was read the article
array:23 [ "pii" => "S0366317522000395" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2022.06.003" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "347" "copyright" => "The Authors" "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2023;62:357-67" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0366317523000031" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2022.12.003" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "359" "copyright" => "The Authors" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2023;62:368-78" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "titulo" => "Parametric study of the correlation between location and size of superficial cracks in the deflection of traditional tiles based on finite element analysis" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "368" "paginaFinal" => "378" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Estudio paramétrico de la correlación entre la localización y el tamaño de las grietas superficiales en la deflexión de las baldosas tradicionales a partir del análisis de elementos finitos" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 1707 "Ancho" => 2508 "Tamanyo" => 889972 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">FEA-3 superficial fit of <span class="elsevierStyleItalic">y</span> vs. <span class="elsevierStyleItalic">x</span> and <span class="elsevierStyleItalic">d</span>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Beatriz Defez, María Moncho-Santonja, Silvia Aparisi-Navarro, Guillermo Peris-Fajarnés" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Beatriz" "apellidos" => "Defez" ] 1 => array:2 [ "nombre" => "María" "apellidos" => "Moncho-Santonja" ] 2 => array:2 [ "nombre" => "Silvia" "apellidos" => "Aparisi-Navarro" ] 3 => array:2 [ "nombre" => "Guillermo" "apellidos" => "Peris-Fajarnés" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317523000031?idApp=UINPBA00004N" "url" => "/03663175/0000006200000004/v1_202307310822/S0366317523000031/v1_202307310822/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0366317522000383" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2022.05.004" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "346" "copyright" => "The Author(s)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2023;62:348-56" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "titulo" => "Sol–gel/hydrothermal synthesis of well-aligned ZnO nanorods" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "348" "paginaFinal" => "356" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Síntesis por el método sol gel y el tratamiento hidrotermal de nanobarras bien alineadas de ZnO" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0045" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 584 "Ancho" => 1333 "Tamanyo" => 104195 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Fabiola del Carmen Gómez Torres, José Luis Cervantes López, Angélica Silvestre López Rodríguez, Pio Sifuentes Gallardo, Erik Ramírez Morales, Germán Pérez Hernández, Juan Carlos Díaz Guillen, Laura Lorena Díaz Flores" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Fabiola del Carmen" "apellidos" => "Gómez Torres" ] 1 => array:2 [ "nombre" => "José" "apellidos" => "Luis Cervantes López" ] 2 => array:2 [ "nombre" => "Angélica Silvestre" "apellidos" => "López Rodríguez" ] 3 => array:2 [ "nombre" => "Pio" "apellidos" => "Sifuentes Gallardo" ] 4 => array:2 [ "nombre" => "Erik" "apellidos" => "Ramírez Morales" ] 5 => array:2 [ "nombre" => "Germán" "apellidos" => "Pérez Hernández" ] 6 => array:2 [ "nombre" => "Juan Carlos" "apellidos" => "Díaz Guillen" ] 7 => array:2 [ "nombre" => "Laura Lorena" "apellidos" => "Díaz Flores" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Graphical abstract" "clase" => "graphical" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0045"></elsevierMultimedia></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317522000383?idApp=UINPBA00004N" "url" => "/03663175/0000006200000004/v1_202307310822/S0366317522000383/v1_202307310822/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "titulo" => "Synthesis of aluminum-mesoporous MCM-41 humidity control material from thin-film transistor liquid crystal display waste glass and sandblasting waste and its application" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "357" "paginaFinal" => "367" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Ya-Wen Lin, Wei-Hao Lee, Chiao-Ying Chen, Yan-Jun Liu, Wei-Qing Zhang, Mei-Yu Lin, Kae-Long Lin" "autores" => array:7 [ 0 => array:3 [ "nombre" => "Ya-Wen" "apellidos" => "Lin" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Wei-Hao" "apellidos" => "Lee" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Chiao-Ying" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Yan-Jun" "apellidos" => "Liu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "Wei-Qing" "apellidos" => "Zhang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 5 => array:3 [ "nombre" => "Mei-Yu" "apellidos" => "Lin" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 6 => array:4 [ "nombre" => "Kae-Long" "apellidos" => "Lin" "email" => array:1 [ 0 => "klllin@niu.edu.tw" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei City 106, Taiwan, ROC" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Environmental Engineering, National Ilan University, Yilan city 260, Taiwan, ROC" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Síntesis de material de control de humedad MCM-41 mesoporoso de aluminio a partir de vidrio de desecho de pantalla de cristal líquido de transistor de película delgada y desechos de chorro de arena y su aplicación" ] ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0035" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 872 "Ancho" => 1333 "Tamanyo" => 129385 ] ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">In the optoelectronic industry, a large amount of thin film transistor liquid crystal display (TFT-LCD) waste glass is generated during panel manufacturing, assembly and cutting. TFT-LCD waste contains potentially carcinogenic compounds, which are likely to have a negative impact on the environment and human health <a class="elsevierStyleCrossRef" href="#bib0265">[1]</a>. In addition, sandblasting (SB) waste is the surface etching process after the silicon wafer is cut, and the surface of the silicon material is optimized through the use of abrasive sand, thereby mass production of SB waste in the upstream factory of the solar cell module. In the past, most of these wastes were treated by incineration or landfill, thus wasting valuable materials. Afroz et al. <a class="elsevierStyleCrossRef" href="#bib0270">[2]</a> pointed out that waste electrical and electronic equipment (WEEE) is currently considered to be one of the fastest growing waste streams in the world (3–5%) <a class="elsevierStyleCrossRef" href="#bib0270">[2]</a>. In addition, despite this plethora, reports on MCM-41mesoporous material synthesis from TFT-LCD waste glass and SB waste are still scarce in literature. Therefore, recycling WEEE products can reduce the use of original resources in the manufacturing process, thereby helping to reduce environmental pollution. Therefore, from an environmental and economic point of view, a cleaner process to add value and provide resource reuse and safe disposal research for solid waste is of great significance.</p><p id="par0010" class="elsevierStylePara elsevierViewall">In the early 1990s, scientists at Mobil Petroleum Corporation discovered an ordered mesoporous silicate/aluminosilicate material, which they called the M41S series <a class="elsevierStyleCrossRefs" href="#bib0275">[3–5]</a>. Since then, a series of studies have been conducted, in which the influence of the concentration of the surface active agent on the prepared mesoscopic particles was studied, and three structural arrangements were determined: a hexagonal structure - Mobil Composition of Matter No. 41 (MCM-41), a cubic structure – Mobil Composition of Matter No. 48 (MCM-48) and a layered structure – Mobil Composition of Matter No. 50 (MCM-50). Among them, MCM-41 is the most studied mesoporous material because of its good thermal, hydrothermal and hydrolytic stability along with its high surface area and pore volume <a class="elsevierStyleCrossRefs" href="#bib0290">[6–9]</a>. In addition, MCM-41 can prevent the agglomeration of a supported metal oxide by forming a bond between the surface silicon hydroxyl bridge and the deposited oxide <a class="elsevierStyleCrossRef" href="#bib0310">[10]</a>. It has been reported that the incorporation of Al into the MCM-41 framework can provide the resulting Al-MCM-41 material with Bronsted acid sites while exhibiting good adsorption affinity, thereby broadening its potential application <a class="elsevierStyleCrossRefs" href="#bib0315">[11,12]</a>. The mesoporous material of MCM-41 can be prepared by a variety of synthetic methods, such as a hydrothermal treatment <a class="elsevierStyleCrossRef" href="#bib0325">[13]</a>, a sol–gel method <a class="elsevierStyleCrossRef" href="#bib0330">[14]</a>, co-condensation method <a class="elsevierStyleCrossRef" href="#bib0335">[15]</a>, and an impregnation method <a class="elsevierStyleCrossRef" href="#bib0340">[16]</a>. The hydrothermal treatment method is the preferred method because it is simple and the operational complexity is low; furthermore, it has been reported that the hydrothermal treatment can increase the structural stability, acidity, activity and surface area of the mesoporous material <a class="elsevierStyleCrossRef" href="#bib0345">[17]</a>. The usual synthesis procedure of is to use tetraethylorthosilicate (TEOS) or tetramethylorthosilicate (TMOS) as silica source <a class="elsevierStyleCrossRef" href="#bib0350">[18]</a>. However, the process suffered from the drawback of the expensive and toxic silica source. The cost of silicon dioxide precursors commonly used in the synthesis process represents a major problem in the use of such materials in regard to economic and environmental considerations <a class="elsevierStyleCrossRefs" href="#bib0355">[19,20]</a>. The economic and environmental considerations have attracted an interest in the use of inexpensive inorganic silicate as a starting material. Cazula et al. <a class="elsevierStyleCrossRef" href="#bib0365">[21]</a> described the synthesis of Si-MCM-41 molecular sieves using TEOS and rice husk silica as silica sources. The results indicated that despite using different silica sources, the two materials presented very similar characteristics, evidencing the feasibility of using an inexpensive waste material as silica source in the synthesis of these molecular sieves, once the synthesis conditions have been satisfactorily adjusted <a class="elsevierStyleCrossRef" href="#bib0365">[21]</a>. Therefore, some research has been conducted to develop mesoporous silica using low-cost silica resources, including fly ash <a class="elsevierStyleCrossRef" href="#bib0370">[22]</a>, wheat stem ash <a class="elsevierStyleCrossRef" href="#bib0375">[23]</a>, bentonite <a class="elsevierStyleCrossRef" href="#bib0380">[24]</a>, Diatomaceous marl <a class="elsevierStyleCrossRef" href="#bib0385">[25]</a>, palm kernel shell ash <a class="elsevierStyleCrossRef" href="#bib0390">[26]</a> and packaging resin waste <a class="elsevierStyleCrossRef" href="#bib0395">[27]</a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Taiwan has a subtropical island climate, with warm and humid weather conditions year round; thus, the hot climate and high humidity of Taiwan provide ideal conditions for mold. According to the literature, the most comfortable range of relative humidity for the human body is 40–70% <a class="elsevierStyleCrossRef" href="#bib0400">[28]</a>; additionally, excessively dry or humid environments are not conducive to human health and life <a class="elsevierStyleCrossRef" href="#bib0405">[29]</a>. Therefore, to achieve effective humidity control while also avoiding the use of energy-consuming methods, such as mechanical air conditioning, the development of new and energy-free indoor humidity control technologies has been explored to save energy and provide healthy living environments <a class="elsevierStyleCrossRefs" href="#bib0410">[30,31]</a>. If low-cost silicon dioxide resources (TFT-LCD waste glass and SB waste) can be used to produce aluminum-mesoporous A1-MCM-41 humidity control material (Al-MHCM), then the humidity of the environment can be adjusted while decreasing the amount of pollution in the environment. There is no need to consume energy or use other equipment, as long as the original capillary phenomenon of the mesoporous material is used, the designed Al-MHCM exhibits moisture adsorption and desorption characteristics. Therefore, the purpose of this study is to alkali fusion and hydrothermally synthesize TFT-LCD waste glass and SB as silicon and aluminum sources. This strategy can determine the ideal conditions for obtaining a material with suitable performance in the field of water vapor adsorption-desorption, which uses WEEE as a source of silicon and aluminum instead of commercial TEOS. This study is the first attempt to measure the influence of various temperatures and Si/Al molar ratios on the pore structure and surface characteristics of Al-MHCM produced from waste materials and its performance toward environmental humidity control.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materials</span><p id="par0020" class="elsevierStylePara elsevierViewall">The TFT-LCD waste glass and SB waste were provided by the Central Taiwan Resource Recycling Plant and Solar Energy Technology Company, respectively. These wastes were dried, ground and sieved to achieve a particle size<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>74<span class="elsevierStyleHsp" style=""></span>μm. As shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>, its chemical composition was measured and analyzed by X-ray fluorescence (XRF) spectroscopy. The main components of the TFT-LCD waste glass were SiO<span class="elsevierStyleInf">2</span>, Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> and CaO, which accounted for 69.70%, 15.30% and 8.45%, respectively, and the SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratio was approximately 4.5. The main components of the SB waste were SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>, which accounted for 70.10% and 13.90%, respectively. The SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> ratio was calculated to be approximately 5.0. Among them, TFT-LCD waste glass mainly came from material cut from glass substrates, and SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> were the main composition of the glass network structure, thereby providing an abundance of SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Extraction of SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> in an alkaline fusion process</span><p id="par0025" class="elsevierStylePara elsevierViewall">TFT-LCD waste glass and SB waste were mixed together, and silicate and aluminosilicate were extracted through an alkali fusion temperature of 450<span class="elsevierStyleHsp" style=""></span>°C with the addition of a 1.5 proportion of NaOH (mixed powder:NaOH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1:1.5). The powder was mixed with distilled water (liquid/solid ratio, L/S<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>5, 10, 20) at different ratios to dissolve the aqueous solution containing SiO<span class="elsevierStyleInf">2</span> and Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> and then filtered to obtain sodium aluminosilicate solutions with SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios of 26, 41.8 and 56.3.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Synthesis of aluminum-mesoporous A1-MCM-41 humidity control material (Al-MHCM)</span><p id="par0030" class="elsevierStylePara elsevierViewall">Al-MHCM was synthesized by using the hydrothermal method. First, the required amount of CTAB was dissolved in 30<span class="elsevierStyleHsp" style=""></span>mL of deionized water and ammonia to form a template solution. Sodium aluminosilicate solutions with the different SiO<span class="elsevierStyleInf">2</span>/Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> molar ratios stated above were slowly added to the CTAB template solution while stirring. Sulfuric acid (1<span class="elsevierStyleHsp" style=""></span>M) was used to adjust the pH of the dispersion, and then the dispersion was stirred continuously for 2<span class="elsevierStyleHsp" style=""></span>h. The mixed solution was then transferred to a stainless steel autoclave (200<span class="elsevierStyleHsp" style=""></span>mL) lined with Teflon. The mixed solution was heated at different hydrothermal temperatures (90, 105, 120<span class="elsevierStyleHsp" style=""></span>°C) for 48<span class="elsevierStyleHsp" style=""></span>h. Next, the obtained product was washed with distilled water, filtered, and then dried in an oven at 105<span class="elsevierStyleHsp" style=""></span>°C overnight. Finally, the obtained product was calcined up to 550<span class="elsevierStyleHsp" style=""></span>°C at a heating rate of 5<span class="elsevierStyleHsp" style=""></span>°C/min in air to burn off the surfactant from the matrix. The obtained mesoporous material was called Al-MHCM.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Test and methods</span><p id="par0035" class="elsevierStylePara elsevierViewall">The used TFT-LCD waste glass and SB waste were analyzed by an XRF fluorescence analyzer (RIX 2000) to obtain the chemical element composition of the raw materials. The pore structure of Al-MHCM was determined by X-ray powder diffraction (D8A XRD) to identify the crystalline phases in the material. Diffraction data were collected between 2<span class="elsevierStyleItalic">θ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1–8° using the Ni-filtered CuKα radiation (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.1542<span class="elsevierStyleHsp" style=""></span>nm). Scanning electron microscopy (SEM; American FEI company (Nova Nanosem 230) was used to characterize the surface morphology and structural changes of the sample. High-resolution solid state <span class="elsevierStyleSup">27</span>Al MAS NMR spectra was recorded on a Bruker AVANCE III 400<span class="elsevierStyleHsp" style=""></span>MHz NMR spectrometer at 104.26<span class="elsevierStyleHsp" style=""></span>MHz, with a pulse width of 1.00<span class="elsevierStyleHsp" style=""></span>μs, a pulse delay of 1<span class="elsevierStyleHsp" style=""></span>s, a spinning rate of 15<span class="elsevierStyleHsp" style=""></span>kHz and 1000 scans. Specific surface area, pore volume, and average pore size of materials were determined at 77<span class="elsevierStyleHsp" style=""></span>K on a nitrogen adsorption–desorption apparatus (TriStar 3000) and calculated by the Brunaer–Emmett–Teller (BET) method. Samples were degassed at 250<span class="elsevierStyleHsp" style=""></span>°C for 2<span class="elsevierStyleHsp" style=""></span>h before performing the adsorption-desorption experiment. Pore-size distributions were created using the adsorption branch of the isotherm via the Barrett–Joyner–Halenda (BJH) model.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Moisture adsorption/desorption test</span><p id="par0040" class="elsevierStylePara elsevierViewall">The moisture adsorption/desorption test was performed in accordance with the method for measuring the equilibrium moisture content in Japanese Industrial Standards JIS A 1475. First, the test body was dried in an oven at 105<span class="elsevierStyleHsp" style=""></span>°C for 24<span class="elsevierStyleHsp" style=""></span>h, and its constant weight was recorded. Next, the sample was placed in a constant temperature and humidity controller, and the relative humidity was changed to 10, 33, 55, 75, 85, and 95% at a fixed temperature of 23<span class="elsevierStyleHsp" style=""></span>°C. The constant weight of adsorption (from low to high) and desorption (from high to low) of the sample was recorded at this relative humidity. Finally, the moisture adsorption per unit area of mesoporous Al-MHCM was obtained at different times. The standard of the Japanese Industrial Regulations (JIS A 1470) humidity control building materials regulations was verified, and the standard value, based on the average equilibrium moisture content (>5<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">3</span>), was evaluated.</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Results and discussion</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Crystal phase analysis of Al-MHCM</span><p id="par0045" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows the XRD diffraction patterns of Al-MHCM synthesized at different temperatures and different Si/Al molar ratios. The XRD pattern of Al-MHCM shows that the main diffraction peaks are at 2.34 and 2.42° along with 3.90 and 4.50°, which correspond to the characteristic <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(100)</span>, <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(110)</span> and <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(200)</span> peaks of MCM-41, respectively <a class="elsevierStyleCrossRef" href="#bib0420">[32]</a>. At lower Si/Al ratios, the main characteristic peaks are slightly shifted, which is mainly due to the 2<span class="elsevierStyleItalic">θ</span> angle shift caused by the high aluminum content in the source material; this result means that Al atom doping in the crystal lattice changes the crystallinity of the product and causes poor sorting. As the Al content increases, Al-MHCM exhibits a decrease in lattice parameters, which is related to the difference in the ionic radius of Al and Si ions <a class="elsevierStyleCrossRef" href="#bib0425">[33]</a>. Therefore, when the Si/Al molar ratio from 41.8 increase to 56.9 (temperature is 90<span class="elsevierStyleHsp" style=""></span>°C), the intensity of the diffraction peak gradually decreases, indicating that the order of the structure decreases <a class="elsevierStyleCrossRefs" href="#bib0430">[34,35]</a>. In addition, it can be found from the change in the hydrothermal temperature that when the temperature increased from 90 to 120<span class="elsevierStyleHsp" style=""></span>°C, the main characteristic peak <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(100)</span> has relatively stable crystallinity. The characteristic peaks (<span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">110</span> and <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">200</span>) representing the hexagonal structure also have a tendency to gradually form as the hydrothermal temperature increased because when the hydrothermal temperature increased, the balance between the solid and liquid phases of the initial gel is destroyed; this imbalance accelerates the aggregation of silicate species on the micelle surfaces. Therefore, a high hydrothermal temperature is conducive to the formation of a well-ordered MCM-41 structure because the high temperature will accelerate the condensation rate of silicate on the silicon dioxide wall <a class="elsevierStyleCrossRefs" href="#bib0440">[36,37]</a>.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Solid-state <span class="elsevierStyleSup">27</span>NMR analysis of Al-MHCM</span><p id="par0050" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleSup">27</span>Al NMR spectrum was used to track the change in the position of Al added to Al-MHCM. All the spectra of the current Al-MHCM material are dominated by the signal of the tetrahedral-coordinated aluminum (Al<span class="elsevierStyleSup">IV</span>) species with <span class="elsevierStyleSup">27</span>Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>53<span class="elsevierStyleHsp" style=""></span>ppm (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>), confirming that they were related to the Bronsted acid site. If the material can exist in the form of tetrahedrons, the number of Bronsted acid sites on the surface of Al-MHCM will increase, thus increasing the affinity and catalytic performance of the material and simultaneously strengthening the humidity-regulating performance <a class="elsevierStyleCrossRef" href="#bib0430">[34]</a>. The weak signal at <span class="elsevierStyleSup">27</span>Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0<span class="elsevierStyleHsp" style=""></span>ppm is due to the octahedral-coordinated aluminum (Al<span class="elsevierStyleSup">VI</span>) species (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(c)) <a class="elsevierStyleCrossRef" href="#bib0450">[38]</a>, and the appearance of these extra-framework aluminum species indicated that partial dealumination has occurred, which was related to Lewis acid sites <a class="elsevierStyleCrossRef" href="#bib0455">[39]</a>. However, when the Si/Al molar ratio is lower (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(a), (b)), more Al atoms (Al<span class="elsevierStyleSup">VI</span>) are introduced into the silicon dioxide framework, thereby generating and enhancing the Al<span class="elsevierStyleSup">IV</span> signal. It is well known that Al<span class="elsevierStyleSup">IV</span> can enhance the acid strength of adjacent SiOH groups, thereby forming Brønsted acid sites (BAS) with high catalytic activity <a class="elsevierStyleCrossRef" href="#bib0460">[40]</a>. In addition, from the area content of the tetrahedral-coordinated aluminum (Al<span class="elsevierStyleSup">IV</span>) species, it can be seen that when the hydrothermal temperature is low (90<span class="elsevierStyleHsp" style=""></span>°C), the occupied area is between 38.50 and 52.02%, and when the hydrothermal temperature is increased to 105<span class="elsevierStyleHsp" style=""></span>°C, the area occupied by Al<span class="elsevierStyleSup">IV</span> species is between 52.67 and 59.61%. In addition, when the hydrothermal temperature is 120<span class="elsevierStyleHsp" style=""></span>°C, the area occupied by species at 53<span class="elsevierStyleHsp" style=""></span>ppm increased to 54.98–67.17%. These results show that as the absence of Al<span class="elsevierStyleSup">VI</span> sites for the Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26 or 41.8 means simply that all Al is incorporated as Al<span class="elsevierStyleSup">IV</span>. However, previous studies have shown that by decreasing the Si/Al ratio, the Al<span class="elsevierStyleSup">IV</span> signal can be enhanced <a class="elsevierStyleCrossRef" href="#bib0465">[41]</a>, this led to more Bronsted acid sites on the surface of Al-MHCM.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">N<span class="elsevierStyleInf">2</span> isothermal adsorption-desorption of Al-MHCM</span><p id="par0055" class="elsevierStylePara elsevierViewall">The N<span class="elsevierStyleInf">2</span> adsorption–desorption phenomenon provides a technique for determining the surface area, pore volume and pore size distribution. The N<span class="elsevierStyleInf">2</span> isotherm adsorption–desorption curve is shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>. All the synthesized Al-MHCM junctions exhibit a type-IV nitrogen adsorption-desorption isotherm. According to the International Union of Pure and Applied Chemistry chemical nomenclature (IUPAC), this is a typical feature of homogeneous mesoporous materials <a class="elsevierStyleCrossRef" href="#bib0470">[42]</a>, attributed to the retention of the ordered mesoporous structure <a class="elsevierStyleCrossRef" href="#bib0475">[43]</a>. The isotherm shows the following three stages: when the low relative pressure is 0.2–0.3, the monolayer adsorption of nitrogen on the mesoporous wall is observed; and when the relative pressure is 0.3–0.4, a sharp increase occurs under the same parameter conditions with different Si/Al ratios. This is characteristic of capillary condensation in mesopores, which shows a narrow hysteresis loop. Finally, when the relative pressure is 0.5–0.9, the synthesized Al-MHCM shows slightly tilted plateau, which is caused by multilayer adsorption on the outer surface of particles <a class="elsevierStyleCrossRef" href="#bib0480">[44]</a>. In addition, when the Si/Al ratio is 26, 41.8 and 56.3, the specific surface area ranges from 506–587, 733–795 and 781–1013<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>/g, respectively. The adsorption–desorption characteristics for all samples are typical of mesoporous materials, indicating that mesoporous materials have better adsorption performance.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0060" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a> shows the total pore volume and pore diameter calculated by the N<span class="elsevierStyleInf">2</span> adsorption–desorption measurements and the BJH method and are listed in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>. The pore size distribution curves of all Al-MHCM shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a> are unimodal and belong to a narrow range of mesopores that are approximately 3–4<span class="elsevierStyleHsp" style=""></span>nm, indicating the existence of mesopores in the particles. Thus, this result confirms the successful synthesis of a uniform mesoporous material, and is consistent with the BJH method for calculating the pore size (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). In addition, <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(a) shows that when the Si/Al ratio is 26, the pore volume of the synthesized Al-MHCM is 0.4–0.5<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g. When the Si/Al ratio is increased to 56.3, the pore volume is increased to 0.9–1.4<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g. Based on the above knowledge, the increase in the Si/Al ratio and hydrothermal temperature can form an ordered mesoporous structure. The pore volume and specific surface area of the synthesized Al-MHCM increase accordingly, with the highest pore volume being 0.97<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g, and the highest specific surface area being 1013<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>/g (Al-MHCMc<span class="elsevierStyleInf">3</span>). The results of Sohrabnezhad and Mooshangaie show that adding metal (such as Ag/AgBr) to an MCM-41 material will increase the pore size and pore volume, which indicated that some of the metal was dispersed on the inner pore surfaces of the MCM-41 material <a class="elsevierStyleCrossRef" href="#bib0485">[45]</a>. The unit cell parameter “<span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span>” can also be determined using the equation <span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>(2<span class="elsevierStyleHsp" style=""></span>*<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(100)</span>/√3) from the diffraction peak (1 0 0). <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> shows the computed <span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">(100)</span> and <span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span> values. Furthermore, <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> shows the surface area and pore volume of three samples. The maximum value of <span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span> is 4.69<span class="elsevierStyleHsp" style=""></span>nm. The increase of a<span class="elsevierStyleInf">0</span> indicates that the pore wall of silica becomes thicker and more orderly with the increase of Si/Al molar ratio and hydrothermal temperature. Additionally, when the hydrothermal temperature is 120<span class="elsevierStyleHsp" style=""></span>°C, the Si/Al molar ratio from 41.8 increase to 56.3, the <span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span> of Al-MHCMc<span class="elsevierStyleInf">3</span> from 4.69<span class="elsevierStyleHsp" style=""></span>nm decreased to 4.45<span class="elsevierStyleHsp" style=""></span>nm, this behavior might possibly be caused by a slight distortion of the mesoporous channels due to the partial polymerization over pore structures induced by superficial reaction. The thickness of the pore wall was calculated to be 0.72–1.51<span class="elsevierStyleHsp" style=""></span>nm, indicating the high hydrothermal stability of the synthesized Al-MHCM.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">SEM analysis of Al-MHCM</span><p id="par0065" class="elsevierStylePara elsevierViewall">In this study, the microstructure changes of Al-MHCM were observed through FE-SEM. The morphology of the Al-MHCM material at a 50,000× magnification is shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>. During the hydrothermal treatment under alkaline conditions (pH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10), silicate and aluminosilicate are extracted from the TFT-LCD waste glass and SB waste. Then, the extracted silicate and aluminosilicate are mixed with the CTAB surfactant to form a mesoporous silica material similar to MCM-41 <a class="elsevierStyleCrossRef" href="#bib0470">[42]</a>. In addition, it can be seen that even after the calcination process (550<span class="elsevierStyleHsp" style=""></span>°C), the macrostructure of Al-MHCM remains intact, thus confirming the high thermal stability of Al-MHCM <a class="elsevierStyleCrossRef" href="#bib0490">[46]</a>. The morphology of Al-MHCM is clearly observed as round nanoparticles, and the appearance of the particles is mainly spherical. From the observations in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>(a)–(c), when the Si/Al ratio is 26 and the hydrothermal temperature is 90–120<span class="elsevierStyleHsp" style=""></span>°C, the size distribution of Al-MHCM crystals is approximately 0.13–0.22<span class="elsevierStyleHsp" style=""></span>μm. When the Si/Al ratio is increased to 41.8, the crystal size is approximately 0.11–0.40<span class="elsevierStyleHsp" style=""></span>μm. At the highest Si/Al ratio (56.3), the Al-MHCM crystal size distribution is approximately 0.22–0.60<span class="elsevierStyleHsp" style=""></span>μm. This phenomenon shows that the increase in hydrothermal temperature causes the crystal size to increase significantly. According to the study by Tian et al. <a class="elsevierStyleCrossRef" href="#bib0495">[47]</a> this increase in crystal size was mainly due to the increased synthesis temperature and rapid hydrolysis reaction that affected the uniformity of the generated particles <a class="elsevierStyleCrossRef" href="#bib0495">[47]</a>. In addition, Xie et al. <a class="elsevierStyleCrossRef" href="#bib0500">[48]</a> stated that the difference between products obtained by the same synthesis method was due to the formation of delayed structures due to changes in the reaction medium pH or the occurrence of uneven precipitation <a class="elsevierStyleCrossRef" href="#bib0500">[48]</a>.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">The 24<span class="elsevierStyleHsp" style=""></span>h equilibrium moisture content curve of Al-MHCM</span><p id="par0070" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows the equilibrium moisture content of Al-MHCM at different relative humidities (RH%). The solid line in <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows the process of water vapor adsorption, and the dotted line is the process of water vapor desorption. The results show that the equilibrium water contents of all samples increase with increasing RH%. However, there is a significant difference in the equilibrium moisture content in the material, especially when the RH% is high (RH%<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>75–95). <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows that when the Si/Al ratio is 26, the RH% of the synthesized Al-MHCM is 95%, the equilibrium moisture content is in the range of 65.20–76.60<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>(a)). When the Si/Al ratio is 41.8, the highest equilibrium moisture content is shown to be in the range of 81.34–91.45<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>(b)). In addition, when the Si/Al ratio is 56.3 and the RH% of the synthesized Al-MHCM is 95%, the equilibrium moisture content is 69.63–75.15<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>(c)). Rahim et al. <a class="elsevierStyleCrossRef" href="#bib0505">[49]</a> noted that the equilibrium moisture content of rape straw concrete and hemp concrete ranged from 17.8 to 9.8<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> at a high RH%<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>95 <a class="elsevierStyleCrossRef" href="#bib0505">[49]</a>. Hu et al. <a class="elsevierStyleCrossRef" href="#bib0345">[17]</a> confirmed that more mesopores can make the material more conducive to capillary condensation and improve the moisture adsorption capacity, and the equilibrium moisture content of diatomite/ground calcium carbonate composite material was 11.7<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> at RH%<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>98 <a class="elsevierStyleCrossRef" href="#bib0345">[17]</a>. The results confirm that the equilibrium moisture content of Al-MHCM is better than the rape straw concrete and hemp concrete (9.8–17.8<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>) <a class="elsevierStyleCrossRef" href="#bib0505">[49]</a>, and that of a diatomite/ground calcium carbonate composite aterial (11.7<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>) <a class="elsevierStyleCrossRef" href="#bib0345">[17]</a>. These results show that the adsorption characteristics are closely related to the specific surface area and pore size. In the process of water vapor adsorption and desorption, the pore size of Al-MHCM is significantly related to capillary condensation <a class="elsevierStyleCrossRef" href="#bib0510">[50]</a>. According to the study of Xie et al. <a class="elsevierStyleCrossRef" href="#bib0500">[48]</a> when the effective pore size for capillary condensation was 2.93–9.09<span class="elsevierStyleHsp" style=""></span>nm when temperature was 23<span class="elsevierStyleHsp" style=""></span>°C and relative humidity was 33–75% <a class="elsevierStyleCrossRef" href="#bib0500">[48]</a>. This theory corresponds to the result that the pore diameters of all synthesized materials in this study were between 3 and 4<span class="elsevierStyleHsp" style=""></span>nm. Therefore, the pore size distribution of the synthesized Al-MHCM was in the mesopore range, so that it can perform the most effective humidity control function. In addition, Jansen et al. <a class="elsevierStyleCrossRef" href="#bib0515">[51]</a> observed that water saturation increased with relative humidity in a relatively nonlinear manner. Furthermore, they found that the diffusion coefficient did not depend on the water concentration itself because there was no difference in the diffusion rate between adsorption and desorption <a class="elsevierStyleCrossRef" href="#bib0515">[51]</a>. It can be clearly observed that when the RH% gradually increased, the larger pores also can be filled up <a class="elsevierStyleCrossRef" href="#bib0500">[48]</a>. This result showed that the larger slopes and peaks in the isothermal equilibrium moisture content curve indicated higher moisture storage capacity, and the smallest hysteresis loop between the moisture adsorption and desorption curves indicated that the water desorption capacity was similar to the water adsorption process <a class="elsevierStyleCrossRef" href="#bib0520">[52]</a>. In addition, when the low hydrothermal synthesis temperature is 90<span class="elsevierStyleHsp" style=""></span>°C, the equilibrium moisture content of Al-MHCM at RH%<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>95 is 73.19<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>, and when the hydrothermal temperature is increased to 120<span class="elsevierStyleHsp" style=""></span>°C, the equilibrium moisture content increased significantly to 76.60<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>(a)). The adsorption-desorption curve shows a hysteresis loop. Since the inner wall of the pore is in a wet state after the loss of water during the dehumidification process, the contact angle of the water molecules on the inner wall of the pore is small, thereby delaying the desorption effect. In contrast, in the process of moisture adsorption, the inner wall of the dry pore has a better moisture adsorption effect with its large water contact angle. The above results show that the change in the Si/Al ratio exhibits no obvious difference in regard to the change in equilibrium moisture content, while an increase in the hydrothermal temperature can destroy the balance between the solid and liquid phases of the initial gel; thus, the concentration of silicate and aluminosilicate in the liquid phase results in the aggregation of silicate species on the microcell surface. Aggregation promotes the crystallization process and increased the pore structure and specific surface area of Al-MHCM. Therefore, the equilibrium moisture content gradually increased.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Conclusion</span><p id="par0075" class="elsevierStylePara elsevierViewall">This study uses TFT-LCD waste glass and SB waste to produce Al-MHCM. The microscopic characteristics of the synthesized mesoporous Al-MHCM are established by changing the Si/Al ratio and hydrothermal temperature and analyzing the moisture adsorption performance of each sample. The XRD analysis shows that a high hydrothermal temperature is conducive to the formation of a well-ordered structure. The <span class="elsevierStyleSup">27</span>Al-NMR analysis shows that Al<span class="elsevierStyleSup">VI</span> can be converted more effectively to a tetrahedron (Td-Al), which is the form that enters the skeleton. However, the crystal size increased as the Si/Al ratio increased, and the pore volume and specific surface area of the synthesized Al-MHCM increase accordingly; the highest pore volume is 0.97<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g, and the highest specific surface area is 1013<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>/g (Al-MHCMc<span class="elsevierStyleInf">3</span>). These results show that the addition of Al metal to Al-MHCM will increase the pore size and pore volume; therefore, some of the metal is dispersed on the inner pore surface of the material. The pore size of Al-MHCM is significantly related to the capillary condensation, and it is expected that the adsorption characteristics are closely related to the specific surface area and pore size. Finally, when the Si/Al ratio is 41.8, the highest equilibrium moisture content is shown to be 91.45<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>. The results confirm that the equilibrium moisture content of Al-MHCM is better than the rape straw concrete and hemp concrete (9.8–17.8<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>), and that of a diatomite/ground calcium carbonate composite aterial (11.7<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>). In this study, it is only used as a test for the adsorption and desorption performance of water vapor, and the results confirm that the sample can be reused by drying the sample at 105<span class="elsevierStyleHsp" style=""></span>°C, which is the simplest. In addition, during the preparation of Al-MHCM, Al-MHCM also needs to be obtained by calcination at 550<span class="elsevierStyleHsp" style=""></span>°C. Therefore, the results confirm that the physicochemical properties of Al-MHCM will not be changed in the equilibrium moisture content test. In future, this study will focus more on the stability test of the research samples, and further study the physical and chemical properties of the samples after humidity test. Therefore, Al-MHCM's products as humidity control building materials exhibit excellent equilibrium moisture content, have excellent pore characteristics, and can be used in various construction applications at low cost.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Authors’ contributions</span><p id="par0080" class="elsevierStylePara elsevierViewall">Ya-Wen Lin: Writing – original draft. Methodology. onceptualization. Wei-Hao Lee: Supervision. Chiao-Ying Chen: Validation, Investigation, Methodology.Yan-Jun Liu: Validation. Wei-Qing Zhang: Investigation. Mei-Yu Lin: Validation. Kae-Long Lin: Resources, writing-commenting and editing. All authors reviewed and approved the final manuscript.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Availability of data and materials</span><p id="par0085" class="elsevierStylePara elsevierViewall">All data generated or analyzed during this study are available from the corresponding author upon request.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Funding</span><p id="par0090" class="elsevierStylePara elsevierViewall">This work was supported by <span class="elsevierStyleGrantSponsor" id="gs1">Taiwan Ministry of Science and Technology</span>, for supporting this research financially (Contract No. MOST-107-2221-E-197-002-MY3).</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Conflict of interests</span><p id="par0095" class="elsevierStylePara elsevierViewall">The authors declare they have no competing interests.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:15 [ 0 => array:3 [ "identificador" => "xres1940929" "titulo" => "Graphical abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:3 [ "identificador" => "xres1940930" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec1672352" "titulo" => "Keywords" ] 3 => array:3 [ "identificador" => "xres1940931" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0015" ] ] ] 4 => array:2 [ "identificador" => "xpalclavsec1672351" "titulo" => "Palabras clave" ] 5 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 6 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Materials" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Extraction of SiO and AlO in an alkaline fusion process" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Synthesis of aluminum-mesoporous A1-MCM-41 humidity control material (Al-MHCM)" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Test and methods" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Moisture adsorption/desorption test" ] ] ] 7 => array:3 [ "identificador" => "sec0040" "titulo" => "Results and discussion" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Crystal phase analysis of Al-MHCM" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "Solid-state NMR analysis of Al-MHCM" ] 2 => array:2 [ "identificador" => "sec0055" "titulo" => "N isothermal adsorption-desorption of Al-MHCM" ] 3 => array:2 [ "identificador" => "sec0060" "titulo" => "SEM analysis of Al-MHCM" ] 4 => array:2 [ "identificador" => "sec0065" "titulo" => "The 24 h equilibrium moisture content curve of Al-MHCM" ] ] ] 8 => array:2 [ "identificador" => "sec0070" "titulo" => "Conclusion" ] 9 => array:2 [ "identificador" => "sec0075" "titulo" => "Authors’ contributions" ] 10 => array:2 [ "identificador" => "sec0080" "titulo" => "Availability of data and materials" ] 11 => array:2 [ "identificador" => "sec0085" "titulo" => "Funding" ] 12 => array:2 [ "identificador" => "sec0090" "titulo" => "Conflict of interests" ] 13 => array:2 [ "identificador" => "xack680142" "titulo" => "Acknowledgements" ] 14 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2021-11-30" "fechaAceptado" => "2022-06-10" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1672352" "palabras" => array:5 [ 0 => "Mesoporous humidity control material" 1 => "Hydrothermal synthesis method" 2 => "Alkali fusion process" 3 => "Liquid crystal display waste glass" 4 => "Waste recycling" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1672351" "palabras" => array:6 [ 0 => "Material mesoporoso para el control de la humedad" 1 => "Método de síntesis hidrotermal" 2 => "Proceso de fusión alcalina" 3 => "Pantalla de cristal líquido" 4 => "Residuos de vidrio" 5 => "Reciclaje de residuos" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The preparation of an aluminum-mesoporous A1-MCM-41 humidity control material (Al-MHCM) by hydrothermally synthesizing a mixture of thin-film transistor liquid crystal display (TFT-LCD) waste glass and sandblasting (SB) waste was studied. The product has a typical mesoporous structure, with a specific surface area of up to 1013<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>/g, the pore size distribution calculated is 3–4<span class="elsevierStyleHsp" style=""></span>nm, and the pore volume of 0.97<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g. All the aluminum atoms of the product are in the form of tetrahedral aluminum in the framework, which confirms the successful synthesis of Al-MHCM. Results show that when the hydrothermal synthesis temperature is 105<span class="elsevierStyleHsp" style=""></span>°C, the product synthesized from a mixture with a Si/Al molar ratio of 41.8 exhibits excellent performance (91.45<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>) in terms of the equilibrium moisture content and moisture adsorption capacity. The results confirm that the equilibrium moisture content of Al-MHCM is better than the rape straw concrete and hemp concrete (9.8–17.8<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>), and that of a diatomite/ground calcium carbonate composite aterial (11.7<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>). The research results are expected to provide a new technology for synthesizing TFT-LCD waste glass and SB waste into novel high value-added humidity control materials.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0015" class="elsevierStyleSection elsevierViewall"><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Se estudió la preparación de un material de control de humedad de aluminio-mesoporoso A1-MCM-41 (Al-MHCM) mediante la síntesis hidrotermal de una mezcla de vidrio de desecho de pantalla de cristal líquido de transistor de película delgada (TFT-LCD) y desechos de arenado (SB). El producto tiene una estructura mesoporosa típica, con una superficie específica de hasta 1013<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">2</span>/g, la distribución del tamaño de poro calculada es de 3-4<span class="elsevierStyleHsp" style=""></span>nm y el volumen de poro de 0,97<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">3</span>/g. Todos los átomos de aluminio del producto están en forma de aluminio tetraédrico en la estructura, lo que confirma la síntesis exitosa de Al-MHCM. Los resultados muestran que cuando la temperatura de síntesis hidrotermal es de 105<span class="elsevierStyleHsp" style=""></span>°C, el producto sintetizado a partir de una mezcla con una relación molar Si/Al de 41,8 presenta un excelente rendimiento (91,45<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>) en términos de contenido de humedad de equilibrio y capacidad de adsorción de humedad. Los resultados confirman que el contenido de humedad de equilibrio de Al-MHCM es mejor que el hormigón de paja de colza y el hormigón de cáñamo (9,8–17,8<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>), y que el de un material compuesto de diatomita/carbonato de calcio molido (11,7<span class="elsevierStyleHsp" style=""></span>m<span class="elsevierStyleSup">3</span>/m<span class="elsevierStyleSup">3</span>). Se espera que los resultados de la investigación proporcionen una nueva tecnología para sintetizar residuos de vidrio TFT-LCD y residuos SB en nuevos materiales de control de humedad de alto valor añadido.</p></span>" ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 3433 "Ancho" => 1675 "Tamanyo" => 166378 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Crystal phase of synthesized Al-MHCM. (a) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26; (b) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>41.8; (c) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56.3.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2706 "Ancho" => 1675 "Tamanyo" => 201065 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">The <span class="elsevierStyleSup">27</span>Al NMR spectrum of the synthesized Al-MHCM. (a) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26; (b) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>41.8; (c) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56.3.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3610 "Ancho" => 1675 "Tamanyo" => 267640 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The N<span class="elsevierStyleInf">2</span> adsorption–desorption isotherm curves of the synthesized Al-MHCM. (a) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26; (b) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>41.8; (c) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56.3.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3133 "Ancho" => 1675 "Tamanyo" => 202085 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">The total pore volume and pore diameter calculated of the synthesized Al-MHCM. (a) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26; (b) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>41.8; (c) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2903 "Ancho" => 2508 "Tamanyo" => 780044 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">The SEM images of the synthesized Al-MHCM.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 3232 "Ancho" => 1675 "Tamanyo" => 298561 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">The 24-h equilibrium moisture content curve of the synthesized Al-MHCM. (a) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>26; (b) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>41.8; (c) Si/Al<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56.3.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Composition (%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">SiO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Al<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Fe<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CaO \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">MgO \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">TiO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TFT-LCD waste glass \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">69.70 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.77 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.22 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SB waste \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">70.10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.90 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.82 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3233476.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Chemical composition of materials.</p>" ] ] 7 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:3 [ "leyenda" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">a</span>The Si/Al molar ratio of Al-MHCM. <span class="elsevierStyleItalic">a</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>5; <span class="elsevierStyleItalic">b</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10; <span class="elsevierStyleItalic">c</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>20.</p><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">b</span>The hydrothermal temperature of Al-MHCM. 1<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>90<span class="elsevierStyleHsp" style=""></span>°C; 2<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>105<span class="elsevierStyleHsp" style=""></span>°C; 3<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120<span class="elsevierStyleHsp" style=""></span>°C.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Sample<span class="elsevierStyleSup">a,b</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Surface area (m<span class="elsevierStyleSup">2</span>/g) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Pore volume (cm<span class="elsevierStyleSup">3</span>/g) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Pore diameter (nm) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">100</span><a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">c</span></a> (nm) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span><a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">d</span></a> (nm) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">W.t.<a class="elsevierStyleCrossRef" href="#tblfn0015"><span class="elsevierStyleSup">e</span></a> (nm) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM a<span class="elsevierStyleInf">1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">511 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.51 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.72 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM a<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">506 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.53 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.63 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.82 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM a<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">587 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.65 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.87 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.06 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.82 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM b<span class="elsevierStyleInf">1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">795 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.73 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.84 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM b<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">733 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.62 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.20 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM b<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">780 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.71 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.06 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.41 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM c<span class="elsevierStyleInf">1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">781 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.74 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.06 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.43 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM c<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">870 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.78 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.06 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.69 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.51 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Al-MHCM c<span class="elsevierStyleInf">3</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1013 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.05 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.40 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3233475.png" ] ] ] "notaPie" => array:3 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Unit cell distance.</p>" ] 1 => array:3 [ "identificador" => "tblfn0010" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Unit cell constant<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleItalic">d</span><span class="elsevierStyleInf">100</span>/√3.</p>" ] 2 => array:3 [ "identificador" => "tblfn0015" "etiqueta" => "e" "nota" => "<p class="elsevierStyleNotepara" id="npar0015">Wall thickness (W.t.)<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>(<span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf">0</span>)<span class="elsevierStyleHsp" style=""></span>−<span class="elsevierStyleHsp" style=""></span>(pore diameter).</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">The pore structure characteristics of Al-MHCM.</p>" ] ] 8 => array:5 [ "identificador" => "fig0035" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 872 "Ancho" => 1333 "Tamanyo" => 129385 ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:52 [ 0 => array:3 [ "identificador" => "bib0265" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sustainable valorization of mesoporous aluminosilicate composite from display panel glasses waste for adsorption of heavy metal ions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.K. Tsai" 1 => "R.A. Doong" 2 => "H.Y. Hung" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.scitotenv.2019.04.056" "Revista" => array:6 [ "tituloSerie" => "Sci Total Environ." "fecha" => "2019" "volumen" => "673" "paginaInicial" => "337" "paginaFinal" => "346" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30991323" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0270" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia – a case study on household WEEE management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Afroz" 1 => "M.M. Masud" 2 => "R. Akhtar" 3 => "J.B. Duasa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Clean. Prod." "fecha" => "2013" "volumen" => "52" "paginaInicial" => "185" "paginaFinal" => "193" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0275" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new family of mesoporous molecular sieves prepared with liquid crystal templates" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:12 [ 0 => "J.S. Beck" 1 => "J.C. Vartuli" 2 => "W.J. Roth" 3 => "M.E. Leonowicz" 4 => "C.T. Kresge" 5 => "K.D. Schmitt" 6 => "C.T.W. Chu" 7 => "D.H. Olson" 8 => "E.W. Shepparol" 9 => "S.B. Mc-Cullen" 10 => "J.B. Higgins" 11 => "J.L. Schlenker" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Am. Chem. Soc." "fecha" => "1992" "volumen" => "114" "paginaInicial" => "10834" "paginaFinal" => "10843" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0280" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C.T. Kresge" 1 => "M.E. Leonowicz" 2 => "W.J. Roth" 3 => "J.C. Vartuli" 4 => "J.S. Beck" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nature" "fecha" => "1992" "volumen" => "359" "paginaInicial" => "710" "paginaFinal" => "712" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0285" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The discovery of ExxonMobil's M41S family of mesoporous molecular sieves" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C.T. Kresge" 1 => "J.C. Vartuli" 2 => "W.J. Roth" 3 => "M.E. Leonowicz" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Stud. Surf. Sci. Catal." "fecha" => "2004" "volumen" => "148" "paginaInicial" => "53" "paginaFinal" => "72" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0290" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mesoporous silica material MCM-41: novel additive for warm mix" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Woszuk" 1 => "R. Panek" 2 => "J. Madej" 3 => "A. Zofka" 4 => "W. Franus" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2018" "volumen" => "183" "paginaInicial" => "270" "paginaFinal" => "274" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0295" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush: modification and application for removal of direct dyes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T.A. Arica" 1 => "E. Ayas" 2 => "M.Y. Arica" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Microporous Mesoporous Mater." "fecha" => "2017" "volumen" => "243" "paginaInicial" => "164" "paginaFinal" => "175" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0300" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.M. Rabie" 1 => "M. Shaban" 2 => "M.R. Abukhadra" 3 => "R. Hosny" 4 => "S.A. Ahmed" 5 => "N.A. Negm" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Mol. Liq." "fecha" => "2019" "volumen" => "279" "paginaInicial" => "224" "paginaFinal" => "231" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0305" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enzyme immobilization using two processing methods onto silica core-shell particles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.P. Nikolić" 1 => "V.B. Pavlović" 2 => "S. Stanojević-Nikolić" 3 => "V.V. Srdić" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. V" "fecha" => "2021" "volumen" => "60" "numero" => "4" "paginaInicial" => "243" "paginaFinal" => "254" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0310" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "F. Ghorbani" 1 => "H. Younesi" 2 => "Z. Mehraban" 3 => "M.S. Celik" 4 => "A.A. Ghoreyshi" 5 => "M. Anbia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Taiwan Inst. Chem. Eng." "fecha" => "2013" "volumen" => "44" "paginaInicial" => "821" "paginaFinal" => "828" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0315" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co<span class="elsevierStyleInf">3</span>O<span class="elsevierStyleInf">4</span> nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.A. Salam" 1 => "M.R. AbuKhadra" 2 => "A.S. Mohamed" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.envpol.2019.113874" "Revista" => array:5 [ "tituloSerie" => "Environ. Pollut." "fecha" => "2020" "volumen" => "259" "paginaInicial" => "113874" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32032982" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0320" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exhaust gas purification process using fly ash-based sorbents" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Ściubidło" 1 => "I. Majchrzak-Kucęba" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Fuel" "fecha" => "2019" "volumen" => "258" "paginaInicial" => "116126" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0325" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G.V. Mamontov" 1 => "A.S. Gorbunova" 2 => "E.V. Vyshegorodtseva" 3 => "V.I. Zaikovskii" 4 => "O.V. Vodyankina" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Catal. Today" "fecha" => "2019" "volumen" => "333" "paginaInicial" => "245" "paginaFinal" => "250" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0330" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Al-containing MCM-41 type materials prepared by different synthesis methods: hydrothermal stability and catalytic properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.P. Lourenço" 1 => "A. Fernandes" 2 => "C. Henriques" 3 => "M.F. Ribeiro" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Microporous Mesoporous Mater." "fecha" => "2006" "volumen" => "94" "paginaInicial" => "56" "paginaFinal" => "65" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0335" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Indirect health effects of relative humidity in indoor environments" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.V. Arundel" 1 => "E.M. Sterling" 2 => "J.H. Biggin" 3 => "T.D. Sterling" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1289/ehp.8665351" "Revista" => array:6 [ "tituloSerie" => "Environ. Health Perspect." "fecha" => "1986" "volumen" => "65" "paginaInicial" => "351" "paginaFinal" => "361" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/3709462" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0340" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characteristics of hygroscopic phase change material: composite microencapsulated phase change material (MPCM) and diatomite" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Z. Chen" 1 => "M.H. Qin" 2 => "J. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Energy Build." "fecha" => "2015" "volumen" => "106" "paginaInicial" => "175" "paginaFinal" => "182" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0345" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Z.B. Hu" 1 => "S.L. Zheng" 2 => "M.Z. Jia" 3 => "X.B. Dong" 4 => "Z.M. Sun" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Powder Technol." "fecha" => "2017" "volumen" => "28" "paginaInicial" => "1372" "paginaFinal" => "1381" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0350" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Phosphorous-doped MCM-41 as bioactive material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Vallet-Regí" 1 => "I. Izquierdo-Barba" 2 => "A. Rámila" 3 => "J. Pérez-Pariente" 4 => "F. Babonneau" 5 => "J.M. González-Calbet" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Solid State Sci." "fecha" => "2005" "volumen" => "7" "numero" => "2" "paginaInicial" => "233" "paginaFinal" => "237" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0355" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characterization of MCM-41 ropes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Sohrabnezhad" 1 => "A. Jafarzadeh" 2 => "A. Pourahmad" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Lett." "fecha" => "2018" "volumen" => "212" "paginaInicial" => "16" "paginaFinal" => "19" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0360" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of the extraction methods to remove organic templates from Al-MCM-41 molecular sieves" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W.A. Gomes Jr." 1 => "L.A.M. Cardoso" 2 => "A.R.E. Gonzaga" 3 => "L.G. Aguiar" 4 => "H.M.C. Andrade" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2005" "volumen" => "93" "paginaInicial" => "133" "paginaFinal" => "137" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0365" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimization of experimental conditions for the synthesis of Si-MCM-41 molecular sieves using different methods and silica sources" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "B.B. Cazula" 1 => "L.G. Oliveira" 2 => "B. Machado" 3 => "H.J. Alves" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2021" "volumen" => "266" "paginaInicial" => "124553" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0370" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A green route to preparation of MCM-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T.H. Liou" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Eng. J." "fecha" => "2011" "volumen" => "171" "paginaInicial" => "1458" "paginaFinal" => "1468" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0375" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis of hydrothermally stable MCM-41 by the seed crystallization and its application as a catalyst support for hydrodesulfurization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Hussain" 1 => "S.K. Song" 2 => "S.K. Ihm" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Fuel" "fecha" => "2013" "volumen" => "106" "paginaInicial" => "787" "paginaFinal" => "792" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0380" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "M.C. Legarto, D. Benito, A. Scian, M.B.;1; Lombardi, Obtention and characterization of a hybrid nanocomposite monolith by sol–gel process, Bol Soc Esp Ceram V. (2021) (in press). Available online 12 November 2021." ] ] ] 24 => array:3 [ "identificador" => "bib0385" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "M. Regueiro, J. García, A. Alonso, Synthesis of wollastonite from diatomite-rich marls and its potential ceramic uses. Bol Soc Esp Ceram V. (2021) (in press). Available online 5 June 2021" ] ] ] 25 => array:3 [ "identificador" => "bib0390" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.E. Imoisili" 1 => "K.O. Ukoba" 2 => "T.C. Jen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bol. Soc. Esp. Ceram. V" "fecha" => "2020" "volumen" => "59" "numero" => "4" "paginaInicial" => "159" "paginaFinal" => "164" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0395" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "N.V. Roik" 1 => "L.A. Belyakova" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Solid State Chem." "fecha" => "2013" "volumen" => "207" "paginaInicial" => "194" "paginaFinal" => "202" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0400" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and humidity control performances of natural opoka based porous calcium silicate hydrate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y.Y. Liu" 1 => "H.W. Jia" 2 => "G.X. Zhang" 3 => "Z.M. Sun" 4 => "Y.T. Pan" 5 => "S.L. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Adv. Powder Technol." "fecha" => "2019" "volumen" => "30" "paginaInicial" => "2733" "paginaFinal" => "2741" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0405" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of gel composition and microwave-assisted hydrothermal time in MCM-41 synthesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Deekamwong" 1 => "C. Kaiyasuan" 2 => "J. Jitcharoen" 3 => "J. Wittayakun" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2017" "volumen" => "201" "paginaInicial" => "384" "paginaFinal" => "390" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0410" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Immobilization of cytochrome P-450 on MCM-41 with different silicon/aluminum ratios" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.C. Rosales Hernández" 1 => "J.E. Mendieta Wejebe" 2 => "J.I. Vázquez Alcántara" 3 => "R. Miranda Ruvalcaba" 4 => "L.A. García Serrano" 5 => "J. Trujillo Ferrara" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Microporous Mesoporous Mater." "fecha" => "2005" "volumen" => "80" "paginaInicial" => "25" "paginaFinal" => "31" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0415" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis of titanium containing MCM-41 and its application for catalytic hydrolysis of cellulose" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D. Hea" 1 => "C. Bai" 2 => "C. Jiang" 3 => "T. Zhou" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Powder Technol." "fecha" => "2013" "volumen" => "249" "paginaInicial" => "151" "paginaFinal" => "156" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0420" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z.C. Wang" 1 => "H.J. Ling" 2 => "J. Shi" 3 => "C. Stampfl" 4 => "A.B. Yu" 5 => "M. Hunger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Catal." "fecha" => "2018" "volumen" => "358" "paginaInicial" => "71" "paginaFinal" => "79" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0425" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "F.A. Abuilaiwi, M. Awais, U.Y. Qazi, A. Afzal, Al3+ doping reduces the electron/hole recombination in photoluminescent copper ferrite (CuFe2− xAlxO4) nanocrystallites, Bol Soc Esp Ceram V. 61 (2020) 252-262." ] ] ] 33 => array:3 [ "identificador" => "bib0430" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "One-step room-temperature synthesis of [Al]-MCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Z. Wang" 1 => "Y. Jiang" 2 => "R. Rachwalik" 3 => "Z. Liu" 4 => "J. Shi" 5 => "M. Hunger" 6 => "J. Huang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chem. Cat. Chem." "fecha" => "2013" "volumen" => "5" "paginaInicial" => "3889" "paginaFinal" => "3896" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0435" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y.J. Jiang" 1 => "J. Huang" 2 => "W.L. Dai" 3 => "M. Hunger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Solid State Nucl. Magn. Reson." "fecha" => "2011" "volumen" => "39" "paginaInicial" => "116" "paginaFinal" => "141" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0440" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "In situ fabrication of n-type Ag/AgBr nanoparticles in MCM-41 with rice husk (RH/MCM-41) composite for the removal of Eriochrome Black-T" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S. Sohrabnezhad" 1 => "S.D. Mooshangaie" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Sci. Eng. C" "fecha" => "2019" "volumen" => "240" "paginaInicial" => "16" "paginaFinal" => "22" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0445" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "(2-Hydroxyethyl)-trimethylammonium hydroxide as an organic base for the synthesis of highly ordered MCM-41" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Samadi-Maybodi" 1 => "A. Vahid" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Solid State Sci." "fecha" => "2011" "volumen" => "13" "numero" => "1" "paginaInicial" => "271" "paginaFinal" => "275" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0450" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Carmo Jr." 1 => "C.L.K.C. de Souza" 2 => "C.E.F. da Costa" 3 => "E. Longo" 4 => "J.R. Zamian" 5 => "G.N. da Rocha Filho" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Fuel" "fecha" => "2009" "volumen" => "88" "paginaInicial" => "461" "paginaFinal" => "468" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0455" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to Chlorinated Volatile Organic Compounds (CVOCs) adsorption" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N. Grisdanurak" 1 => "S. Chiarakorn" 2 => "J. Wittayakun" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Korean J. Chem. Eng." "fecha" => "2003" "volumen" => "20" "paginaInicial" => "950" "paginaFinal" => "955" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0460" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characterization of TiO<span class="elsevierStyleInf"><span class="elsevierStyleItalic">x</span></span>N<span class="elsevierStyleInf"><span class="elsevierStyleItalic">y</span></span> assembled in oxynitrided mesoporous silica MCM-41" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Zheng" 1 => "Z.P. Li" 2 => "L. Gao" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2004" "volumen" => "85" "paginaInicial" => "195" "paginaFinal" => "200" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0465" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Control of morphology and characterization of pore structure of ordered mesoporous silicas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G.S. Ekloff" 1 => "J. Rathouský" 2 => "A. Zukal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Microporous Mesoporous Mater." "fecha" => "1999" "volumen" => "27" "paginaInicial" => "273" "paginaFinal" => "285" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0470" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.S.W. Sing" 1 => "D.H. Everett" 2 => "R.A.W. Haul" 3 => "L. Chem" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Pure Appl. Chem." "fecha" => "1985" "volumen" => "57" "paginaInicial" => "603" "paginaFinal" => "619" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0475" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Selective and efficient oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides catalyzed with praseodymium (III) and dysprosium (III) isonicotinamide (INA) complexes grafted onto modified mesoporous MCM-41" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S. Molaei" 1 => "M. Ghadermazi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Solid State Sci." "fecha" => "2020" "volumen" => "100" "paginaInicial" => "106091" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0480" "etiqueta" => "[44]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F. García-Villén" 1 => "E. Flores-Ruíz" 2 => "C. Verdugo-Escamilla" 3 => "F.J. Huertas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Clay Sci." "fecha" => "2018" "volumen" => "160" "paginaInicial" => "238" "paginaFinal" => "248" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0485" "etiqueta" => "[45]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The drug delivery system of MCM-41 materials via co-condensation synthesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W. Zeng" 1 => "X.F. Qian" 2 => "J. Yin" 3 => "Z.K. Zhu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Chem. Phys." "fecha" => "2005" "volumen" => "97" "paginaInicial" => "437" "paginaFinal" => "441" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0490" "etiqueta" => "[46]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.J.B. Souza" 1 => "A.S. Araujo" 2 => "A.M.G. Pedrosa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mater. Lett." "fecha" => "2006" "volumen" => "60" "paginaInicial" => "2682" "paginaFinal" => "2685" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0495" "etiqueta" => "[47]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Template-free preparation of humidity self-regulating silica-based mesoporous oxide from volcanic ash" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "W. Tian" 1 => "B. Du" 2 => "A. Shui" 3 => "S.J. Ke" 4 => "Q.L. Shan" 5 => "C. He" 6 => "J. Ma" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Solgel Sci. Technol." "fecha" => "2002" "volumen" => "94" "paginaInicial" => "416" "paginaFinal" => "424" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0500" "etiqueta" => "[48]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Investigations of equilibrium moisture content with Kelvin modification and dimensional analysis method for composite hygroscopic material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H.H. Xie" 1 => "G.C. Gong" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2017" "volumen" => "139" "paginaInicial" => "101" "paginaFinal" => "113" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0505" "etiqueta" => "[49]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization and comparison of hygric properties of rape straw concrete and hemp concrete" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Rahim" 1 => "O. Douzane" 2 => "A.D.T. Le" 3 => "G. Promis" 4 => "T. Langlet" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Constr. Build. Mater." "fecha" => "2016" "volumen" => "102" "paginaInicial" => "679" "paginaFinal" => "687" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0510" "etiqueta" => "[50]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "S.J. Gregg, K.S.W. Sing, H.W. Salzberg, Adsorption surface area and porosity. J. Electrochem. Soc. 114(11) (1967) 279Ca." ] ] ] 50 => array:3 [ "identificador" => "bib0515" "etiqueta" => "[51]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of temperature and humidity on moisture diffusion in an epoxy moulding compound material" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "K.M.B. Jansen" 1 => "M.F. Zhang" 2 => "L.J. Ernst" 3 => "D.K. Vu" 4 => "L. Weiss" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Microelectron. Reliab." "fecha" => "2020" "volumen" => "107" "paginaInicial" => "113596" ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0520" "etiqueta" => "[52]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hygrothermal performance of temperature-humidity controlling materials with different compositions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "X. He" 1 => "H. Zhang" 2 => "L. Qiu" 3 => "Z. Mao" 4 => "C. Shi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Energy Build." "fecha" => "2021" "volumen" => "236" "paginaInicial" => "110792" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack680142" "titulo" => "Acknowledgements" "texto" => "<p id="par0100" class="elsevierStylePara elsevierViewall">This work was supported by Ministry of Science and Technology of Taiwan, for supporting this research financially (Contract No. MOST-107-2221-E-197-002-MY3).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000006200000004/v1_202307310822/S0366317522000395/v1_202307310822/en/main.assets" "Apartado" => array:4 [ "identificador" => "94818" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Editorial" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/03663175/0000006200000004/v1_202307310822/S0366317522000395/v1_202307310822/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317522000395?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 1 | 1 | 2 |
2024 October | 38 | 3 | 41 |
2024 September | 45 | 3 | 48 |
2024 August | 45 | 3 | 48 |
2024 July | 33 | 6 | 39 |
2024 June | 40 | 3 | 43 |
2024 May | 34 | 8 | 42 |
2024 April | 48 | 11 | 59 |
2024 March | 47 | 6 | 53 |
2024 February | 53 | 4 | 57 |
2024 January | 59 | 10 | 69 |
2023 December | 37 | 6 | 43 |
2023 November | 61 | 17 | 78 |
2023 October | 81 | 18 | 99 |
2023 September | 66 | 5 | 71 |
2023 August | 58 | 9 | 67 |
2023 July | 37 | 8 | 45 |
2023 June | 22 | 4 | 26 |
2023 May | 42 | 6 | 48 |
2023 April | 15 | 7 | 22 |
2023 March | 0 | 9 | 9 |
2023 February | 0 | 4 | 4 |
2023 January | 0 | 7 | 7 |
2022 December | 0 | 4 | 4 |
2022 November | 0 | 11 | 11 |
2022 October | 0 | 12 | 12 |
2022 September | 0 | 19 | 19 |
2022 August | 0 | 22 | 22 |
2022 July | 0 | 3 | 3 |