgia" "apellidos" => "Labuto" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 4 => array:4 [ "nombre" => "Ali Reza" "apellidos" => "Kamali" "email" => array:1 [ 0 => "ali@smm.neu.edu.cn" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:5 [ 0 => array:3 [ "entidad" => "Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Faculty of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Razavi Khorasan, Iran" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of physics, university of Zabol, Zabol, Iran" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Chemyistry Department, Universidade Federal de São Paulo, São Paulo, Brazil" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Energy and Environmental Materials Research Centre (E<span class="elsevierStyleSup">2</span>MC), School of Metallurgy, Northeastern University, Shenyang 110819, People's Republic of China" "etiqueta" => "e" "identificador" => "aff0025" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Tratamiento catalítico de ozono de aguas residuales petroquímicas impulsado por nanoestructuras MgO" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 740 "Ancho" => 1258 "Tamanyo" => 52381 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">The particle size distribution histogram of MgO nanoparticles.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Hazardous chemicals such as benzene, toluene, ethylbenzene, and xylene, which naturally exist in crude oil and gasoline, can easily be transferred into surface and groundwater due to either the leakage from industrial petrochemical equipment or inappropriate waste disposal <a class="elsevierStyleCrossRefs" href="#bib0445">[1,2]</a>. Considering that the petroleum industry consumes large volumes of water, especially for cooling purposes, a large amount of petrochemical wastewater is produced <a class="elsevierStyleCrossRefs" href="#bib0455">[3,4]</a>. Therefore, the appropriate treatment of polluted water sources produced in such industries is a challenge. Not to mention that the disposal of untreated petrochemical wastewater can cause grave environmental issues <a class="elsevierStyleCrossRef" href="#bib0465">[5]</a>, expanding the presence of contaminants such as phenols and toxic hydrocarbons in the environment <a class="elsevierStyleCrossRef" href="#bib0470">[6]</a>.</p><p id="par0010" class="elsevierStylePara elsevierViewall">In general, wastewater from petroleum refineries contains large quantities of environmentally problematic materials; somewhere around 150-250<span class="elsevierStyleHsp" style=""></span>mg/L BOD (Biological Oxygen Demand), 150-250<span class="elsevierStyleHsp" style=""></span>mg/L COD (Chemical Oxygen Demand) and 20-200<span class="elsevierStyleHsp" style=""></span>mg/L phenols, as well as 100-300<span class="elsevierStyleHsp" style=""></span>mg/L other petroleum products and 5000<span class="elsevierStyleHsp" style=""></span>mg/L salts <a class="elsevierStyleCrossRef" href="#bib0475">[7]</a>, disrupting habitats of human and also wildlife communities <a class="elsevierStyleCrossRefs" href="#bib0480">[8,9]</a>. The disposal of such wastewaters might destroy a considerable number of the biotic elements, leading to the gradual elimination of aquatic plants and animal species. It also simplifies the food chain through reducing the number and diversity of species <a class="elsevierStyleCrossRef" href="#bib0490">[10]</a>. Therefore, organic and inorganic contaminants present in petrochemical wastewaters must be carefully treated and removed, before the wastewater can be discharged into the environment <a class="elsevierStyleCrossRef" href="#bib0495">[11]</a>. A variety of methods have been suggested, and used, for the removal of petroleum contaminants from water resources, including chemical coagulation and sedimentation, filtering, photocatalytic oxidation, and adsorption <a class="elsevierStyleCrossRef" href="#bib0500">[12]</a>. Unfortunately, the appropriate implementation of such technologies is often very expensive, complicated and time-consuming, providing various challenges particularly in developing countries <a class="elsevierStyleCrossRef" href="#bib0505">[13]</a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Advanced oxidation processes (AOPs) are among the most effective methods for the removal of organic contaminants. These methods are based on the production of highly oxidizing free radicals such as hydroxyl radicals, capable of mineralizing various toxic organic compounds <a class="elsevierStyleCrossRef" href="#bib0510">[14]</a>. AOPs are operationally easy, low cost, and efficient while being able to stabilize organic compounds through converting them into water and carbon dioxide <a class="elsevierStyleCrossRefs" href="#bib0515">[15–18]</a> often using ozone <a class="elsevierStyleCrossRef" href="#bib0535">[19]</a>. APOs are suitable for treating contaminants that are resistant to biological decomposition <a class="elsevierStyleCrossRefs" href="#bib0540">[20,21]</a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">Catalytic ozonation processes (COPs) are APOs in which solid catalysts play a role in overall ozonation process, facilitating the decomposition of ozone into free radicals. In fact, the use of catalysts may eliminate the most important limitations of simple ozonation, including the low solubility and stability of ozone in water, and its slow reaction with organic compounds <a class="elsevierStyleCrossRefs" href="#bib0550">[22,23]</a>. The high efficiency, as well as low operation costs influenced by the short duration of COPs <a class="elsevierStyleCrossRefs" href="#bib0560">[24,25]</a> also facilitates the implementation of these technologies, particularly, in developing countries.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Metal oxides, such as magnesium oxide (MgO) nanoparticles, have a high potential to be used in wastewater treatments, due to their possible large surface areas and the low cost of recovery and production. MgO also provides advantages of having antibacterial properties and high adsorption and/or photocatalysis performance for toxic compounds <a class="elsevierStyleCrossRefs" href="#bib0570">[26–28]</a>.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Various studies have been conducted on using MgO in COPs for the removal of toluene <a class="elsevierStyleCrossRef" href="#bib0585">[29]</a>, textile dyes <a class="elsevierStyleCrossRef" href="#bib0590">[30]</a> and humic acid <a class="elsevierStyleCrossRef" href="#bib0595">[31]</a>. Moosavi et al. <a class="elsevierStyleCrossRef" href="#bib0600">[32]</a> studied the effect of MgO-enhanced COP on the removal of Reactive Red198, indicating that the removal efficiency improves with the increase of the pH value, due to the increased rate of ozone decomposition into free radicals at higher pH values. The decomposition of the dye molecules was attributed to an indirect oxidation process brought about by the active radicals. The present research intends to study the feasibility of using MgO nanoparticles in COP for the effective treating of petrochemical wastewater.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Materials and methods</span><p id="par0035" class="elsevierStylePara elsevierViewall">Real wastewater samples were provided by a large petrochemical unit located in southern Iran. All other chemicals used in the research were of high purity and manufactured by the German Company Merck. The wastewater experiments were conducted using a laboratory scale semi-continuous ozonation reactor, shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0040" class="elsevierStylePara elsevierViewall">Before performing water treatment processes, the wastewater sample was tested to determine the values of COD, BOD, TS (Total Solid), and turbidity, as well as the amounts of benzene, toluene, ethylbenzene, and xylene. For this, 1<span class="elsevierStyleHsp" style=""></span>μL of the wastewater was injected into an Agilent's Gas Chromatography (GC) with the GC column HP-5 30m, and 0.50<span class="elsevierStyleHsp" style=""></span>μm film thickness using a flame-ionization detector. The incubator temperature was maintained at 40<span class="elsevierStyleHsp" style=""></span>°C for 10<span class="elsevierStyleHsp" style=""></span>min before the injection. The extraction was performed at 120˚C and 500<span class="elsevierStyleHsp" style=""></span>rpm. The initial furnace temperature was kept at 40˚C for 2<span class="elsevierStyleHsp" style=""></span>min, gradually raised to 80˚C at the rate of 20˚C/min, and kept at this temperature for 1<span class="elsevierStyleHsp" style=""></span>min. The temperatures of the injector and detector were set at 250 and 300˚C, respectively, and nitrogen gas flow rate was maintained constant at 3<span class="elsevierStyleHsp" style=""></span>mL/min. The amount of each component was calculated through comparing the diagram provided by the GC machine with that obtained by injecting standard samples into the GC equipment. <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> represents the characteristics of the petrochemical wastewater used in this study.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Preparation of MgO nanocatalysts</span><p id="par0045" class="elsevierStylePara elsevierViewall">MgO nanoparticles, used as nanocatalysts in the wastewater treatment, were prepared by the calcination approach. For this, Mg (NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">2</span>6H<span class="elsevierStyleInf">2</span>O was first dried at 100<span class="elsevierStyleHsp" style=""></span>°C for 8<span class="elsevierStyleHsp" style=""></span>h. Then, the dried powder was calcined at 500˚C for 2<span class="elsevierStyleHsp" style=""></span>h in an electrical furnace to form MgO nanoparticles. The morphology of nanoparticles was studied using scanning (SEM), and transmission (TEM) electron Microscopy. A Philips X-ray diffractometer (XRD) with Cu-Kα radiation (1.54<span class="elsevierStyleHsp" style=""></span>Å) was employed for the structural study.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Catalytic ozonation process (COP)</span><p id="par0050" class="elsevierStylePara elsevierViewall">A semi-continuous cylindrical reactor with the internal volume of 1500<span class="elsevierStyleHsp" style=""></span>mL was assembled for the catalytic ozonation of the wastewater (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). Using this reactor, ozone could continuously be bubbled into the wastewater. The off-gas containing the excess ozone could then be directed from the reactor to gas scrubbers containing 20% potassium iodide where the excess ozone could be decomposed.</p><p id="par0055" class="elsevierStylePara elsevierViewall">The catalytic ozonation experiments were conducted at room temperature using 50<span class="elsevierStyleHsp" style=""></span>mL of the wastewater samples mixed with 450<span class="elsevierStyleHsp" style=""></span>mL double distilled water and 0.3<span class="elsevierStyleHsp" style=""></span>mg MgO nanoparticles. The pH was adjusted at various values of 3, 5, 7 and 9 employing 0.1<span class="elsevierStyleHsp" style=""></span>M solutions of HCl or NaOH. For a typical experiment, the solution was transported into the glass reactor shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>, connected to a DONALIO3 ozone generator with an ozone production capacity of 0.2<span class="elsevierStyleHsp" style=""></span>g/h, and treated for 10, 20, and 30<span class="elsevierStyleHsp" style=""></span>min. After specific periods, the quantity of remaining benzene, toluene, ethylbenzene, and xylene present in the wastewater samples were measured by injecting 1<span class="elsevierStyleHsp" style=""></span>μL of the sample into the GC equipment.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Simple ozonation process (SOP) and adsorption process (AP)</span><p id="par0060" class="elsevierStylePara elsevierViewall">In addition to the COP, SOP and AP were also evaluated using petrochemical wastewater samples in order to distinguish the effect of various phenomena which could be involved in the removal, or the reduction, of contaminants present in the wastewater. To perform the SOP, 50<span class="elsevierStyleHsp" style=""></span>mL of the wastewater was mixed with 450<span class="elsevierStyleHsp" style=""></span>mL of double distilled water at different pH values of 3, 5, 7 and 9. For this, the pH of wastewater was adjusted with solutions containing 0.1<span class="elsevierStyleHsp" style=""></span>N of HCl or NaOH. Then, the ozonation process was carried out at reaction durations of 10, 20, and 30<span class="elsevierStyleHsp" style=""></span>min to evaluate the influence of time on the process.</p><p id="par0065" class="elsevierStylePara elsevierViewall">The AP was performed under the same conditions as mentioned above for SOP, with the difference that no ozone was involved, and instead, around of 0.3<span class="elsevierStyleHsp" style=""></span>mg MgO nanoparticles was added to the wastewater. Moreover, the solution was aerated to create turbulence in order to achieve an appropriate contact between the solution and MgO nanoparticles.</p><p id="par0070" class="elsevierStylePara elsevierViewall">At the end of both processes, the samples were rested for 5<span class="elsevierStyleHsp" style=""></span>min, and 5<span class="elsevierStyleHsp" style=""></span>mL aliquots were collected from the middle level of the reactor, from which 1<span class="elsevierStyleHsp" style=""></span>μL samples were injected into the GC instrument for determining the quantities of contaminants remaining in the solution.</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Results and Discussion</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Characterization of MgO nanocatalysts</span><p id="par0075" class="elsevierStylePara elsevierViewall">The SEM surface morphology of MgO nanoparticles is shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>a, from which the presence of spherical shaped and agglomerated particles is evident. TEM image of the material (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>b) clearly indicates that individual MgO nanoparticles have an average dimension of around 30<span class="elsevierStyleHsp" style=""></span>nm. X-ray diffraction pattern of MgO nanoparticles, presented in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>c, indicate the reflections at 2θ = 37°, 43°, 62°, 74°, and 78° corresponding to (111), (200), (220), (311), and (222) characteristic XRD peaks of MgO with a cubic structure (JCPDS 01-075-1525), respectively. Scherrer equation can be employed to evaluate the size of crystals in ceramic materials <a class="elsevierStyleCrossRefs" href="#bib0605">[33–35]</a>. The mean crystallite size of MgO nanoparticles could be calculated using this approach, based on the most intense (002) XRD peak observed in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>c, and found to be around 21<span class="elsevierStyleHsp" style=""></span>nm. This is in agreement with the nanostructured nature of the material.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall">It should be mentioned that there are several techniques to prepare ceramic nanoparticles including hydrothermal methods <a class="elsevierStyleCrossRefs" href="#bib0620">[36,37]</a>, sol-gel <a class="elsevierStyleCrossRefs" href="#bib0630">[38,39]</a>, spark discharge <a class="elsevierStyleCrossRef" href="#bib0640">[40]</a>, electrochemical discharge machining <a class="elsevierStyleCrossRef" href="#bib0645">[41]</a>, laser ablation <a class="elsevierStyleCrossRefs" href="#bib0650">[42,43]</a>, ball milling <a class="elsevierStyleCrossRef" href="#bib0660">[44]</a>, aqueous wet chemical method <a class="elsevierStyleCrossRef" href="#bib0665">[45]</a>, combustion synthesis <a class="elsevierStyleCrossRefs" href="#bib0670">[46–49]</a> and molten salt-based techniques <a class="elsevierStyleCrossRefs" href="#bib0690">[50–53]</a>. Comparing to these techniques, the simple calcination method used in this study for the preparation of MgO nanoparticles (reaction (1)) may benefit from relative simplicity, low cost and minimal requirement for complex equipment.</p><p id="par0085" class="elsevierStylePara elsevierViewall">Mg(NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">2</span> = MgO + 2NO<span class="elsevierStyleInf">2</span>(g) + 1/2O<span class="elsevierStyleInf">2</span>(g) ΔG°<span class="elsevierStyleInf">500<span class="elsevierStyleHsp" style=""></span>°C</span> = -80<span class="elsevierStyleHsp" style=""></span>kJ (1)</p><p id="par0090" class="elsevierStylePara elsevierViewall">It should be mentioned that NO<span class="elsevierStyleInf">2</span> produced as the by-product of the reaction (1) can be used in the manufacturing of nitric acid by treating with water and air <a class="elsevierStyleCrossRefs" href="#bib0710">[54–56]</a>, improving the economic performance of the process. It is worth noticing that the demand for nitric acid is considerably increasing due to its wide range of applications, including in the processing of fertiliser, mining explosives and gold extraction <a class="elsevierStyleCrossRef" href="#bib0725">[57]</a>. The surface area of the MgO nanoparticles produced in our study was measured by N<span class="elsevierStyleInf">2</span> adsorption/desorption measurements (TriStar II 3020 Micromeritics) and found to be 221 m<span class="elsevierStyleSup">2</span>/g, with BJH Adsorption cumulative pores volume of 0.85<span class="elsevierStyleHsp" style=""></span>cm3/g, and BJH adsorption average pore diameter of 27.4<span class="elsevierStyleHsp" style=""></span>nm.</p><p id="par0095" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> shows the particle size distribution histogram of MgO nanoparticles calculated from TEM analysis, which was built up by counting more than 100 particles. From this, an average diameter of 22.6<span class="elsevierStyleHsp" style=""></span>nm can be obtained. We can compare this value with those presented in the literature. Wong et al. <a class="elsevierStyleCrossRef" href="#bib0730">[58]</a> prepared MgO nanoparticles employing an ultra-sonication incorporated Pechini method <a class="elsevierStyleCrossRef" href="#bib0735">[59]</a> using magnesium acetate tetrahydrate and citric acid as the raw materials. The value of average size of MgO nanoparticles produced under different conditions were measured to be around 21 -122<span class="elsevierStyleHsp" style=""></span>nm. In another work, Hajengia et al. <a class="elsevierStyleCrossRef" href="#bib0740">[60]</a> produced MgO nanoparticles with an average particle size of 16<span class="elsevierStyleHsp" style=""></span>nm by the microwave heating of a mixture comprising Mg(CH<span class="elsevierStyleInf">3</span>COO)<span class="elsevierStyleInf">2</span>·4H<span class="elsevierStyleInf">2</span>O and benzylamine to form Mg(OH)<span class="elsevierStyleInf">2</span> which was separated, washed and calcined at 550<span class="elsevierStyleHsp" style=""></span>°C for 5<span class="elsevierStyleHsp" style=""></span>h. The particle size distribution histogram of the sample demonstrated that the most of the particles were in the range of 12–22<span class="elsevierStyleHsp" style=""></span>nm. Furthermore, Kumar et al. <a class="elsevierStyleCrossRef" href="#bib0745">[61]</a> produced MgO nanostructures with particle size of 20-25<span class="elsevierStyleHsp" style=""></span>nm by a combustion route using Mg(NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">2</span> .6H<span class="elsevierStyleInf">2</span>O as the magnesium source and vetiver as the fuel. Overall, the characteristics of MgO nanoparticles produced in this study by a simple calcination technique are compatible with those produced by alternative, generally more complicated/expensive techniques.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">The effect of variation time of wastewater treatment</span><p id="par0100" class="elsevierStylePara elsevierViewall">The effects of time variation on the efficiency of COP, SOP and AP to remove chemicals from the petrochemical wastewater are exhibited in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>a-c. As can be depicted from <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>a, the benzene removal efficiency in the SOP improved from 9% to 33% when the reaction time increased from 10 to 30<span class="elsevierStyleHsp" style=""></span>min. At this time slot, the improvement in the removal efficiency of toluene, ethylbenzene, and xylene could be recorded to be 18 to 58%, 25 to 81%, and 28 to 92%, respectively. Likewise, in the AP, the increase in reaction time from 10 to 30<span class="elsevierStyleHsp" style=""></span>min improved the benzene removal efficiency from 5 to 18%. For toluene, ethylbenzene, and xylene, the improvement in the removal efficiency was measured to be 15 to 50%, 24 to 81%, and 27 to 88%, respectively (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>b). As shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>c, the removal efficiency in the COP for benzene rose from 47 to 93% when the reaction time increased from 10 to 30<span class="elsevierStyleHsp" style=""></span>min. The improvement recorded for the removal efficiencies of toluene, ethylbenzene, and xylene was from 42 to 83%, 47 to 94%, and 50 to more than 99%, respectively. The COP procedure presents the highest efficient of removal for all contaminants, denoting the positive influence of the catalytic process promoted by MgO nanoparticles.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">The effect of pH on the wastewater treatment efficiency</span><p id="par0105" class="elsevierStylePara elsevierViewall">Since pH is an important factor in ozonation process, its effect on the efficiency of SOP, AP and CPO for the removal of various contaminants from the petrochemical wastewater was evaluated, and the results can be observed in <a class="elsevierStyleCrossRef" href="#fig0020">Figs. 4</a>d-f. As shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>d, the removal efficiency increases in the SOP by increasing the pH value. For p-Xylene, the removal efficiency increased from about 28% at pH 3 to 94.5% at pH 9. As shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>e, in the AP, the adsorption efficiencies of MgO nanoparticles for all the chemicals increase when the pH increases to about the neutral value, but considerably decline by further increasing the pH value to 9. As presented in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>f, in the COP, the efficiencies for the removal of chemicals increase by increasing the pH values. For instance, the removal efficiency of ethylene, benzene and xylene increased from 45-50% at pH 3 to more than 90% at pH 9. As presented in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>f, by increasing the pH level of the solutions from 3-9, the efficiency of COP process to remove various contaminants from the petrochemical wastewater increases. It is noteworthy that more than 90 percent of all the petroleum compounds present in the wastewater could be decomposed at pH = 9 after 30<span class="elsevierStyleHsp" style=""></span>min of treatment. It should be noticed that the positive relation of pH with SOP efficiency to degraded organic compounds was also previously observed <a class="elsevierStyleCrossRef" href="#bib0555">[23]</a>. Such a relation can also be indicated for the case of COP as evident in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>f.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Results obtained indicate that the duration of ozonation and contact time enhance the overall performance of SOP, AP and COP. The highest removal efficiencies achieved can be summarized as 94.5, 88, and 99.2% for the SOP, the AP, and COP, respectively, obtained after 30<span class="elsevierStyleHsp" style=""></span>min of treatments. Therefore, the order of removal efficiency of organic pollutants can be regulated as AP < SOP < COP.</p><p id="par0115" class="elsevierStylePara elsevierViewall">The adsorption proprieties and catalytic performance of MgO for the degradation of n-alkanes have been evaluated in the literature <a class="elsevierStyleCrossRefs" href="#bib0750">[62,63]</a>, highlighting the electron-acceptor and electron-donor abilities of the MgO surface. Those studies identify that the dye adsorption performance of MgO nanoparticles is maximized at the pH value of 6, which is in an approximate agreement with our results obtained for AP presented in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>e.</p><p id="par0120" class="elsevierStylePara elsevierViewall">For the case of COP, the removal efficiencies are approximately same at the pH values of 7 and 9, providing the maximum pollutants degradation performances. This results is in agreement with those obtained by Moussavi et al. <a class="elsevierStyleCrossRef" href="#bib0760">[64]</a>.</p><p id="par0125" class="elsevierStylePara elsevierViewall">These authors suggested a mechanism for the degradation of phenol by COP, based on which, in the presence of ozone, the Lewis acid sites on the surfaces of MgO particles (MgO-s) react with ozone, and eventually with phenol, leading to the degradation event. This mechanism may also shed light on the degradation of pollutants in the current study, as explained by the occurrence of reactions (1)-(4).</p><p id="par0130" class="elsevierStylePara elsevierViewall">O<span class="elsevierStyleInf">3</span> + MgO-s → MgO-s<span class="elsevierStyleSup">O3</span> (1)</p><p id="par0135" class="elsevierStylePara elsevierViewall">MgO-s<span class="elsevierStyleSup">O3</span> → MgO-s<span class="elsevierStyleSup">O•</span> + O<span class="elsevierStyleInf">2</span> (2)</p><p id="par0140" class="elsevierStylePara elsevierViewall">MgO-s<span class="elsevierStyleSup">O•</span> + pollutant→ CO<span class="elsevierStyleInf">2</span> + H<span class="elsevierStyleInf">2</span>O + intermediates (3)</p><p id="par0145" class="elsevierStylePara elsevierViewall">MgO+pollutant + O<span class="elsevierStyleInf">3</span> → CO<span class="elsevierStyleInf">2</span> + H<span class="elsevierStyleInf">2</span>O + intermediates (4)</p><p id="par0150" class="elsevierStylePara elsevierViewall">Reaction (4) can be regarded as the direct oxidation of pollutant with O<span class="elsevierStyleInf">3</span> molecules.</p><p id="par0155" class="elsevierStylePara elsevierViewall">On the other hand, regarding the degradation of organic molecules in the presence of O<span class="elsevierStyleInf">3</span> as an oxidizer (E<span class="elsevierStyleSup">0</span> = + 2.07<span class="elsevierStyleHsp" style=""></span>eV), it is known that under alkaline conditions, the decomposition of O<span class="elsevierStyleInf">3</span> molecules occurs with the production of hydroxyl radicals (•OH) <a class="elsevierStyleCrossRef" href="#bib0765">[65]</a>. These radicals have an even greater oxidative potential (E0 = + 2.8<span class="elsevierStyleHsp" style=""></span>eV) for decomposition of organic molecules <a class="elsevierStyleCrossRefs" href="#bib0770">[66,67]</a>.</p><p id="par0160" class="elsevierStylePara elsevierViewall">In the presence of a catalyst, the production of •OH can be stimulated. Also, the increase in the pH value of the reaction medium can accelerate the mass transfer of O<span class="elsevierStyleInf">3</span> and its decomposition rate, promoting the formation of highly reactive free radicals, such as •OH, •O<span class="elsevierStyleInf">2</span>H and •O<span class="elsevierStyleInf">3</span>H, leading to the increase of pollutants degradation efficiency <a class="elsevierStyleCrossRefs" href="#bib0600">[32,68,69]</a>.</p><p id="par0165" class="elsevierStylePara elsevierViewall">The formation of <span class="elsevierStyleSup">●</span>OH and MgO-hydroxyl (MgO-<span class="elsevierStyleItalic">s</span><span class="elsevierStyleSup">OH</span>) radicals have been explained to occur based on reactions (5) and (6) <a class="elsevierStyleCrossRef" href="#bib0600">[32]</a>.</p><p id="par0170" class="elsevierStylePara elsevierViewall">MgO-<span class="elsevierStyleItalic">s</span><span class="elsevierStyleSup">O•</span> + 2H<span class="elsevierStyleInf">2</span>O + O<span class="elsevierStyleInf">3</span> → MgO-<span class="elsevierStyleItalic">s</span><span class="elsevierStyleSup">OH</span> + 3 •OH + O<span class="elsevierStyleInf">2</span> (5)</p><p id="par0175" class="elsevierStylePara elsevierViewall">•OH + O<span class="elsevierStyleInf">2</span> + pollutant → CO<span class="elsevierStyleInf">2</span> + O<span class="elsevierStyleInf">2</span><span class="elsevierStyleSup">−</span> + H<span class="elsevierStyleInf">2</span>O (6)</p><p id="par0180" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleSup">●</span>OH radicals could also be produced in COP, providing a more effective environment for the oxidation of organic pollutants present in the petrochemical wastewater, in comparison with radicals produced by SOP. The reactions (3), (4) and (6) can occurs simultaneously, improving the overall degradation efficiency.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Treatment of the petrochemical wastewater at the pH value of 12</span><p id="par0185" class="elsevierStylePara elsevierViewall">Inspired by the experimental results, the petrochemical wastewater was further treated using the three distinct approaches; SOP, AP and COP, to reduce its contamination level under deviated conditions from those exhibited in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>, i.e. the enhanced pH value of 12, and extended contact duration of 50<span class="elsevierStyleHsp" style=""></span>min. The results obtained are presented in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>. As indicated, in the SOP, the xylene removal percentage is higher compared to that of ethylene benzene, toluene, and benzene. Moreover, the removal percentage of xylene and ethylbenzene in the AP are very close to each other and both higher than those of benzene and toluene. The lowest removal efficiency is related to that of benzene (33%). These observations can be explained by the combination of effects, comprising the lower solubility of benzene and toluene compared to ethylbenzene and xylene, and the higher molecular weights and melting points of xylene and ethylbenzene compared to benzene and toluene <a class="elsevierStyleCrossRefs" href="#bib0790">[70–72]</a>.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0190" class="elsevierStylePara elsevierViewall">As shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>, in the AP, the highest and lowest (18%) removal efficiency could be achieved for p-Xylene and benzene, respectively. Moreover, the removal percentage of o-Xylene is lower than those of ethylbenzene and paraxylene.</p><p id="par0195" class="elsevierStylePara elsevierViewall">As indicated by Lu et al. <a class="elsevierStyleCrossRef" href="#bib0800">[72]</a>, at the initial benzene and toluene concentrations of 60 and 200<span class="elsevierStyleHsp" style=""></span>mg/L, respectively, toluene adsorption per unit of the adsorbent mass was greater than that of benzene. Moreover, Aivalioti et al. <a class="elsevierStyleCrossRef" href="#bib0790">[70]</a> showed that the adsorption capacity of diatomic adsorbents was higher for toluene than benzene. Yakout and Daifullah <a class="elsevierStyleCrossRef" href="#bib0805">[73]</a> found that a higher amount of toluene could be adsorbed per unit mass of the activated carbon than benzene. Furthermore, Su et al. <a class="elsevierStyleCrossRef" href="#bib0810">[74]</a> showed that the capacity of carbon nanotubes modified by sodium hypochlorite for the adsorption of benzene and toluene are 212 and 225<span class="elsevierStyleHsp" style=""></span>mg/g of the adsorbent, respectively, at their initial concentration of 200<span class="elsevierStyleHsp" style=""></span>mg/L, the contact time of 240<span class="elsevierStyleHsp" style=""></span>min, and adsorbent concentration of 600<span class="elsevierStyleHsp" style=""></span>mg/L. Other studies show that activated carbon adsorbent could reduce petroleum contaminants from water by up to 80% <a class="elsevierStyleCrossRef" href="#bib0815">[75]</a>, although it cannot completely remove organic matter from water. Garoma et al. <a class="elsevierStyleCrossRef" href="#bib0820">[76]</a> found that the removal efficiencies of petroleum compounds by SOP could be 27%. Furthermore, they noticed that SOP was more efficient than the AP using MgO nanoparticles in removing contaminants, except for ethylbenzene, for which SOP and the AP exhibited almost the same efficiency.</p><p id="par0200" class="elsevierStylePara elsevierViewall">As mentioned earlier, it should be noticed that molecular ozone has a high oxidation-reduction potential of 2.07<span class="elsevierStyleHsp" style=""></span>V vs. SHE, which is greater than those of most oxidants such as chlorine (1.48<span class="elsevierStyleHsp" style=""></span>V), but lower than that of hydroxyl radicals (2.8<span class="elsevierStyleHsp" style=""></span>V) <a class="elsevierStyleCrossRef" href="#bib0825">[77]</a>. As shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>, the COP is much more efficient than the SOP and the AP. The reason for this might lie in the fact that the simultaneous use of ozone and adsorbent accelerates the transformation of ozone from its molecular state into hydroxyl radicals. This is in agreement with the work of Dehouli et al. <a class="elsevierStyleCrossRef" href="#bib0830">[78]</a>, who found that the utilization of ozonation together with the activated carbon could enhance the wastewater treatment performance, and this was attributed to the greater quantities of hydroxyl radicals present in the COP.</p><p id="par0205" class="elsevierStylePara elsevierViewall">The performance of COP for the removal of Reactive Red 198 in the presence MgO nanocrystals was found to be related to the decomposition of dye molecules due to indirect oxidation by the active radicals <a class="elsevierStyleCrossRef" href="#bib0600">[32]</a>. Valdez et al. <a class="elsevierStyleCrossRefs" href="#bib0835">[79,80]</a> examined the effects of COP together with volcanic rocks in the benzothiazole removal, and related the high efficiency of the process to the intense inclination of ozone to react with Lewis acids of the metal oxides in the volcanic rocks. Moreover, results indicated that the COP performed better than the SOP at contact time of 30<span class="elsevierStyleHsp" style=""></span>min. Since both direct and indirect oxidations are involved in contaminant removal in the COP, the process exhibits a higher performance at shorter contact periods compared to the common SOP. It should also be noticed the ozone decomposition can be enhanced on the adsorbent surfaces results in higher concentrations of the free radicals in the system, promoting the decomposition of organic pollutants <a class="elsevierStyleCrossRef" href="#bib0840">[80]</a>.</p><p id="par0210" class="elsevierStylePara elsevierViewall">It has been found that ozone decomposition can be promoted on the surfaces of crystals of natural zeolite, and particularly on volcanic rocks <a class="elsevierStyleCrossRefs" href="#bib0835">[79–81]</a>. It was because such materials are capable of adsorbing ozone, followed by its conversion into free radicals.</p><p id="par0215" class="elsevierStylePara elsevierViewall">From <a class="elsevierStyleCrossRefs" href="#fig0020">Figs. 4 and 5</a>, the enhanced performance of the heterogeneous COP process, comparing to SOP and AP is evident. The catalyst surface properties, therefore, play an important role in the ozonation process, as also indicated by Zhang et al. <a class="elsevierStyleCrossRef" href="#bib0850">[82]</a>. Based on the results obtained by Mohammadi et al. <a class="elsevierStyleCrossRef" href="#bib0585">[29]</a>, COP is an efficient and rapid method for removing of toluene from aqueous solutions. It is known that metal oxides are able to adsorb water molecules, and this causes the formation of surface hydroxyl groups. Such hydroxyl groups exhibit various electric charge patterns at different pH values <a class="elsevierStyleCrossRef" href="#bib0855">[83]</a>, affecting the decomposition of ozone on the metal oxide's surface. For instance, Qi et al. <a class="elsevierStyleCrossRef" href="#bib0860">[84]</a> studied the degradation of 2, 4, 6-trichloroanisole by the ozonation process in the presence of Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> particles, and found that the decomposition of ozone on the alumina particles is enhanced when pH level approaches around 8. Furthemore, Garoma et al. <a class="elsevierStyleCrossRef" href="#bib0820">[76]</a> concluded that in ozonation experiments, the presence of sufficient amount of iron in groundwater samples would improve the removal of BTEX, MTBE, TBA, and TPHg. These observations are in agreement with our experimental results. <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> summarizes the performance of the SOP, AP and COP processes for the removal of the pollutants from the petrochemical wastewater.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0220" class="elsevierStylePara elsevierViewall">It is known that the physical and chemical properties of contaminants significantly influence their removal performance from wastewaters <a class="elsevierStyleCrossRef" href="#bib0865">[85]</a>.</p><p id="par0225" class="elsevierStylePara elsevierViewall">For instance, in advanced oxidation treatments, xylene can be eliminated more than chemicals such as ethylbenzene, toluene, and benzene. Furthermore, the amount of adsorbed ethylbenzene and xylene is very close, whilst their adsorption values are considerably higher than those of benzene and toluene. These characteristics can be explained based on the properties of these chemicals. Based on this, the relatively high dissolution rate of benzene in water (1780<span class="elsevierStyleHsp" style=""></span>ppm) in comparison to other compounds such as toluene (512<span class="elsevierStyleHsp" style=""></span>ppm), ethyl benzene (152<span class="elsevierStyleHsp" style=""></span>ppm), and xylene (175<span class="elsevierStyleHsp" style=""></span>ppm) <a class="elsevierStyleCrossRefs" href="#bib0870">[86,87]</a>, makes it more difficult to be removed from wastewasters. The considerably higher molecular weight and boiling points of xylene and ethylbenzene than toluene and benzene around (around 144, 136, 111, and 80<span class="elsevierStyleHsp" style=""></span>°C, respectively) can also influence their removal efficiency <a class="elsevierStyleCrossRefs" href="#bib0790">[70,88]</a>.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Remarks and conclusions</span><p id="par0230" class="elsevierStylePara elsevierViewall">Petroleum-derived chemicals can be hazardous and toxic threatening the human health and environment security. These compounds may enter the food chain via various routes, one of which is the water resources. Therefore, the removal of petrochemical contaminants from water resources is of significant importance. This can be carried out by various methods, including adsorption and ozonation; considering that each technique has its own advantages and disadvantages. Catalytic oxidation processes are among promising water treatment methods which have the advantages of both adsorption and oxidation approaches. Here, we investigated the performance of AP, SOP, and COP on the removal of various contaminants (benzene, toluene, ethylbenzene, and xylene) from petrochemical wastewaters, collected from an Iranian petrochemical industry. MgO nanoparticles produced by the calcination of Mg (NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">2</span>6H<span class="elsevierStyleInf">2</span>O with a mean particle size of around 23<span class="elsevierStyleHsp" style=""></span>nm was used as the catalyst. The effects of contact time and pH were evaluated for each approach. Results showed the considerably higher performance of COP in comparison with those of SOP and AP. The increase in the contact time and the pH value of the solutions led to the improvement of removal efficiencies. During 30<span class="elsevierStyleHsp" style=""></span>min of the COP, the removal efficiencies of benzene, toluene, ethylbenzene, and xylene were recorded to be 93, 83, 94, and 99.2%; which are considerably greater than those obtained in SOP; 33, 58, 81, and 92%, respectively. MgO-enhanced COP can be considered a promising and economical approach for the removal of petroleum-based pollutants from aqueous environments.</p></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Declaration of interests</span><p id="par0235" class="elsevierStylePara elsevierViewall">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</p><p id="par0240" class="elsevierStylePara elsevierViewall">The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:9 [ 0 => array:3 [ "identificador" => "xres1613779" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1442774" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1613780" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1442773" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Preparation of MgO nanocatalysts" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Catalytic ozonation process (COP)" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Simple ozonation process (SOP) and adsorption process (AP)" ] ] ] 6 => array:3 [ "identificador" => "sec0030" "titulo" => "Results and Discussion" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Characterization of MgO nanocatalysts" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "The effect of variation time of wastewater treatment" ] 2 => array:2 [ "identificador" => "sec0045" "titulo" => "The effect of pH on the wastewater treatment efficiency" ] 3 => array:2 [ "identificador" => "sec0050" "titulo" => "Treatment of the petrochemical wastewater at the pH value of 12" ] 4 => array:2 [ "identificador" => "sec0055" "titulo" => "Remarks and conclusions" ] ] ] 7 => array:2 [ "identificador" => "sec0060" "titulo" => "Declaration of interests" ] 8 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-02-26" "fechaAceptado" => "2020-06-08" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1442774" "palabras" => array:4 [ 0 => "Petrochemical contaminants" 1 => "Catalytic ozonation" 2 => "MgO" 3 => "Nanoparticles" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1442773" "palabras" => array:4 [ 0 => "Contaminantes petroquímicos" 1 => "Zona catalítica" 2 => "MgO" 3 => "Nanopartículas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Petrochemical wastewater, which is a complex solution of various chemicals, can cause severe environmental problems after being disposed to environment. Here, we investigate the removal of petrochemical contaminants at different periods and pH levels using three distinct processes: conventional ozonation, adsorption and nanostructured MgO-enhanced catalytic ozonation. The latter is found to be an economical and efficient new approach to treat petroleum contaminants, outperforming the other methods. For instance, after 30<span class="elsevierStyleHsp" style=""></span>min of the treatment using the conventional ozonation, the removal percentages of benzene, toluene, ethylbenzene, and xylene are 35, 58, 81, and 92%, respectively; whereas the corresponding figures are 93.8, 83.5, 94.6, and 99.2% using the catalytic ozonation.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Las aguas residuales petroquímicas, que es una solución compleja de diversos productos químicos, pueden causar graves problemas ambientales después de ser eliminadas en el medio ambiente. Aquí, investigamos la eliminación de contaminantes petroquímicos en diferentes periodos y niveles de pH utilizando tres procesos diferentes: zona convencional, adsorción y ozono catalítico mejorado por nanoestructuras MgO. Este último es visto como un nuevo enfoque económico y eficiente para el tratamiento de los contaminantes del petróleo, superando a otros métodos. Por ejemplo, después de 30 minutos de tratamiento utilizando ozono convencional, las tasas de eliminación de benceno, tolueno, etilbenceno y xileno son 35, 58, 81 y 92%, respectivamente; mientras que las cifras correspondientes son 93, 8, 83,5, 94,6 y 99,2% utilizando ozonación catalítica.</p></span>" ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1430 "Ancho" => 1508 "Tamanyo" => 221254 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Schematic representation of the reactor used for the petrochemical wasterwater treatment in the presence of MgO nanoparticles.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3486 "Ancho" => 1508 "Tamanyo" => 407125 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">(a) SEM, (b) TEM, and (c) XRD analysis of MgO nanoparticles synthesized using the calcination method.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 740 "Ancho" => 1258 "Tamanyo" => 52381 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">The particle size distribution histogram of MgO nanoparticles.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2717 "Ancho" => 2175 "Tamanyo" => 305447 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Influence of the variation of time and pH on the performance of SOP, AP and COP for the removal of contaminates from the petrochemical wastewater. The variation of reaction durations at the pH value of 7.5 (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>) for (a) SOP, (b) AP, and (c) COP. The variation of the pH solution at the contact time of 30<span class="elsevierStyleHsp" style=""></span>min for (d) SOP, (e) AP, and (f) COP.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1319 "Ancho" => 2175 "Tamanyo" => 166711 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">The efficiency of SOP, AP and COP for the removal of various chemicals from the petrochemical wastewater, after 50<span class="elsevierStyleHsp" style=""></span>min of the treatment at the pH level of 12.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Parameter \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">pH \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1355 mg/l \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">COD \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">395 mg/l \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BOD5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">COD/BOD5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2464 mg/l \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">780 NTU \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Turbidity \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2751755.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Characteristics of the petrochemical wastewater collected from an Iranian petrochemical industry.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Pollutant \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CO \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">C-AP \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">C-COP \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">E-SOP \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">E-AP \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">E-COP \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Benzene \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">510.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">341.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">417.1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">33% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.3% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93.8% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Toluene \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">725 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">298.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">357 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">119.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">58.7% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50.7% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">83.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ethylbenzene \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">436.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81.3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">82 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81.3% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81.2% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94.6% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">o-Xylene \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">497.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40.3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">259.3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">91.8% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47.8% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">p-Xylene \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">341.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94.5% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">88% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99.2% \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2751756.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">A summary on the performance of various techniques used for the removal of contaminants from the petrochemical wastewater: Concentrations of poullants in the raw wastewater (CR), and those after the ozonation (CO), the adsorption (C-AP), and the catalytic ozonation (C-COP). The removal efficiency in the ozonation process (E-SOP), adsorption (E-AP), and the catalytic ozonation (C-COP).</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:88 [ 0 => array:3 [ "identificador" => "bib0445" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The risk assessor as the customer in: Chemical Analysis of Contaminated Land" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.K. Thompson" 1 => "C.P. Nathanail" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "fecha" => "2003" "paginaInicial" => "1" "paginaFinal" => "19" "editorial" => "CRC Press" "editorialLocalizacion" => "Oxford" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0450" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.M.A. Pintor" 1 => "V.J.P. Vilar" 2 => "C.M.S. Botelho" 3 => "R.A.R. Boaventura" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "A critical review, Chem. Eng. J." "fecha" => "2016" "volumen" => "297" "paginaInicial" => "229" "paginaFinal" => "255" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0455" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of petroleum refinery wastewater using crossflow and immersed membrane processes, Desalin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.H. Al-Malack" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Water Treat." "fecha" => "2013" "volumen" => "51" "paginaInicial" => "6985" "paginaFinal" => "6993" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0460" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater, J. hazard" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "N.S. Mizzouri" 1 => "M.G. Shaaban" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater." "fecha" => "2013" "volumen" => "15" "paginaInicial" => "333" "paginaFinal" => "344" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0465" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Zhong" 1 => "X. Sun" 2 => "C. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Sep. Purif. Technol." "fecha" => "2003" "volumen" => "32" "paginaInicial" => "93" "paginaFinal" => "98" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0470" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Refinery wastewater biological treatment: A short review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Ishak" 1 => "A.M. Malakahmad" 2 => ".H. Isa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Sci. Ind. Res." "fecha" => "2012" "volumen" => "71" "paginaInicial" => "251" "paginaFinal" => "256" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0475" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Performance of a crossflow membrane bioreactor (CF–MBR) when treating refinery wastewater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.M. Rahman" 1 => "M.H. Al-Malack" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Desalination" "fecha" => "2006" "volumen" => "191" "paginaInicial" => "16" "paginaFinal" => "26" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0480" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecological impact analysis on Mahshahr petrochemical industries using analytic hierarchy process method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Malmasi" 1 => "S.A. Jozi" 2 => "S.M. Monavari" 3 => "M.E. Jafarian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Environ. Res." "fecha" => "2010" "volumen" => "4" "paginaInicial" => "725" "paginaFinal" => "734" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0485" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Integrated environmental performance assessment of chemical processes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "X.P. Jia" 1 => "F.Y. Han" 2 => "X.S. Tan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Comput. Chem. Eng." "fecha" => "2004" "volumen" => "29" "paginaInicial" => "243" "paginaFinal" => "247" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0490" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Toxic impact assessment of a manufacturing process: illustrative application to the automotive paint process" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Seth" 1 => "E.K. Tam" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Environ. Stud." "fecha" => "2006" "volumen" => "63" "paginaInicial" => "453" "paginaFinal" => "462" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0495" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimal operational conditions for biohydrogen production from sugar refinery wastewater in an ASBR" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S.G. Won" 1 => "S.A. Baldwin" 2 => "A.K. Lau" 3 => "M. Rezadehbashi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int. J. Hydrogen energy" "fecha" => "2013" "volumen" => "38" "paginaInicial" => "13895" "paginaFinal" => "13906" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0500" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of a three-step process for the treatment of petroleum refinery wastewater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.H. El-Naas" 1 => "M.A. Alhaija" 2 => "S. Al-Zuhair" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Environ. Chem. Eng." "fecha" => "2014" "volumen" => "2" "paginaInicial" => "56" "paginaFinal" => "62" "itemHostRev" => array:3 [ "pii" => "S0140673620301835" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0505" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhanced photo-degradation of contaminants in petroleum refinery wastewater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Stepnowski" 1 => "E.M. Siedlecka" 2 => "P. Behrend" 3 => "B. Jastorff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0043-1354(01)00450-x" "Revista" => array:6 [ "tituloSerie" => "Water Res." "fecha" => "2002" "volumen" => "36" "paginaInicial" => "2167" "paginaFinal" => "2172" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12108708" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0510" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Sánchez-Polo" 1 => "U. von Gunten" 2 => "J. Rivera-Utrilla" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.watres.2005.05.026" "Revista" => array:6 [ "tituloSerie" => "Water Res." "fecha" => "2005" "volumen" => "39" "paginaInicial" => "3189" "paginaFinal" => "3198" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16005933" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0515" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T.A. Kurniawan" 1 => "W.H. Lo" 2 => "G.Y. Chan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2006.02.020" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2006" "volumen" => "137" "paginaInicial" => "443" "paginaFinal" => "455" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16600478" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0520" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.C. Kruithof" 1 => "P.C. Kamp" 2 => "B.J. Martijn" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ozone Sci. Eng." "fecha" => "2007" "volumen" => "29" "paginaInicial" => "273" "paginaFinal" => "280" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0525" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E.J. Rosenfeldt" 1 => "K.G. Linden" 2 => "S. Canonica" 3 => "U. Von Gunten" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.watres.2006.09.008" "Revista" => array:6 [ "tituloSerie" => "Water Res." "fecha" => "2006" "volumen" => "40" "paginaInicial" => "3695" "paginaFinal" => "3704" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17078993" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0530" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oxidation/mineralization of AO7 by electro-Fenton process using chalcopyrite as the heterogeneous source of iron and copper catalysts with enhanced degradation activity and reusability" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Labiadh" 1 => "S. Ammar" 2 => "A.R. Kamali" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "J. Electroanal. Chem." "fecha" => "2019" "volumen" => "853" "paginaInicial" => "113532" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0535" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wastewater engineering: Treatment disposal reuse" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Tchobanoglous" 1 => "F. Burton" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "fecha" => "1990" "editorial" => "McGraw-Hill Inc" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0540" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "I. Michael" 1 => "E. Hapeshi" 2 => "C. Michael" 3 => "A.R. Varela" 4 => "S. Kyriakou" 5 => "C.M. Manaia" 6 => "D. Fatta-Kassinos" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci, Water Res." "fecha" => "2012" "volumen" => "46" "paginaInicial" => "5621" "paginaFinal" => "5634" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0545" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Anjali" 1 => "S. Shanthakumar" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Environ. Manag." "fecha" => "2019" "volumen" => "246" "paginaInicial" => "51" "paginaFinal" => "62" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0550" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F. Ingerslev" 1 => "L. Toräng" 2 => "M.L. Loke" 3 => "B. Halling-Sørensen" 4 => "N. Nyholm" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0045-6535(00)00479-3" "Revista" => array:7 [ "tituloSerie" => "Chemosphere" "fecha" => "2001" "volumen" => "44" "paginaInicial" => "865" "paginaFinal" => "872" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11482679" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0196064416309350" "estado" => "S300" "issn" => "01960644" ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0555" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Qu Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Lv" 1 => "C. Hu" 2 => "Y.J. Nie" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Catalysis B Environ." "fecha" => "2010" "volumen" => "100" "paginaInicial" => "62" "paginaFinal" => "67" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0560" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The efficiency and mechanisms of catalytic ozonation, Appl." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Nawrocki" 1 => "B. Kasprzyk-Hordern" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Catalysis B Environ" "fecha" => "2010" "volumen" => "99" "paginaInicial" => "27" "paginaFinal" => "42" "itemHostRev" => array:3 [ "pii" => "S0140673620305663" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0565" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H. Valdés" 1 => "V.J. Farfán" 2 => "J.A. Manoli" 3 => "C.A. Zaror" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2008.10.093" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2009" "volumen" => "165" "paginaInicial" => "915" "paginaFinal" => "922" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19058912" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0570" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Haldorai" 1 => "J.J. Shim" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2014" "volumen" => "292" "paginaInicial" => "447" "paginaFinal" => "453" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0575" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MgO nanosheets with N-doped carbon coating for the efficient visible-light photocatalysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "X. Zheng" 1 => "K. Wang" 2 => "Z. Huang" 3 => "Y. Liu" 4 => "J. Wen" 5 => "H. Peng" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Ind. Eng. Chem." "fecha" => "2019" "volumen" => "76" "paginaInicial" => "288" "paginaFinal" => "295" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0580" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Vesali-Kermani" 1 => "A. Habibi-Yangjeh" 2 => "S. Ghosh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Ind. Eng. Chem." "fecha" => "2020" "volumen" => "84" "paginaInicial" => "185" "paginaFinal" => "195" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0585" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Application of heterogeneous catalytic ozonation process with magnesium oxide nanoparticles for Toluene degradation in aqueous environments" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Mohammadi" 1 => "E. Bazrafshan" 2 => "M. Noroozifar" 3 => "A. Ansari-Moghaddam" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Health Scope" "fecha" => "2016" "volumen" => "5" "paginaInicial" => "40439" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0590" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G. Asgari" 1 => "J. Faradmal" 2 => "H. Zolghadr Nasab" 3 => "H. Ehsani" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Powder Technol." "fecha" => "2019" "volumen" => "30" "paginaInicial" => "1297" "paginaFinal" => "1311" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0595" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozonation of humic acids with Fe/MgO" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J.E. Lee" 1 => "B.S. Jin" 2 => "S.H. Cho" 3 => "S.H. Han" 4 => "O.S. Joo" 5 => "K.D. Jung" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Korean J. Chem. Eng." "fecha" => "2005" "volumen" => "22" "paginaInicial" => "536" "paginaFinal" => "540" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0600" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Moussavi" 1 => "M. Mahmoudi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Eng. J." "fecha" => "2009" "volumen" => "152" "paginaInicial" => "1" "paginaFinal" => "7" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0605" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation of lithium niobate particles via reactive molten salt synthesis method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.R. Kamali" 1 => "D.J. Fray" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2014" "volumen" => "40" "paginaInicial" => "1835" "paginaFinal" => "1841" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0610" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Solid phase growth of tin oxide nanostructures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.R. Kamali" 1 => "D.J. Fray" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Mater. Sci. Eng. B" "fecha" => "2012" "volumen" => "177" "paginaInicial" => "819" "paginaFinal" => "825" "itemHostRev" => array:3 [ "pii" => "S0954611118303718" "estado" => "S300" "issn" => "09546111" ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0615" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nanocatalytic conversion of CO2 into nanodiamonds" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.R. Kamali" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Carbon" "fecha" => "2017" "volumen" => "123" "paginaInicial" => "205" "paginaFinal" => "215" "itemHostRev" => array:3 [ "pii" => "S0140673620301549" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0620" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bin-Feng Lv MgO nanoparticles as antibacterial agent: preparation and activity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Z.X. Tang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Brazilian J. Chem. Eng" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "591" "paginaFinal" => "601" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0625" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Selective synthesis and characterization of iron oxide nanoparticles via PVA/PVP polymer blend as structure-directing agent" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W.N. Abdel Aziz" 1 => "A. Bumajdad" 2 => "F. Al Sagheer" 3 => "M. Madkour" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2020" "volumen" => "249" "paginaInicial" => "122927" "itemHostRev" => array:3 [ "pii" => "S1876285917305612" "estado" => "S300" "issn" => "18762859" ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0630" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Photo-catalytic pretreatment of biomass for anaerobic digestion using visible light and Nickle oxide (NiOx) nanoparticles prepared by sol gel method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "L. Zhu" 1 => "M. Awais" 2 => "H. Muhammad" 3 => "A. Javed" 4 => "M. Salman" 5 => "M. Tlilief" 6 => "S. Ullah Khan" 7 => "M. Shadloo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Renew. Energy" "fecha" => "2020" "volumen" => "154" "paginaInicial" => "128" "paginaFinal" => "135" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0635" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, J" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Parashar" 1 => "V. Kumar Shukl" 2 => "R. Singh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Sci. Mater. El." "fecha" => "2020" "volumen" => "31" "paginaInicial" => "3729" "paginaFinal" => "3749" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0640" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Platinum and platinum oxide nanoparticles generated by unipolar spark discharge" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Němec" 1 => "J. Šonský" 2 => "J. Gruber" 3 => "E. Prado" 4 => "J. Kupčík" 5 => "M. Klementová" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Aerosol Sci." "fecha" => "2020" "volumen" => "141" "paginaInicial" => "10550" "itemHostRev" => array:3 [ "pii" => "S0140673620306280" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0645" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis of zinc oxide nanoparticles through hybrid machining process and their application in supercapacitors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H. Bishwakarma" 1 => "A. Kumar Das" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Electron. Mater." "fecha" => "2020" "volumen" => "49" "paginaInicial" => "1541" "paginaFinal" => "1549" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0650" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "M. Fernández-Arias" 1 => "M. Boutinguiza" 2 => "J. del Val" 3 => "A. Riveiro" 4 => "D. Rodríguez" 5 => "F. Arias-González" 6 => "J. Gil" 7 => "J. Pou" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Nanomaterials" "fecha" => "2020" "volumen" => "10" "paginaInicial" => "300" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0655" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of cobalt oxide nanoparticles produced by laser ablation method: Effects of laser fluence" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Naseri" 1 => "G. Dorranian" 2 => "A.H. Sari" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Physica E Low Dimens. Syst. Nanostruct." "fecha" => "2020" "volumen" => "115" "paginaInicial" => "113670" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0660" "etiqueta" => "[44]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of different milling media on structural, morphological and optical properties of the ZnO nanoparticles synthesized by ball milling process, Mater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J. Singh" 1 => "S. Sharma" 2 => "S. Soni" 3 => "S. Sharma" 4 => "R.C. Singh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Sci. Semicond. Process." "fecha" => "2019" "volumen" => "98" "paginaInicial" => "29" "paginaFinal" => "38" "itemHostRev" => array:3 [ "pii" => "S0954611119301374" "estado" => "S300" "issn" => "09546111" ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0665" "etiqueta" => "[45]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis, characterization and reactivity study of nanoscale magnesium oxide, J" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F. Khairallah" 1 => "A. Glisenti" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mol. Catal. A Chem." "fecha" => "2007" "volumen" => "274" "paginaInicial" => "137" "paginaFinal" => "147" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0670" "etiqueta" => "[46]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modified auto-combustion synthesis of mixed-oxides TiO2/NiO nanoparticles: Physical properties and photocatalytic performance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N. Javadi" 1 => "B. Arghavan" 2 => "V. Saghir" 3 => "S.M. Beidokhti" 4 => "J. Vahdati Khaki" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2020" "volumen" => "46" "paginaInicial" => "15417" "paginaFinal" => "15437" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0675" "etiqueta" => "[47]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel approach for solution combustion synthesis of tungsten oxide nanoparticles for photocatalytic and electrochromic applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H. Aliasghari" 1 => "A.M. Arabi" 2 => "H. Haratizadeh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2020" "volumen" => "46" "paginaInicial" => "403" "paginaFinal" => "414" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0680" "etiqueta" => "[48]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ultra-fast shock-wave combustion synthesis of nanostructured silicon from sand with excellent Li storage performance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A.R. Kamali" 1 => "S.H. Shishavan" 2 => "M.N. Samani" 3 => "A. Rezaei" 4 => "K.B. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Sustain. Energy Fuels" "fecha" => "2019" "volumen" => "3" "paginaInicial" => "1396" "paginaFinal" => "1405" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0685" "etiqueta" => "[49]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new process for titanium aluminides production from TiO2" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.R. Kamali" 1 => "H. Razavizadeh" 2 => "S.M.M. Hadavi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mater. Sci.Technol." "fecha" => "2007" "volumen" => "23" "paginaInicial" => "367" "paginaFinal" => "372" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0690" "etiqueta" => "[50]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transformation of molten SnCl2 to SnO2 nano-single crystals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.R. Kamali" 1 => "G. Divitini" 2 => "C. Ducati" 3 => "D.J. Fray" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2014" "volumen" => "40" "paginaInicial" => "8533" "paginaFinal" => "8538" ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0695" "etiqueta" => "[51]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thermokinetic characterisation of tin(II) chloride" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.R. Kamali" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Therm. Anal. Calorim." "fecha" => "2014" "volumen" => "118" "paginaInicial" => "99" "paginaFinal" => "104" "itemHostRev" => array:3 [ "pii" => "S0954611116303183" "estado" => "S300" "issn" => "09546111" ] ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0700" "etiqueta" => "[52]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Green molten salt synthesis and Li-ion storage performance of sodium dimolybdate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "W. Zhu" 1 => "A.R. Kamali" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "J. Alloys Compd." "fecha" => "2020" "volumen" => "831" "paginaInicial" => "15478" ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0705" "etiqueta" => "[53]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.R. Kamali" 1 => "J. Feighan" 2 => "D.J. Fray" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c6fd00005c" "Revista" => array:6 [ "tituloSerie" => "Faraday Discuss." "fecha" => "2016" "volumen" => "190" "paginaInicial" => "451" "paginaFinal" => "470" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27231211" "web" => "Medline" ] ] ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0710" "etiqueta" => "[54]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rate constants for: OH + NO2 (+ N2) → HNO3 (+ N2) between 220 and 358<span class="elsevierStyleHsp" style=""></span>K" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C. Anastasi" 1 => "P.P. Bemand" 2 => "I.W.M. Smith" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Phys. Lett." "fecha" => "1976" "volumen" => "37" "paginaInicial" => "370" "paginaFinal" => "372" ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0715" "etiqueta" => "[55]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic oxidation of NO to NO2 for nitric acid production over a Pt/Al2O3 catalyst" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "A.R. Salman" 1 => "B.C. Enger" 2 => "X. Auvray" 3 => "R. Lødeng" 4 => "M. Menon" 5 => "D. Waller" 6 => "M. Rønning" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Catal. A" "fecha" => "2018" "volumen" => "564" "paginaInicial" => "142" "paginaFinal" => "146" ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0720" "etiqueta" => "[56]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:13 [ 0 => "J. Li" 1 => "X. Han" 2 => "X. Zhang" 3 => "A.M. Sheveleva" 4 => "Y. Cheng" 5 => "F. Tuna" 6 => "E.J.L. McInnes" 7 => "L.J.M. McPherson" 8 => "S.J. Teat" 9 => "L.L. Daemen" 10 => "A.J.R. Cuesta" 11 => "M. Schröder" 12 => "S. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nature Chem." "fecha" => "2019" "volumen" => "11" "paginaInicial" => "1085" "paginaFinal" => "1090" ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0725" "etiqueta" => "[57]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "One hundred years of gauze innovation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Frankland" 1 => "C. Brown" 2 => "H. Goddin" 3 => "O. Kay" 4 => "T. Bünnagel" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Johnson Matthey Tech. Rev." "fecha" => "2017" "volumen" => "61" "paginaInicial" => "183" "paginaFinal" => "189" "itemHostRev" => array:3 [ "pii" => "S0140673611604054" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0730" "etiqueta" => "[58]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "C.W. Wong" 1 => "Y.S. Chan" 2 => "J. Jeevanandam" 3 => "K. Pal" 4 => "M. Bechelany" 5 => "M.A. Elkodous" 6 => "G.S. El-Sayya" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Cluster Sci." "fecha" => "2020" "volumen" => "31" "paginaInicial" => "367" "paginaFinal" => "389" ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0735" "etiqueta" => "[59]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Size-controllable synthesis of lithium niobate nanocrystals using modified Pechini polymeric precursor method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C. Yerlikaya1" 1 => "N. Ullah" 2 => "A.R. Kamali" 3 => "R.V. Kumar" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Therm. Anal. Calorim." "fecha" => "2016" "volumen" => "125" "paginaInicial" => "17" "paginaFinal" => "22" ] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0740" "etiqueta" => "[60]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.L. Gajengia" 1 => "T. Sasakib" 2 => "B.M. Bhanag" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Powder Technol." "fecha" => "2017" "volumen" => "28" "paginaInicial" => "1185" "paginaFinal" => "1192" ] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0745" "etiqueta" => "[61]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Green mediated synthesis of MgO nano-flakes and its electro-chemical applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "N.B. Arun Kumar" 1 => "B. Mahendra" 2 => "J. Sirajudeeen" 3 => "M.R. Anil Kumar" 4 => "H.P. Nagaswarupa" 5 => "C.R. Ravi" 6 => "K.B. Umesh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Today: Proceedings" "fecha" => "2018" "volumen" => "5" "paginaInicial" => "22275" "paginaFinal" => "32228" ] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0750" "etiqueta" => "[62]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T.G. Venkatesha" 1 => "R. Viswanatha" 2 => "Y. Arthoba Nayaka" 3 => "B.K. Chethana" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Eng. J." "fecha" => "2012" "volumen" => "198–199" "paginaInicial" => "1" "paginaFinal" => "10" ] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0755" "etiqueta" => "[63]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adsorption properties and surface chemistry of MgO" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S.N. Lanin" 1 => "N.V. Kovaleva" 2 => "K.S. Pham Tien Dung" 3 => "Lanina" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mosc. Univ. Chem. Bull." "fecha" => "2008" "volumen" => "63" "paginaInicial" => "250" "paginaFinal" => "254" ] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0760" "etiqueta" => "[64]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Moussavi" 1 => "A. khavanin" 2 => "R. Alizadeh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Catal. B: Environ." "fecha" => "2010" "volumen" => "97" "paginaInicial" => "160" "paginaFinal" => "167" ] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0765" "etiqueta" => "[65]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozonation of phenol in water with natural brucite and magnesia" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "K. He" 1 => "Y.M. Dong" 2 => "Z. Li" 3 => "L. Yin" 4 => "A.M. Zhang" 5 => "Y.C. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2008.02.061" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2008" "volumen" => "159" "paginaInicial" => "587" "paginaFinal" => "592" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18400390" "web" => "Medline" ] ] ] ] ] ] ] ] 65 => array:3 [ "identificador" => "bib0770" "etiqueta" => "[66]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H. Xiao" 1 => "Y. Xu" 2 => "M. Yu" 3 => "Q. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/09593331003713677" "Revista" => array:6 [ "tituloSerie" => "Enhanced mineralization of 2 4-dichlorophenol by ozone in the presence of trace permanganate: effect of pH, Environ Technol." "fecha" => "2010" "volumen" => "31" "paginaInicial" => "1295" "paginaFinal" => "1300" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21046960" "web" => "Medline" ] ] ] ] ] ] ] ] 66 => array:3 [ "identificador" => "bib0775" "etiqueta" => "[67]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Application of Heterogeneous Catalytic Ozonation for Refractory Organics in wastewater" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "W.B. Wang" 1 => "H. Zhang" 2 => "F. Wang" 3 => "X. Xiong" 4 => "K. Tian" 5 => "Y. Sun" 6 => "T. Yu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Catalysts" "fecha" => "2019" "volumen" => "9" "paginaInicial" => "241" ] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib0780" "etiqueta" => "[68]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ce/SBA-15 as a heterogeneous ozonation catalyst for efficient mineralization of dimethyl phthalate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H. Yan" 1 => "P. Lu" 2 => "Z. Pan" 3 => "X. Wang" 4 => "Q. Zhang" 5 => "L. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Molecular Catalysis A: Chem." "fecha" => "2013" "volumen" => "377" "paginaInicial" => "57" "paginaFinal" => "64" ] ] ] ] ] ] 68 => array:3 [ "identificador" => "bib0785" "etiqueta" => "[69]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Activity assessment of direct synthesized Fe-SBA-15 for catalytic ozonation of oxalic acid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H. Yan" 1 => "W. Chen" 2 => "G. Liao" 3 => "X. Li" 4 => "S. Ma" 5 => "L. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Sep. Purif. Technol." "fecha" => "2016" "volumen" => "159" "paginaInicial" => "1" "paginaFinal" => "6" ] ] ] ] ] ] 69 => array:3 [ "identificador" => "bib0790" "etiqueta" => "[70]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "BTEX and MTBE adsorption onto raw and thermally modified diatomite" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Aivalioti" 1 => "I. Vamvasakis" 2 => "E. Gidarakos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2010.01.053" "Revista" => array:7 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2010" "volumen" => "178" "paginaInicial" => "136" "paginaFinal" => "143" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20133057" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S2213260019303418" "estado" => "S300" "issn" => "22132600" ] ] ] ] ] ] ] 70 => array:3 [ "identificador" => "bib0795" "etiqueta" => "[71]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H.T. Gomes" 1 => "P.V. Samant" 2 => "P. Serp" 3 => "P. Kalck" 4 => "J.L. Figueiredo" 5 => "J.L. Faria" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Catalysis B Environ." "fecha" => "2004" "volumen" => "54" "paginaInicial" => "175" "paginaFinal" => "182" ] ] ] ] ] ] 71 => array:3 [ "identificador" => "bib0800" "etiqueta" => "[72]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C. Lu" 1 => "F. Su" 2 => "S. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "2008" "volumen" => "254" "paginaInicial" => "7035" "paginaFinal" => "7041" ] ] ] ] ] ] 72 => array:3 [ "identificador" => "bib0805" "etiqueta" => "[73]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adsorption of toluene, ethylbenzene and xylenes by activated carbon-impact of molecular oxygen, Desalin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.M. Yakout" 1 => "A.A.M. Daifullah" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Water Treat." "fecha" => "2014" "volumen" => "52" "paginaInicial" => "4977" "paginaFinal" => "4981" ] ] ] ] ] ] 73 => array:3 [ "identificador" => "bib0810" "etiqueta" => "[74]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes, Colloid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F. Su" …2 ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Surfaces A" "fecha" => "2010" "volumen" => "353" "paginaInicial" => "83" "paginaFinal" => "91" ] ] ] ] ] ] 74 => array:3 [ "identificador" => "bib0815" "etiqueta" => "[75]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ …5] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Water Res." "fecha" => "2000" "volumen" => "34" "paginaInicial" => "620" "paginaFinal" => "628" ] ] ] ] ] ] 75 => array:3 [ "identificador" => "bib0820" "etiqueta" => "[76]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of groundwater contaminated with gasoline components by an ozone/UV process" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ …4] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.chemosphere.2008.06.061" "Revista" => array:6 [ "tituloSerie" => "Chemosphere" "fecha" => "2008" "volumen" => "73" "paginaInicial" => "825" "paginaFinal" => "831" "link" => array:1 [ 0 => array:2 [ …2] ] ] ] ] ] ] ] 76 => array:3 [ "identificador" => "bib0825" "etiqueta" => "[77]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wastewater engineering: treatment and reuse" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ …4] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "fecha" => "2003" "editorial" => "McGraw Hill" ] ] ] ] ] ] 77 => array:3 [ "identificador" => "bib0830" "etiqueta" => "[78]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ …5] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process, Desalination" "fecha" => "2010" "volumen" => "254" "paginaInicial" => "12" "paginaFinal" => "16" ] ] ] ] ] ] 78 => array:3 [ "identificador" => "bib0835" "etiqueta" => "[79]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ …4] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2007.09.057" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2008" "volumen" => "153" "paginaInicial" => "1036" "paginaFinal" => "1042" "link" => array:1 [ 0 => array:2 [ …2] ] ] ] ] ] ] ] 79 => array:3 [ "identificador" => "bib0840" "etiqueta" => "[80]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ …4] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhazmat.2008.10.093" "Revista" => array:6 [ "tituloSerie" => "J. Hazard. Mater." "fecha" => "2009" "volumen" => "165" "paginaInicial" => "915" "paginaFinal" => "922" "link" => array:1 [ 0 => array:2 [ …2] ] ] ] ] ] ] ] 80 => array:3 [ "identificador" => "bib0845" "etiqueta" => "[81]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ …4] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "React. Kinet. Mech. Cat." "fecha" => "2010" "volumen" => "100" "paginaInicial" => "471" "paginaFinal" => "485" ] ] ] ] ] ] 81 => array:3 [ "identificador" => "bib0850" "etiqueta" => "[82]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Catalytic ozonation with metal oxides: an option to control THM formation potential" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ …6] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Water Sci. Tech-W Sup." "fecha" => "2006" "volumen" => "6" "paginaInicial" => "63" "paginaFinal" => "70" ] ] ] ] ] ] 82 => array:3 [ "identificador" => "bib0855" "etiqueta" => "[83]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chemistry of alumina, reactions in aqueous solution and its application in water treatment, Adv" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ …1] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Colloid. Interface" "fecha" => "2004" "volumen" => "110" "paginaInicial" => "19" "paginaFinal" => "48" ] ] ] ] ] ] 83 => array:3 [ "identificador" => "bib0860" "etiqueta" => "[84]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of aluminum oxides surface properties on catalyzed ozonation of 2" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ …6] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "4, 6-trichloroanisole, Sep. Purif. Technol." "fecha" => "2009" "volumen" => "66" "paginaInicial" => "405" "paginaFinal" => "410" ] ] ] ] ] ] 84 => array:3 [ "identificador" => "bib0865" "etiqueta" => "[85]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "C. F. Forster, Wastewater Treatment and Technology, Thomas Telford, London (2003)." ] ] ] 85 => array:3 [ "identificador" => "bib0870" "etiqueta" => "[86]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "M.J. O’Neil, The Merck index: An encyclopedia of chemicals, drugs, and biologicals, 15th Ed. Royal Society of Chemistry (2013)." ] ] ] 86 => array:3 [ "identificador" => "bib0875" "etiqueta" => "[87]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanistic evaluation of mitigation of petroleum hydrocarbon contamination by soil medium" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ …2] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Can. Geotech. J." "fecha" => "1991" "volumen" => "28" "paginaInicial" => "84" "paginaFinal" => "91" ] ] ] ] ] ] 87 => array:3 [ "identificador" => "bib0880" "etiqueta" => "[88]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Petroleum hydrocarbon removal from wastewaters: A review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ …6] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Processes" "fecha" => "2020" "volumen" => "8" "paginaInicial" => "447" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000006000000006/v1_202111210546/S0366317520300650/v1_202111210546/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/0000006000000006/v1_202111210546/S0366317520300650/v1_202111210546/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317520300650?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 7 | 0 | 7 |
2024 October | 36 | 7 | 43 |
2024 September | 27 | 18 | 45 |
2024 August | 33 | 11 | 44 |
2024 July | 21 | 8 | 29 |
2024 June | 22 | 4 | 26 |
2024 May | 22 | 14 | 36 |
2024 April | 22 | 8 | 30 |
2024 March | 70 | 6 | 76 |
2024 February | 49 | 1 | 50 |
2024 January | 89 | 13 | 102 |
2023 December | 35 | 11 | 46 |
2023 November | 89 | 9 | 98 |
2023 October | 85 | 12 | 97 |
2023 September | 104 | 5 | 109 |
2023 August | 85 | 13 | 98 |
2023 July | 28 | 5 | 33 |
2023 June | 50 | 3 | 53 |
2023 May | 86 | 8 | 94 |
2023 April | 86 | 6 | 92 |
2023 March | 51 | 12 | 63 |
2023 February | 50 | 6 | 56 |
2023 January | 57 | 5 | 62 |
2022 December | 43 | 16 | 59 |
2022 November | 53 | 13 | 66 |
2022 October | 34 | 14 | 48 |
2022 September | 35 | 11 | 46 |
2022 August | 34 | 17 | 51 |
2022 July | 32 | 15 | 47 |
2022 June | 26 | 14 | 40 |
2022 May | 32 | 10 | 42 |
2022 April | 24 | 14 | 38 |
2022 March | 58 | 18 | 76 |
2022 February | 63 | 15 | 78 |
2022 January | 99 | 14 | 113 |
2021 December | 69 | 16 | 85 |
2021 November | 54 | 15 | 69 |
2021 October | 36 | 18 | 54 |
2021 September | 15 | 18 | 33 |
2021 August | 18 | 12 | 30 |
2021 July | 17 | 17 | 34 |
2021 June | 22 | 6 | 28 |
2021 May | 25 | 14 | 39 |
2021 April | 36 | 10 | 46 |
2021 March | 15 | 11 | 26 |
2021 February | 14 | 8 | 22 |
2021 January | 21 | 11 | 32 |
2020 December | 18 | 6 | 24 |
2020 November | 17 | 20 | 37 |
2020 October | 13 | 10 | 23 |
2020 September | 14 | 14 | 28 |
2020 August | 12 | 13 | 25 |
2020 July | 7 | 11 | 18 |