was read the article
array:24 [ "pii" => "S0366317521000911" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2021.07.004" "estado" => "S300" "fechaPublicacion" => "2022-01-01" "aid" => "311" "copyright" => "SECV" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2022;61 Supl 1:S40-S49" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:19 [ "pii" => "S0366317521000923" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2021.09.010" "estado" => "S300" "fechaPublicacion" => "2022-01-01" "aid" => "312" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2022;61 Supl 1:S50-S59" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "titulo" => "Experience and lessons learnt in the design, fabrication and deployment of ceramic passive samplers for contaminant monitoring in water" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "S50" "paginaFinal" => "S59" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Experiencia y lecciones aprendidas en el diseño, fabricación y uso de muestreadores pasivos cerámicos para la monitorización de contaminantes en agua" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0030" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 1085 "Ancho" => 1146 "Tamanyo" => 98683 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Silvia Lacorte, Helena Franquet-Griell, Jorge Silva, Victor M. Orera" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Silvia" "apellidos" => "Lacorte" ] 1 => array:2 [ "nombre" => "Helena" "apellidos" => "Franquet-Griell" ] 2 => array:2 [ "nombre" => "Jorge" "apellidos" => "Silva" ] 3 => array:2 [ "nombre" => "Victor M." "apellidos" => "Orera" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Graphical abstract" "clase" => "graphical" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0030"></elsevierMultimedia></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317521000923?idApp=UINPBA00004N" "url" => "/03663175/00000061000000S1/v4_202206010321/S0366317521000923/v4_202206010321/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0366317521000881" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2021.09.007" "estado" => "S300" "fechaPublicacion" => "2022-01-01" "aid" => "308" "copyright" => "SECV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2022;61 Supl 1:S19-S39" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "titulo" => "Laser processing of ceramic materials for electrochemical and high temperature energy applications" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "S19" "paginaFinal" => "S39" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Procesamiento con láser de materiales para aplicaciones energéticas en dispositivos electroquímicos y de alta temperatura" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1244 "Ancho" => 2917 "Tamanyo" => 284375 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Sketch of an oxide ion conducting solid oxide fuel cell showing the different species conduction to and from the triple phase boundaries at the electrodes. Graphic design by Adrián Robles-Férnandez<span class="elsevierStyleInf">.</span></p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Rosa I. Merino, Miguel A. Laguna-Bercero, Ruth Lahoz, Ángel Larrea, Patricia B. Oliete, Alodia Orera, José I. Peña, María Luisa Sanjuán, Daniel Sola" "autores" => array:9 [ 0 => array:2 [ "nombre" => "Rosa I." "apellidos" => "Merino" ] 1 => array:2 [ "nombre" => "Miguel A." "apellidos" => "Laguna-Bercero" ] 2 => array:2 [ "nombre" => "Ruth" "apellidos" => "Lahoz" ] 3 => array:2 [ "nombre" => "Ángel" "apellidos" => "Larrea" ] 4 => array:2 [ "nombre" => "Patricia B." "apellidos" => "Oliete" ] 5 => array:2 [ "nombre" => "Alodia" "apellidos" => "Orera" ] 6 => array:2 [ "nombre" => "José I." "apellidos" => "Peña" ] 7 => array:2 [ "nombre" => "María Luisa" "apellidos" => "Sanjuán" ] 8 => array:2 [ "nombre" => "Daniel" "apellidos" => "Sola" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317521000881?idApp=UINPBA00004N" "url" => "/03663175/00000061000000S1/v4_202206010321/S0366317521000881/v4_202206010321/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "titulo" => "Neodymium doped lanthanide fluoride nanoparticles as contrast agents for luminescent bioimaging and X-ray computed tomography" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "S40" "paginaFinal" => "S49" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Daniel González-Mancebo, Ana I. Becerro, Roxana M. Calderón-Olvera, Eugenio Cantelar, Ariadna Corral, Marcin Balcerzyk, Jesús M. de la Fuente, Manuel Ocaña" "autores" => array:8 [ 0 => array:3 [ "nombre" => "Daniel" "apellidos" => "González-Mancebo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Ana I." "apellidos" => "Becerro" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Roxana M." "apellidos" => "Calderón-Olvera" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Eugenio" "apellidos" => "Cantelar" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "Ariadna" "apellidos" => "Corral" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 5 => array:3 [ "nombre" => "Marcin" "apellidos" => "Balcerzyk" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 6 => array:3 [ "nombre" => "Jesús M." "apellidos" => "de la Fuente" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] ] ] 7 => array:4 [ "nombre" => "Manuel" "apellidos" => "Ocaña" "email" => array:1 [ 0 => "mjurado@icmse.csic.es" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:5 [ 0 => array:3 [ "entidad" => "Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Depto. Física de Materiales, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente no. 7, 28049 Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), c/Thomas Alva Edison 7, 41092 Sevilla, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009 Sevilla, Spain" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Instituto de Nanociencia y Materiales de Aragón, CSIC/University of Zaragoza, and CIBER-BBN, Edificio I+D, c/Mariano Esquillor s/n, 50018 Zaragoza, Spain" "etiqueta" => "e" "identificador" => "aff0025" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Nanopartículas de fluoruro de lantano dopadas con neodimio como agentes de contraste para bioimagen mediante luminiscencia y tomografía computarizada de rayos X" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1652 "Ancho" => 2167 "Tamanyo" => 220381 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">DLS plots showing hydrodynamic size distribution and mean hydrodynamic diameter (<span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">h</span>) of 2%Nd:LaF<span class="elsevierStyleInf">3</span> nanoparticles dispersed in water and saline medium.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Phosphors based on lanthanum trifluoride (LaF<span class="elsevierStyleInf">3</span>) doped with lanthanide cations (Ln<span class="elsevierStyleSup">3+</span>) (Ln:LaF<span class="elsevierStyleInf">3</span>) have been widely investigated owing to their excellent luminescent properties arising from the low energy phonons of the LaF<span class="elsevierStyleInf">3</span> matrix, which involves a low probability of luminescence quenching by phonon-assisted nonradiative decay <a class="elsevierStyleCrossRef" href="#bib0140">[1]</a>. Because of such properties, this kind of phosphors has been proposed for several applications including lighting <a class="elsevierStyleCrossRef" href="#bib0145">[2]</a>, anti-counterfeiting <a class="elsevierStyleCrossRef" href="#bib0150">[3]</a>, sensing <a class="elsevierStyleCrossRefs" href="#bib0155">[4,5]</a>, thermometry <a class="elsevierStyleCrossRefs" href="#bib0165">[6,7]</a>, therapy <a class="elsevierStyleCrossRefs" href="#bib0175">[8–10]</a>, bioimaging <a class="elsevierStyleCrossRefs" href="#bib0190">[11–13]</a> and theranosis <a class="elsevierStyleCrossRef" href="#bib0205">[14]</a>. For the latter application, the Nd<span class="elsevierStyleSup">3+</span>:LaF<span class="elsevierStyleInf">3</span> system is of particular interest since the excitation (∼800<span class="elsevierStyleHsp" style=""></span>nm) and main emission (∼1060<span class="elsevierStyleHsp" style=""></span>nm) wavelength of the Nd<span class="elsevierStyleSup">3+</span> cations lie in the near-infrared (NIR) region within the so-called biological window I (650–950<span class="elsevierStyleHsp" style=""></span>nm) and II (1000–1350<span class="elsevierStyleHsp" style=""></span>nm), respectively, in which undesired effects such as absorption and scattering of radiation by tissues are minimized and the radiation penetration depth is high <a class="elsevierStyleCrossRef" href="#bib0210">[15]</a>. It is also worth mentioning that X-ray computed tomography (CT) is a powerful imaging technique used in biomedical diagnosis that frequently requires the use of contrast agents (CAs). CT contrast increases with increasing atomic number (<span class="elsevierStyleItalic">Z</span>) of the elements that make up the CA <a class="elsevierStyleCrossRef" href="#bib0215">[16]</a>. The main CT CAs used nowadays are compounds based on iodine (<span class="elsevierStyleItalic">Z</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>53) and barium (<span class="elsevierStyleItalic">Z</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56), which show lower <span class="elsevierStyleItalic">Z</span> values than any lanthanide element (from 57 to 71). Therefore, Nd-doped LaF<span class="elsevierStyleInf">3</span> might behave as a dual probe for both, luminescent bioimaging and CT. The use of this kind of dual probes would avoid the administration of different, specific CAs for each technique thus minimizing their possible adverse effects.</p><p id="par0010" class="elsevierStylePara elsevierViewall">It is important to note that particulate CAs for <span class="elsevierStyleItalic">in vivo</span> biomedical applications must meet some specific requirements <a class="elsevierStyleCrossRefs" href="#bib0220">[17,18]</a>. First, the particles must present a uniform size between 20 and 100<span class="elsevierStyleHsp" style=""></span>nm to avoid embolism and the nanoparticles (NPs) premature elimination, since smaller NPs are quickly eliminated through the kidney and larger NPs, by the mononuclear phagocyte system. Second, NPs aggregation in the physiological environment should be avoided to meet the above size criteria, and finally, it is obvious that the NPs must be biocompatible (lack of cytotoxicity).</p><p id="par0015" class="elsevierStylePara elsevierViewall">Up to now, several procedures have been developed to synthesize Nd<span class="elsevierStyleSup">3+</span> doped LaF<span class="elsevierStyleInf">3</span> NPs, most of which are based on wet chemistry routes, specifically, hydrothermal/solvothermal methods in the absence <a class="elsevierStyleCrossRefs" href="#bib0190">[11,19]</a> or the presence <a class="elsevierStyleCrossRefs" href="#bib0195">[12,20–23]</a> of organic additives acting as capping or dispersing agents. Among these methods, only that reported by Cheng et al. <a class="elsevierStyleCrossRef" href="#bib0175">[8]</a>, based on the use of oleic acid (OA) as a capping agent succeeded in producing uniform NPs. However, they presented hydrophobic character, as a consequence of the presence of OA moieties on the NPs surface, which precludes their use for bioapplications. Therefore, the search for synthesis procedures yielding monodisperse Nd:LaF<span class="elsevierStyleInf">3</span> NPs colloidally stable in physiological media is still challenging.</p><p id="par0020" class="elsevierStylePara elsevierViewall">In this paper, a very simple room temperature procedure is reported, which produces uniform and hydrophilic NPs colloidally stable in saline medium. The luminescent properties of these NPs are evaluated as a function of the Nd doping level to find the most efficient phosphor. The X-ray attenuation properties of this system are also analyzed in comparison with a commercial CT CA for the first time in literature. Finally, cytotoxicity experiments are also shown aiming to investigate the suitability of the here reported Nd:LaF<span class="elsevierStyleInf">3</span> NPs for luminescent and CT bioimaging.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Experimental</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Reagents</span><p id="par0025" class="elsevierStylePara elsevierViewall">Ethylene glycol (anhydrous, Sigma Aldrich, 99.8%), lanthanum nitrate (La(NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">3</span>·6H<span class="elsevierStyleInf">2</span>O, Sigma Aldrich, 99%), neodymium nitrate (Nd(NO<span class="elsevierStyleInf">3</span>)<span class="elsevierStyleInf">3</span>·6H<span class="elsevierStyleInf">2</span>O, Sigma Aldrich, 99.9%), sodium tetrafluoroborate (NaBF<span class="elsevierStyleInf">4</span>, Sigma Aldrich, 98%), Iohexol (Sigma Aldrich, analytical standard, ≥95%) and saline medium (physiological serum 0.9% NaCl, B. Braun 250<span class="elsevierStyleHsp" style=""></span>mL) were used as received.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Synthesis of nanoparticles</span><p id="par0030" class="elsevierStylePara elsevierViewall">Nd-doped LaF<span class="elsevierStyleInf">3</span> NPs were synthesized following a method similar to that previously developed by us for the synthesis of europium–bismuth codoped LaF<span class="elsevierStyleInf">3</span><a class="elsevierStyleCrossRef" href="#bib0200">[13]</a>. Briefly, two different solutions were prepared with magnetic stirring at room temperature for 2<span class="elsevierStyleHsp" style=""></span>h. One of them containing lanthanum and neodymium nitrates in 3<span class="elsevierStyleHsp" style=""></span>mL of an ethylene glycol/water mixture (90/10 by volume), and the other one containing sodium tetrafluoroborate (0.36<span class="elsevierStyleHsp" style=""></span>mol/dm<span class="elsevierStyleSup">3</span>) dissolved in 3<span class="elsevierStyleHsp" style=""></span>mL of the same solvents mixture. Both solutions were admixed together and kept under stirring for a couple of minutes to achieve a good homogenization and then aged at room temperature for 2<span class="elsevierStyleHsp" style=""></span>h. The final concentration of lanthanides was kept constant ([La]<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>[Nd]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.1<span class="elsevierStyleHsp" style=""></span>mol/dm<span class="elsevierStyleSup">3</span>) and the Nd/(La<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>Nd) mol% was varied from 0.25% to 2.0%. The resulting suspension was centrifuged and the precipitates washed, twice with ethanol and once with double distilled water. The so obtained particles were dispersed in distilled water or dried at 50<span class="elsevierStyleHsp" style=""></span>°C for some analyses.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Characterization techniques</span><p id="par0035" class="elsevierStylePara elsevierViewall">Transmission electron microscopy (<span class="elsevierStyleItalic">TEM</span>, JEOL2100Plus) was used to examine the shape and size of the nanoparticles. Particle size distributions were obtained from the micrographs by counting several hundreds of particles, using the free software <span class="elsevierStyleItalic">ImageJ</span>. Dynamic light scattering (DLS) was used to obtain additional information about size and colloidal stability of the nanoparticles, both in aqueous and saline solution (0.5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">3</span> of solid). The experiments were carried out using a Malvern Zetasizer Nano-ZS90 equipment, which was used as well to measure the Zeta potential of the suspensions.</p><p id="par0040" class="elsevierStylePara elsevierViewall">The crystalline structure of the prepared nanoparticles was assessed by X-ray diffraction (XRD) using a Panalytical X’Pert Pro diffractometer (Cu Kα) with an X-Celetor detector over an angular range of 5°<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleItalic">θ</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>120° 2<span class="elsevierStyleItalic">θ</span>, 0.02° step width, and 600<span class="elsevierStyleHsp" style=""></span>s counting time. Lattice parameters of the LaF<span class="elsevierStyleInf">3</span> crystal structure were calculated using the Rietveld method with the TOPAS software (TOPAS version 4.2, Bruker AXS, 2009). The parameters refined were: zero of the diffractometer, background coefficients, scale factor, lattice parameters and profile parameters.</p><p id="par0045" class="elsevierStylePara elsevierViewall">The composition of Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles was determined by inductively coupled plasma (ICP) using ICP-AES Horiba Jobin Yvon, Ultima 2 apparatus. Nanoparticles were previously digested with a small amount of hydrochloride acid.</p><p id="par0050" class="elsevierStylePara elsevierViewall">The photoluminescence of the Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles, in powder form, was analyzed by measuring excitation and emission spectra recorded using a CW diode laser @ 810<span class="elsevierStyleHsp" style=""></span>nm as excitation source and an ARC monochromator model SPectraPro 500i with an AsGaIN photodiode, to detect fluorescent emission. The powder samples were placed filling a tiny hole (3<span class="elsevierStyleHsp" style=""></span>mm diameter) practiced in an aluminum foil and sandwiched between two microscope slides.</p><p id="par0055" class="elsevierStylePara elsevierViewall">Nd<span class="elsevierStyleSup">3+</span> decay curves for the <span class="elsevierStyleSup">4</span>F<span class="elsevierStyleInf">3/2</span><span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleSup">4</span>I<span class="elsevierStyleInf">11/2</span> transition (at 1056<span class="elsevierStyleHsp" style=""></span>nm) were obtained under pulsed excitation using a MOPO @<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleInf">exc</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>810<span class="elsevierStyleHsp" style=""></span>nm with a pulse width of 10<span class="elsevierStyleHsp" style=""></span>ns and 10<span class="elsevierStyleHsp" style=""></span>Hz repetition rate. The curves were averaged by a Tektronix DPO4104B-L digital oscilloscope.</p><p id="par0060" class="elsevierStylePara elsevierViewall">For the evaluation of the CT contrast efficiency, aqueous dispersions containing different concentration of the Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles and a commercial CT CA (Iohexol) were prepared. Then, an aliquot (200<span class="elsevierStyleHsp" style=""></span>μL) of each suspension, previously stirred for 2<span class="elsevierStyleHsp" style=""></span>min, was placed in a multiwell microplate along with a Milli-Q water sample as reference for calibration. X-ray attenuation measurements were carried out in a NanoSPECT/CT (Bioscan) using the following acquisition parameters: 106<span class="elsevierStyleHsp" style=""></span>mA current for a 75<span class="elsevierStyleHsp" style=""></span>kV voltage, exposure time per projection of 1500<span class="elsevierStyleHsp" style=""></span>ms and 360 projections per rotation. The final length image was 6<span class="elsevierStyleHsp" style=""></span>cm with a total acquisition time of 18<span class="elsevierStyleHsp" style=""></span>min. The image was reconstructed with Vivoquant image processing software (Invicro), with the exact cone-beam filtered back-projection algorithm and the Shepp Logan 98% filter. Finally, the images were analyzed by PMOD 3.8 software (PMOD Technologies LLC) and a spherical volume of interest (VOIs) of 2<span class="elsevierStyleHsp" style=""></span>mm radius was made within each sample to calculate the X-ray attenuation (in Hounsfield Unit, HU) for each concentration. The final images were represented in a greyscale.</p><p id="par0065" class="elsevierStylePara elsevierViewall">Cell viability was determined using an MTT colorimetric assay. Vero cells were growth in a Dulbecco's Modified Eagle's Medium (DMEM) supplemented with a 5% of glutamine (200<span class="elsevierStyleHsp" style=""></span>mM), 10% fetal bovine serum (FBS), 5% penicillin (5000<span class="elsevierStyleHsp" style=""></span>units/cm<span class="elsevierStyleSup">3</span>) and streptomycin (5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">3</span>), at 37<span class="elsevierStyleHsp" style=""></span>°C in a 4% CO<span class="elsevierStyleInf">2</span> atmosphere. Vero cells were disposed in a 96-weel culture plates (5000<span class="elsevierStyleHsp" style=""></span>cell/plate) in 0.2<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span> of DMEM medium. The medium was replaced, after 24<span class="elsevierStyleHsp" style=""></span>h, with another 0.2<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span> DMEM medium containing different concentrations of Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles (0.5–500<span class="elsevierStyleHsp" style=""></span>μg/mm<span class="elsevierStyleSup">3</span>) and a negative control containing no nanoparticles (non-treated cells). Five replicates were performed per sample. After 24 incubation, the medium was removed and 0.02<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span> of MMT solution (0.5<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">3</span> in phosphate-buffered saline (PBS)) was added to each well. Finally, after incubation for 4<span class="elsevierStyleHsp" style=""></span>h formazan salt was dissolved with 0.2<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span> of dimethyl sulfoxide (DMSO) and the absorbance (Abs) was determined at <span class="elsevierStyleItalic">λ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>570<span class="elsevierStyleHsp" style=""></span>nm on a microplate reader (Biotek ELX800). The relative cell viability (%) related to control wells containing cell culture medium without nanoparticles was calculated by [Abs]test/[Abs]control<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>100.</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Results and discussion</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Morphology, size, and colloidal stability of Nd-doped LaF<span class="elsevierStyleInf">3</span> Nanoparticles</span><p id="par0070" class="elsevierStylePara elsevierViewall">As observed in the TEM images shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>, regardless of the Nd<span class="elsevierStyleSup">3+</span> doping level, all synthesized Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles showed apparent spherical morphology with similar diameter (around 45<span class="elsevierStyleHsp" style=""></span>nm as determined from the histogram included in the figure). Nevertheless, a deeper observation of such micrographs revealed the presence of some elongated, higher contrast particles with a length similar to the diameter of the spherical particles and a thickness of 20<span class="elsevierStyleHsp" style=""></span>nm. This observation suggests that the samples consist of homogeneous, lenticular shape NPs, most of which were deposited with their rounded face parallel to the grid plane, giving rise to the spherical shapes, whereas some other fell down with that face perpendicular to the grid, leading to the observed elongated shapes.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0075" class="elsevierStylePara elsevierViewall">DLS plots for all Nd-doped particles were very similar to those shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>, which correspond to the 2%Nd:LaF<span class="elsevierStyleInf">3</span> sample, taken as a representative example. The hydrodynamic mean diameter obtained in aqueous solution (pH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>5.4) (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>) for this sample was 50<span class="elsevierStyleHsp" style=""></span>nm. This value was very similar to the mean diameter obtained from the TEM image, indicating that the synthesized nanoparticles are well dispersed, probably due to the presence of electrostatic repulsion forces on their surface, as indicated by the high value of zeta potential (+31<span class="elsevierStyleHsp" style=""></span>mV) measured for this sample.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall">To obtain information about the colloidal stability of the Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles in physiological media, they were dispersed in saline medium. In this case, the hydrodynamic diameter obtained (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>) was also very similar (57<span class="elsevierStyleHsp" style=""></span>nm) to that obtained from TEM indicating that the NPs were also colloidally stable in saline medium. The Nd:LaF<span class="elsevierStyleInf">3</span> nanoparticles synthesized in this study meet, therefore, one of the most important requirements for their use <span class="elsevierStyleItalic">in vivo</span>.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">X-ray diffraction</span><p id="par0085" class="elsevierStylePara elsevierViewall">In spite of the low preparation temperature, all samples were crystalline as previously observed for the CeF<span class="elsevierStyleInf">3</span> system synthesized by a similar procedure <a class="elsevierStyleCrossRef" href="#bib0255">[24]</a>. As shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>, the XRD patterns of all Nd-doped nanoparticles present a single set of reflections, which correspond to hexagonal lanthanum trifluoride (PDF 00-032-0483). This compound crystallizes in space group <span class="elsevierStyleItalic">P</span>−<span class="elsevierStyleItalic">3c1</span>. The La<span class="elsevierStyleSup">3+</span> cation is located at the center of a trigonal prism, with 6 fluorine atoms at the top and bottom corners and 3 fluorine atoms at the center of the faces, making a total of 9 F atoms coordinating La. The unit cell volume of the Nd:LaF<span class="elsevierStyleInf">3</span> samples obtained with the Rietveld method (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>) showed a linear decrease with increasing Nd content. This result indicates the substitution of Nd<span class="elsevierStyleSup">3+</span> for La<span class="elsevierStyleSup">3+</span> in the LaF<span class="elsevierStyleInf">3</span> hexagonal lattice as the ionic radius of Nd<span class="elsevierStyleSup">3+</span> (1.163<span class="elsevierStyleHsp" style=""></span>Å, in IX coordination) is smaller than that of La<span class="elsevierStyleSup">3+</span> (1.216<span class="elsevierStyleHsp" style=""></span>Å, in IX coordination). Finally, it is worth noting that the width of the reflections did not appreciably changed with Nd content, indicating a similar crystallinity degree for all doped samples.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Luminescent properties</span><p id="par0090" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>a shows the excitation spectrum of the 2%Nd:LaF<span class="elsevierStyleInf">3</span> NPs recorded by monitoring the emission at 1064<span class="elsevierStyleHsp" style=""></span>nm. The spectra of the other compositions analyzed in this study are qualitatively very similar to this one. This spectrum shows two broad features with maxima at 733<span class="elsevierStyleHsp" style=""></span>nm and 790<span class="elsevierStyleHsp" style=""></span>nm, which correspond to the electronic transitions in the Nd<span class="elsevierStyleSup">3+</span><span class="elsevierStyleItalic">4f</span> shell labeled in the figure. Excitation of the sample at 733<span class="elsevierStyleHsp" style=""></span>nm or 790<span class="elsevierStyleHsp" style=""></span>nm promotes electrons to the <span class="elsevierStyleSup">4</span>F<span class="elsevierStyleInf">7/2</span> and <span class="elsevierStyleSup">4</span>F<span class="elsevierStyleInf">5/2</span> excited states of Nd<span class="elsevierStyleSup">3+</span>, respectively, as shown in the <span class="elsevierStyleItalic">4f</span> energy levels diagram of Nd<span class="elsevierStyleSup">3+</span> in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>c. The Nd<span class="elsevierStyleSup">3+</span> excited electrons then decay non-radiatively to the <span class="elsevierStyleSup">4</span>F<span class="elsevierStyleInf">3/2</span> energy level from which they transit to the <span class="elsevierStyleSup">4</span>I<span class="elsevierStyleInf">13/2</span>, <span class="elsevierStyleSup">4</span>I<span class="elsevierStyleInf">11/2</span> and <span class="elsevierStyleSup">4</span>I<span class="elsevierStyleInf">9/2</span> states giving rise to the emission of infrared light with maxima at around 1320<span class="elsevierStyleHsp" style=""></span>nm, 1064<span class="elsevierStyleHsp" style=""></span>nm and 900<span class="elsevierStyleHsp" style=""></span>nm, respectively. The most intense emission, as observed in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>b, is located at 1064<span class="elsevierStyleHsp" style=""></span>nm, which is inside the biological window II. In this figure, an increase of the intensity of the emission spectra of the Nd:LaF<span class="elsevierStyleInf">3</span> samples with increasing Nd doping level can be also observed, which must be attributed to the increase of the amount of Nd<span class="elsevierStyleSup">3+</span> emitting centers. This behavior is more clearly evidenced in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>d that shows the integrated area under the curve of the emission spectra corresponding to the different Nd-doped LaF<span class="elsevierStyleInf">3</span> samples. Interestingly, such intensity increase was linear only at low Nd contents while a non-linear behavior was observed above 1% Nd. The emission intensity seems to reach its maximum value for a 2%Nd content. This finding is in agreement with previous observations carried out by Chen et al. for Nd-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles synthesized using oleic acid as capping agent <a class="elsevierStyleCrossRef" href="#bib0195">[12]</a>. Such evolution of the emission intensity is consistent with the presence of the well-known concentration quenching effect at high doping levels, when the emitting centers are close enough to each other as to enable energy transfer processes that eventually result in non-radiative emission and subsequent luminescence quenching <a class="elsevierStyleCrossRefs" href="#bib0260">[25,26]</a>.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0095" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a> shows the luminescence decay curves recorded at an emission wavelength of 1064<span class="elsevierStyleHsp" style=""></span>nm for the different Nd-doped LaF<span class="elsevierStyleInf">3</span> samples. All curves were successfully fitted to a biexponential decay of the form:<elsevierMultimedia ident="eq0005"></elsevierMultimedia>where <span class="elsevierStyleItalic">I</span>(<span class="elsevierStyleItalic">t</span>) is the luminescence intensity, <span class="elsevierStyleItalic">t</span> is the time after excitation, and <span class="elsevierStyleItalic">τ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> (<span class="elsevierStyleItalic">i</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1, 2) is the decay time of the <span class="elsevierStyleItalic">i</span>-component, with intensity <span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span>. This biexponential behavior has been usually observed for other lanthanide-based nanoparticulate systems <a class="elsevierStyleCrossRefs" href="#bib0200">[13,27]</a> and arises from the presence of emitting centers in two different locations, namely, in the bulk (long component) and close to the NPs surface (short component) where the luminescence quenching by impurities and defects is more probable to occur. <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> presents the fitting parameters obtained from each curve together with the average decay time (<<span class="elsevierStyleItalic">τ</span>>) calculated as:<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">It can be observed that the average decay time gradually decreases with increasing Nd content, the value for the 2%-doped sample being sensibly lower (53<span class="elsevierStyleHsp" style=""></span>μs) than the others (75–69<span class="elsevierStyleHsp" style=""></span>μs). This result agrees with previously reported observations <a class="elsevierStyleCrossRef" href="#bib0250">[23]</a> and confirms the concentration quenching behavior suggested by the evolution of the emission intensity vs. Nd doping level described above. In summary, it can be concluded that, although the most efficient sample is 0.25%Nd:LaF<span class="elsevierStyleInf">3</span> because of its highest lifetime value, the most interesting sample from the application point of view is the one doped with 2%Nd as it shows the highest emission intensity.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">X-ray attenuation capacity</span><p id="par0105" class="elsevierStylePara elsevierViewall">The LaF<span class="elsevierStyleInf">3</span> nanoparticles doped with 2%Nd were selected for the X-ray attenuation study for the reason given above. <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>a shows the CT phantom images of aqueous suspensions with different concentration of 2%Nd:LaF<span class="elsevierStyleInf">3</span> nanoparticles. The images obtained from aqueous solutions with the same concentration of a commercial CT CA (Iohexol) are also plotted in the figure for comparative purposes. It can be observed that the image contrast clearly increases with increasing NPs and Iohexol concentration, indicating the suitability of our NPs as CA for CT. We have also plotted the X-ray attenuation values, in Hounsfield units, obtained after processing the images shown above, versus the concentration of the CA for both the 2%Nd LaF<span class="elsevierStyleInf">3</span> NPs and Iohexol (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>b). In both cases, the X-ray attenuation increases linearly with increasing CA concentration. However, the slope of the line corresponding to the Nd:LaF<span class="elsevierStyleInf">3</span> NPs is significantly higher (23.5) than that shown by Iohexol (15.3), which indicates the higher X-ray attenuation capacity of the here developed probe.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Cytotoxicity</span><p id="par0110" class="elsevierStylePara elsevierViewall">The cytotoxicity of the Nd:LaF<span class="elsevierStyleInf">3</span> NPs was analyzed by colorimetric MTT assay, following the methodology described in “Experimental” section, using Vero cells. The values obtained for cell survival, higher than 70% in all cases (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>) indicate that there is no significant cytotoxicity for NPs concentrations up to 0.1<span class="elsevierStyleHsp" style=""></span>mg/cm<span class="elsevierStyleSup">3</span>. This demonstrates that the here developed bimodal probe meets the biocompatibility requirement needed for its application in bioimaging.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Conclusions</span><p id="par0115" class="elsevierStylePara elsevierViewall">Uniform neodymium-doped lanthanum trifluoride nanoparticles with hydrophilic character have been synthesized at room temperature by a homogeneous precipitation method in an ethylene glycol/water mixed solvent. The doped nanoparticles showed a lenticular shape with mean diameter around 45<span class="elsevierStyleHsp" style=""></span>nm, irrespective of the neodymium doping level. The luminescent properties of the synthesized samples were analyzed as a function of the Nd content to find the optimum phosphor. On excitation with near infrared light (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>733<span class="elsevierStyleHsp" style=""></span>nm), all samples displayed intense luminescence within the second biological window. Lifetime measurements revealed that the maximum luminescence efficiency was attained for the most diluted samples (≤1% Nd<span class="elsevierStyleSup">3+</span>) since such magnitude decreased for the heavier doped sample (2%) as a consequence of concentration quenching. Nevertheless, the latter showed the strongest luminescence due to their higher content in luminescent centers, this sample being, therefore, the most interesting one from the application point of view. In addition, the X-ray attenuation capability of this phosphor has been evaluated for the first time in literature finding that it showed better attenuation properties than a commercial computed tomography contrast agent (Iohexol) indicating the superior suitability of the former for such imaging technique. Finally, the obtained nanoparticles were colloidally stable in saline medium and showed a high biocompatibility, meeting the mean requirements for their use in bioimaging applications.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1722403" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1521750" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1722404" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1521751" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Experimental" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Reagents" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Synthesis of nanoparticles" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Characterization techniques" ] ] ] 6 => array:3 [ "identificador" => "sec0030" "titulo" => "Results and discussion" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Morphology, size, and colloidal stability of Nd-doped LaF Nanoparticles" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "X-ray diffraction" ] 2 => array:2 [ "identificador" => "sec0045" "titulo" => "Luminescent properties" ] 3 => array:2 [ "identificador" => "sec0050" "titulo" => "X-ray attenuation capacity" ] 4 => array:2 [ "identificador" => "sec0055" "titulo" => "Cytotoxicity" ] ] ] 7 => array:2 [ "identificador" => "sec0060" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "xack607876" "titulo" => "Acknowledgements" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2021-04-29" "fechaAceptado" => "2021-07-15" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1521750" "palabras" => array:6 [ 0 => "Neodymium" 1 => "Lanthanum fluoride" 2 => "Nanoparticles" 3 => "Luminescence" 4 => "Computed tomography" 5 => "Cytotoxicity" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1521751" "palabras" => array:6 [ 0 => "Neodimio" 1 => "Fluoruro de lantano" 2 => "Nanopartículas" 3 => "Luminiscencia" 4 => "Tomografía computarizada" 5 => "Citotoxicidad" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The synthesis of uniform neodymium-doped lanthanum trifluoride nanoparticles with lenticular shape and a mean diameter around 45<span class="elsevierStyleHsp" style=""></span>nm by using a homogeneous precipitation method is reported. The luminescent properties of the synthesized samples in terms of their emission spectra and emission lifetime are analyzed as a function of the Nd content to find the optimum phosphor and its suitability for luminescent imaging in the second biological window. The X-ray attenuation properties of the optimum phosphor are evaluated to investigate their additional ability as contrast agent for X-ray computed tomography. Finally, the colloidal stability of the obtained nanoparticles in physiological medium and their cytotoxicity are also analyzed to assess their aptness for <span class="elsevierStyleItalic">in vivo</span> bioimaging applications.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">En este trabajo se ha desarrollado un método de síntesis de nanopartículas uniformes de trifluoruro de lantano dopadas con neodimio, con forma lenticular y un diámetro medio en torno a 45<span class="elsevierStyleHsp" style=""></span>nm, basado en un proceso de precipitación homogénea en medio acuoso. Las propiedades luminiscentes de las muestras sintetizadas en términos de sus espectros de emisión y tiempo de vida de las emisiones se han analizado en función del contenido de neodimio (Nd) para determinar el nanofósforo óptimo y su idoneidad para la obtención de imágenes luminiscentes en la segunda ventana biológica. Asimismo, se han evaluado las propiedades de atenuación de rayos X del nanofósforo óptimo para valorar su capacidad adicional como agente de contraste para tomografía computarizada de rayos X. Por último, también se han analizado la estabilidad coloidal de las nanopartículas obtenidas en medio fisiológico y su citotoxicidad para determinar su aplicabilidad para la obtención de imágenes biológicas <span class="elsevierStyleItalic">in vivo</span>.</p></span>" ] ] "multimedia" => array:11 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 3528 "Ancho" => 2500 "Tamanyo" => 1021422 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">TEM micrographs (left) and the corresponding histograms showing size distribution (right) of the LaF<span class="elsevierStyleInf">3</span> nanoparticles doped with different amounts of Nd<span class="elsevierStyleSup">3+</span>.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1652 "Ancho" => 2167 "Tamanyo" => 220381 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">DLS plots showing hydrodynamic size distribution and mean hydrodynamic diameter (<span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">h</span>) of 2%Nd:LaF<span class="elsevierStyleInf">3</span> nanoparticles dispersed in water and saline medium.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1977 "Ancho" => 2500 "Tamanyo" => 466462 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Experimental XRD patterns of LaF<span class="elsevierStyleInf">3</span> nanoparticles doped with different amounts of Nd<span class="elsevierStyleSup">3+</span>. The hexagonal pattern of LaF<span class="elsevierStyleInf">3</span> (ICDD No: 00-0032-0483) is shown at the bottom in black.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2386 "Ancho" => 2917 "Tamanyo" => 430668 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">(a) Excitation spectrum of the 2%Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> sample. (b) Emission spectra of LaF<span class="elsevierStyleInf">3</span> nanoparticles doped with different amounts of Nd<span class="elsevierStyleSup">3+</span>. (c) Nd<span class="elsevierStyleSup">3+</span> electronic energy levels diagram. (d) Integrated area between 850 and 1400<span class="elsevierStyleHsp" style=""></span>nm of the spectra shown in (b) versus Nd<span class="elsevierStyleSup">3+</span> concentration.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1875 "Ancho" => 2500 "Tamanyo" => 377523 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Temporal evolution of the <span class="elsevierStyleSup">4</span>F<span class="elsevierStyleInf">3/2</span><span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleSup">4</span>I<span class="elsevierStyleInf">11/2</span> luminescence (1064<span class="elsevierStyleHsp" style=""></span>nm) for Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles having different doping levels: (a) 0.25%, (b) 0.5%, (c) 1.0% and (d) 2.0% (excitation at 532<span class="elsevierStyleHsp" style=""></span>nm using the second harmonics of a Nd:YAG laser).</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 3360 "Ancho" => 2500 "Tamanyo" => 484741 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">X-ray attenuation phantom images (a) and X-ray attenuation values in Hounsfield units (HU) (b) of aqueous suspensions having different concentration of 2%Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles and Iohexol.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1677 "Ancho" => 2167 "Tamanyo" => 532805 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Cellular viability of the 2%Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles incubated with Vero cells for 24<span class="elsevierStyleHsp" style=""></span>h and determined by MTT assays. The percentage of viability of cells was expressed relative to control cells.</p>" ] ] 7 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Nd<span class="elsevierStyleSup">3+</span>/(Nd<span class="elsevierStyleSup">3+</span><span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span> La<span class="elsevierStyleSup">3+</span>)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Unit cell volume (Å<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Nominal (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">ICP (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">329.02 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">328.99 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">328.90 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.33 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">328.68 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2924481.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Nominal and experimental composition, obtained by ICP, and unit cell volume, calculated by Rietveld refinement, of the Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles.</p>" ] ] 8 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">% Nd<span class="elsevierStyleSup">3+</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">τ</span><span class="elsevierStyleInf">1</span> (μs) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">A<span class="elsevierStyleInf">1</span> (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">τ</span><span class="elsevierStyleInf">2</span> (μs) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">A<span class="elsevierStyleInf">2</span> (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><<span class="elsevierStyleItalic">τ</span>> (μs) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">78 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">107 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">75 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">79 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">84 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">69 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">53 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2924482.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Fitting parameters of the bi-exponential temporal dependence for the luminescence decay curves of the Nd<span class="elsevierStyleSup">3+</span>-doped nanoparticles (recorded at the dominant emission of Nd<span class="elsevierStyleSup">3+</span>) at different concentrations.</p>" ] ] 9 => array:6 [ "identificador" => "eq0005" "etiqueta" => "[1]" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "I(t)=I1 exp−tτ1+I2 exp−tτ2" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 2507 "Alto" => 33 "Ancho" => 219 ] ] 10 => array:6 [ "identificador" => "eq0010" "etiqueta" => "[2]" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "τ=∫0∞tI(t)dt∫0∞I(t)dt=τ12I1+τ22I2τ1I1+τ2I2" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 3113 "Alto" => 44 "Ancho" => 192 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:27 [ 0 => array:3 [ "identificador" => "bib0140" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Silica-coated Ln<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles as robust down- and upconverting biolabels" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Sivakumar" 1 => "P.R. Diamente" 2 => "F.C.J.M. van Veggel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/chem.200600224" "Revista" => array:6 [ "tituloSerie" => "Chem. Eur. J." "fecha" => "2006" "volumen" => "12" "paginaInicial" => "5878" "paginaFinal" => "5884" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16741910" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0145" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bright white light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln<span class="elsevierStyleSup">3+</span> doped LaF<span class="elsevierStyleInf">3</span> nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Sivakumar" 1 => "F.C.J.M. van Veggel" 2 => "M. Raudsepp" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/ja052583o" "Revista" => array:6 [ "tituloSerie" => "J. Am. Chem. Soc." "fecha" => "2005" "volumen" => "127" "paginaInicial" => "12464" "paginaFinal" => "12465" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16144374" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0150" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Controllable preparation of carboxymethyl cellulose/LaF<span class="elsevierStyleInf">3</span>:Eu<span class="elsevierStyleSup">3+</span> composites and its application in anti-counterfeiting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y. Zhong" 1 => "Q. Wang" 2 => "G. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijbiomac.2020.07.271" "Revista" => array:6 [ "tituloSerie" => "Int. J. Biol. Macromol." "fecha" => "2020" "volumen" => "164" "paginaInicial" => "2224" "paginaFinal" => "2231" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32771508" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0155" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The stable and water-soluble neodymium-doped lanthanide fluoride nanoparticles for near infrared probing of copper ion" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F.M. Xue" 1 => "H.F. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.talanta.2012.07.034" "Revista" => array:6 [ "tituloSerie" => "Talanta" "fecha" => "2012" "volumen" => "99" "paginaInicial" => "1057" "paginaFinal" => "1061" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22967663" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0160" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LaF<span class="elsevierStyleInf">3</span> nanoparticle-assisted sensitive detection of protein kinase activity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y. Fan" 1 => "Y. Wang" 2 => "P. Wang" 3 => "Z. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c4ay01635a" "Revista" => array:5 [ "tituloSerie" => "Anal. Methods" "fecha" => "2014" "volumen" => "6" "paginaInicial" => "8621" "paginaFinal" => "8626" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0165" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:14 [ 0 => "E. Clayton Ximendes" 1 => "W. Queiroz Santos" 2 => "U. Rocha" 3 => "U.K. Kagola" 4 => "F. Sanz-Rodríguez" 5 => "N. Fernández" 6 => "A. da Silva Gouveia-Neto" 7 => "D. Bravo" 8 => "A. Martín Domingo" 9 => "B. del Rosal" 10 => "C.D.S. Brites" 11 => "L. Dias Carlos" 12 => "D. Jaque" 13 => "C. Jacinto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/acs.nanolett.5b04611" "Revista" => array:6 [ "tituloSerie" => "Nano Lett." "fecha" => "2016" "volumen" => "16" "paginaInicial" => "1695" "paginaFinal" => "1703" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26845418" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0170" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Luminescence nanothermometry based on Pr<span class="elsevierStyleSup">3+</span>: LaF<span class="elsevierStyleInf">3</span> single core and Pr<span class="elsevierStyleSup">3+</span>: LaF<span class="elsevierStyleInf">3</span>/LaF<span class="elsevierStyleInf">3</span> core/shell nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "M.S. Pudovkin" 1 => "D.A. Koryakovtseva" 2 => "E.V. Lukinova" 3 => "S.L. Korableva" 4 => "Sh.R. Khusnutdinova" 5 => "A.G. Kiiamov" 6 => "A.S. Nizamutdinov" 7 => "V.V. Semashko" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2019/2618307" "Revista" => array:2 [ "tituloSerie" => "Adv. Mater. Sci. Eng." "fecha" => "2019" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0175" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Non-invasive photodynamic therapy in brain cancer by use of Tb<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles in combination with photosensitizer through X-ray irradiation: a proof-of-concept study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.H. Chen" 1 => "Y.J. Jenh" 2 => "S.K. Wu" 3 => "Y.S. Chen" 4 => "N. Hanagata" 5 => "F.H. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s11671-017-1840-3" "Revista" => array:5 [ "tituloSerie" => "Nanoscale Res. Lett." "fecha" => "2017" "volumen" => "12" "paginaInicial" => "62" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28110445" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0180" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LaF<span class="elsevierStyleInf">3</span>:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R. Lv" 1 => "G. Yang" 2 => "F. He" 3 => "Y. Dai" 4 => "S. Gai" 5 => "P. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c4nr04336g" "Revista" => array:6 [ "tituloSerie" => "Nanoscale" "fecha" => "2014" "volumen" => "6" "paginaInicial" => "14799" "paginaFinal" => "14809" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25359551" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0185" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interaction of genetically encoded photosensitizers with scintillating nanoparticles for X-ray activated photodynamic therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.C. Micheletto" 1 => "E.J. Guidelli" 2 => "A.J. Costa-Filho" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/acsami.0c19041" "Revista" => array:6 [ "tituloSerie" => "ACS Appl. Mater. Interfaces" "fecha" => "2021" "volumen" => "13" "paginaInicial" => "2289" "paginaFinal" => "2302" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33405500" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0190" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neodymium-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles for fluorescence bioimaging in the second biological window" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:12 [ 0 => "U. Rocha" 1 => "K.U. Kumar" 2 => "C. Jacinto" 3 => "I. Villa" 4 => "F. Sanz-Rodríguez" 5 => "M.C. Iglesias de la Cruz" 6 => "A. Juarranz" 7 => "E. Carrasco" 8 => "F.C.J.M. van Veggel" 9 => "E. Bovero" 10 => "J. García Solé" 11 => "D. Jaque" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/smll.201301716" "Revista" => array:6 [ "tituloSerie" => "Small" "fecha" => "2014" "volumen" => "10" "paginaInicial" => "1141" "paginaFinal" => "1154" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24123958" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0195" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "In vivo optical bioimaging by using Nd-doped LaF<span class="elsevierStyleInf">3</span> luminescent nanorods in the second near-infrared window" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Cheng" 1 => "L. Liu" 2 => "Q. Yang" 3 => "Y. Li" 4 => "S. Zeng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jre.2018.11.014" "Revista" => array:5 [ "tituloSerie" => "J. Rare Earths" "fecha" => "2019" "volumen" => "37" "paginaInicial" => "931" "paginaFinal" => "936" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0200" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhancing luminescence and X-ray absorption capacity of Eu<span class="elsevierStyleSup">3+</span>:LaF<span class="elsevierStyleInf">3</span> nanoparticles by Bi<span class="elsevierStyleSup">3+</span>-codoping" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "D. González-Mancebo" 1 => "A.I. Becerro" 2 => "A. Corral" 3 => "M. Moros" 4 => "M. Balcerzyk" 5 => "J.M. de la Fuente" 6 => "M. Ocaña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/acsomega.8b03160" "Revista" => array:5 [ "tituloSerie" => "ACS Omega" "fecha" => "2019" "volumen" => "4" "paginaInicial" => "765" "paginaFinal" => "774" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0205" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "K. Chauhan" 1 => "P. Sengar" 2 => "K. Juarez-Moreno" 3 => "G.A. Hirata" 4 => "R. Vazquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcis.2020.07.043" "Revista" => array:6 [ "tituloSerie" => "J. Colloid Interface Sci." "fecha" => "2020" "volumen" => "580" "paginaInicial" => "365" "paginaFinal" => "376" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32688126" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0210" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inorganic nanoparticles for optical bioimaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D. Jaque" 1 => "C. Richard" 2 => "B. Viana" 3 => "K. Soga" 4 => "X. Liu" 5 => "J. García Solé" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1364/AOP.8.000001" "Revista" => array:5 [ "tituloSerie" => "Adv. Opt. Photon." "fecha" => "2016" "volumen" => "8" "paginaInicial" => "1" "paginaFinal" => "103" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0215" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metal-based X-ray contrast media" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.B. Yu" 1 => "A.D. Watson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/cr980441p" "Revista" => array:6 [ "tituloSerie" => "Chem. Rev." "fecha" => "1999" "volumen" => "99" "paginaInicial" => "2353" "paginaFinal" => "2377" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11749484" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0220" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lanthanide-doped up-converting nanoparticles: merits and challenges" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Gnach" 1 => "A. Bednarkiewicz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nantod.2012.10.006" "Revista" => array:5 [ "tituloSerie" => "Nano Today" "fecha" => "2012" "volumen" => "7" "paginaInicial" => "532" "paginaFinal" => "563" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0225" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and tracking" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "X. Duan" 1 => "Y. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/smll.201201390" "Revista" => array:6 [ "tituloSerie" => "Small" "fecha" => "2013" "volumen" => "9" "paginaInicial" => "1521" "paginaFinal" => "1532" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23019091" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0230" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Facile synthesis of water-soluble LaF<span class="elsevierStyleInf">3</span>:Ln<span class="elsevierStyleSup">3+</span> nanocrystals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F. Wang" 1 => "Y. Zhang" 2 => "X. Fan" 3 => "M. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/b518262j" "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem." "fecha" => "2006" "volumen" => "16" "paginaInicial" => "1031" "paginaFinal" => "1034" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0235" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lanthanide-doped nanoparticles with excellent luminescent properties in organic media" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.W. Stouwdam" 1 => "G.A. Hebbink" 2 => "J. Huskens" 3 => "F.C.J.M. van Veggel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/cm034495d" "Revista" => array:5 [ "tituloSerie" => "Chem. Mater." "fecha" => "2003" "volumen" => "15" "paginaInicial" => "4604" "paginaFinal" => "4616" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0240" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of organic surfactant on fluorescence concentration quenching of Nd<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "K. Cui" 1 => "C. Gao" 2 => "X. Cui" 3 => "C. Hou" 4 => "J. She" 5 => "B. Peng" 6 => "W. Wei" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1364/OL.34.002826" "Revista" => array:6 [ "tituloSerie" => "Opt. Lett." "fecha" => "2009" "volumen" => "34" "paginaInicial" => "2826" "paginaFinal" => "2828" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19756118" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0245" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of surface grafting coefficient and chain length of fatty acids on the luminescence of neodymium<span class="elsevierStyleSup">3+</span>-doped LaF<span class="elsevierStyleInf">3</span> nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.K. Nampoothiri" 1 => "M.N. Gandhia" 2 => "A.R. Kulkarni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c4tc02646b" "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem. C" "fecha" => "2015" "volumen" => "3" "paginaInicial" => "1817" "paginaFinal" => "1822" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0250" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of concentration dependence of relative fluorescence quantum yield and brightness in first biological window of wavelengths for aqueous colloidal solutions of Nd<span class="elsevierStyleSup">3+</span>:LaF<span class="elsevierStyleInf">3</span> and Nd<span class="elsevierStyleSup">3+</span>:KY<span class="elsevierStyleInf">3</span>F<span class="elsevierStyleInf">10</span> nanocrystals synthesized by microwave-hydrothermal treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:12 [ 0 => "Y.V. Orlovskii" 1 => "A.V. Popov" 2 => "E.O. Orlovskaya" 3 => "A.S. Vanetsev" 4 => "E.A. Vagapova" 5 => "M. Rähn" 6 => "V. Sammelselg" 7 => "I. Sildos" 8 => "A.E. Baranchikov" 9 => "P.V. Grachev" 10 => "V.B. Loschenov" 11 => "A.V. Ryabova" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jallcom.2018.05.027" "Revista" => array:5 [ "tituloSerie" => "J. Alloys Compd." "fecha" => "2018" "volumen" => "756" "paginaInicial" => "182" "paginaFinal" => "192" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0255" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Room temperature synthesis of water-dispersible Ln<span class="elsevierStyleSup">3+</span>:CeF<span class="elsevierStyleInf">3</span> (Ln<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Nd, Tb) nanoparticles with different morphology as bimodal probes for fluorescence and CT imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "D. González-Mancebo" 1 => "A.I. Becerro" 2 => "T.C. Rojas" 3 => "A. Olivencia" 4 => "A. Corral" 5 => "M. Balcerzyk" 6 => "E. Cantelar" 7 => "F. Cussó" 8 => "M. Ocaña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcis.2018.03.007" "Revista" => array:6 [ "tituloSerie" => "J. Colloid Interface Sci." "fecha" => "2018" "volumen" => "520" "paginaInicial" => "134" "paginaFinal" => "144" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29533853" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0260" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A facile synthesis and photoluminescent properties of redispersible CeF<span class="elsevierStyleInf">3</span>, CeF<span class="elsevierStyleInf">3</span>:Tb<span class="elsevierStyleSup">3+</span>, CeF<span class="elsevierStyleInf">3</span>:Tb<span class="elsevierStyleSup">3+</span>/LaF<span class="elsevierStyleInf">3</span> (core/shell) nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "Z.L. Wang" 1 => "Z.W. Quan" 2 => "P.Y. Jia" 3 => "C.K. Lin" 4 => "Y. Luo" 5 => "Y. Chen" 6 => "J. Fang" 7 => "W. Zhou" 8 => "C.J.O. Connor" 9 => "J. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/cm052360x" "Revista" => array:5 [ "tituloSerie" => "Chem. Mater." "fecha" => "2006" "volumen" => "18" "paginaInicial" => "2030" "paginaFinal" => "2037" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0265" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Green–yellow–red tunable luminescence from Eu<span class="elsevierStyleSup">3+</span>–Ho<span class="elsevierStyleSup">3+</span>-doped TeO<span class="elsevierStyleInf">2</span>–GeO<span class="elsevierStyleInf">2</span>–Nb<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> glass" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y. Bu" 1 => "X. Wang" 2 => "X. Yan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Optoelectron. Adv. Mater." "fecha" => "2013" "volumen" => "7" "paginaInicial" => "325" "paginaFinal" => "328" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0270" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Morphology control of uniform CaMoO<span class="elsevierStyleInf">4</span> microarchitectures and development of white light emitting phosphors by Ln doping (Ln<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Dy<span class="elsevierStyleSup">3+</span>, Eu<span class="elsevierStyleSup">3+</span>)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Laguna" 1 => "N.O. Nuñez" 2 => "A.I. Becerro" 3 => "M. Ocaña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c6ce02611g" "Revista" => array:5 [ "tituloSerie" => "CrystEngComm" "fecha" => "2017" "volumen" => "19" "paginaInicial" => "1590" "paginaFinal" => "1600" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack607876" "titulo" => "Acknowledgements" "texto" => "<p id="par0120" class="elsevierStylePara elsevierViewall">Financial support was provided by the <span class="elsevierStyleGrantSponsor" id="gs1">Spanish Ministry of Science, Innovation and Universities</span> under grant <span class="elsevierStyleGrantNumber" refid="gs1">RTI2018-094426-B-I00</span> (AEI/FEDER, UE), the <span class="elsevierStyleGrantSponsor" id="gs2">Spanish Ministry of Science and Innovation</span> under project <span class="elsevierStyleGrantNumber" refid="gs2">PID2019-110632RB-I00</span> and <span class="elsevierStyleGrantSponsor" id="gs3">Fondo Social de la DGA</span> (grupos DGA). R.M. Calderón-Olvera thanks CONACYT-770734 postdoctoral grant. This work is dedicated to the memory of Victor M. Orera, a special scientist and a good friend.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/00000061000000S1/v4_202206010321/S0366317521000911/v4_202206010321/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/03663175/00000061000000S1/v4_202206010321/S0366317521000911/v4_202206010321/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317521000911?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 0 | 5 |
2024 October | 23 | 0 | 23 |
2024 September | 18 | 7 | 25 |
2024 August | 30 | 14 | 44 |
2024 July | 21 | 2 | 23 |
2024 June | 27 | 9 | 36 |
2024 May | 37 | 10 | 47 |
2024 April | 29 | 10 | 39 |
2024 March | 42 | 14 | 56 |
2024 February | 26 | 10 | 36 |
2024 January | 59 | 19 | 78 |
2023 December | 30 | 11 | 41 |
2023 November | 29 | 16 | 45 |
2023 October | 41 | 16 | 57 |
2023 September | 43 | 5 | 48 |
2023 August | 58 | 15 | 73 |
2023 July | 33 | 5 | 38 |
2023 June | 51 | 10 | 61 |
2023 May | 93 | 11 | 104 |
2023 April | 106 | 7 | 113 |
2023 March | 73 | 6 | 79 |
2023 February | 46 | 8 | 54 |
2023 January | 39 | 4 | 43 |
2022 December | 49 | 10 | 59 |
2022 November | 39 | 12 | 51 |
2022 October | 35 | 9 | 44 |
2022 September | 30 | 12 | 42 |
2022 August | 33 | 11 | 44 |
2022 July | 32 | 16 | 48 |
2022 June | 26 | 15 | 41 |
2022 May | 38 | 14 | 52 |
2022 April | 29 | 17 | 46 |
2022 March | 94 | 18 | 112 |
2022 February | 49 | 8 | 57 |
2022 January | 80 | 18 | 98 |
2021 December | 54 | 12 | 66 |
2021 November | 11 | 11 | 22 |