was read the article
array:23 [ "pii" => "S0366317523000419" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2023.08.002" "estado" => "S300" "fechaPublicacion" => "2024-03-01" "aid" => "389" "copyright" => "The Authors" "copyrightAnyo" => "2023" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2024;63:135-44" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0366317523000420" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2023.09.001" "estado" => "S300" "fechaPublicacion" => "2024-03-01" "aid" => "390" "copyright" => "The Author(s)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2024;63:145-58" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:14 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Developing ABO<span class="elsevierStyleInf">3</span> perovskites synthesized by the Pechini method for their potential application as cathode material in solid oxide fuel cells: Structural and electrical properties" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "145" "paginaFinal" => "158" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Desarrollo de perovskitas ABO<span class="elsevierStyleInf">3</span> sintetizadas por el método de Pechini para su potencial aplicación como material catódico en celdas de combustible de óxido sólido: propiedades estructurales y eléctricas" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0040" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 864 "Ancho" => 1333 "Tamanyo" => 74404 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Miguel Antonio Domínguez-Crespo, Aidé Minerva Torres-Huerta, Silvia Beatriz Brachetti-Sibaja, Adela Eugenia Rodríguez-Salazar, Francisco Gutiérrez-Galicia, Esther Ramírez-Meneses, Ángela Iveth Licona-Aguilar" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Miguel Antonio" "apellidos" => "Domínguez-Crespo" ] 1 => array:2 [ "nombre" => "Aidé Minerva" "apellidos" => "Torres-Huerta" ] 2 => array:2 [ "nombre" => "Silvia Beatriz" "apellidos" => "Brachetti-Sibaja" ] 3 => array:2 [ "nombre" => "Adela Eugenia" "apellidos" => "Rodríguez-Salazar" ] 4 => array:2 [ "nombre" => "Francisco" "apellidos" => "Gutiérrez-Galicia" ] 5 => array:2 [ "nombre" => "Esther" "apellidos" => "Ramírez-Meneses" ] 6 => array:2 [ "nombre" => "Ángela Iveth" "apellidos" => "Licona-Aguilar" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Graphical abstract" "clase" => "graphical" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0040"></elsevierMultimedia></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317523000420?idApp=UINPBA00004N" "url" => "/03663175/0000006300000002/v1_202405090749/S0366317523000420/v1_202405090749/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0366317523000389" "issn" => "03663175" "doi" => "10.1016/j.bsecv.2023.07.005" "estado" => "S300" "fechaPublicacion" => "2024-03-01" "aid" => "387" "copyright" => "The Authors" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Bol Soc Esp Ceram Vidr. 2024;63:125-34" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "The role of tin and iron in the production of Spanish copper red glass from the 19th to the 20th century" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "125" "paginaFinal" => "134" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "El papel del estaño y el hierro en la producción de vidrio rojo de cobre en España en los siglos <span class="elsevierStyleSmallCaps">xix</span> y <span class="elsevierStyleSmallCaps">xx</span>" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1601 "Ancho" => 2508 "Tamanyo" => 254227 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">(A) Fe K-edge spectra of CB7 and SDC colourless substrate glasses and red glass layers (the red line and dots correspond to the red layer and the blue line and dots to the substrate transparent glass) and Fe standards. The edge shifts to higher energy as the iron becomes more oxidized; (B) pre-edge center shift (CE) of the glasses. The CE increases as the iron becomes more oxidized. The Fe<span class="elsevierStyleSup">3+</span> fraction has been calculated using the expression in A. Fiege et al. <a class="elsevierStyleCrossRef" href="#bib0315">[25]</a>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Mingyue Yuan, Jordi Bonet, Hiram Castillo-Michel, Marine Cotte, Nadine Schibille, Bernard Gratuze, Trinitat Pradell" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Mingyue" "apellidos" => "Yuan" ] 1 => array:2 [ "nombre" => "Jordi" "apellidos" => "Bonet" ] 2 => array:2 [ "nombre" => "Hiram" "apellidos" => "Castillo-Michel" ] 3 => array:2 [ "nombre" => "Marine" "apellidos" => "Cotte" ] 4 => array:2 [ "nombre" => "Nadine" "apellidos" => "Schibille" ] 5 => array:2 [ "nombre" => "Bernard" "apellidos" => "Gratuze" ] 6 => array:2 [ "nombre" => "Trinitat" "apellidos" => "Pradell" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317523000389?idApp=UINPBA00004N" "url" => "/03663175/0000006300000002/v1_202405090749/S0366317523000389/v1_202405090749/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Sol–gel derived ZnO thin film as a transparent counter electrode for WO<span class="elsevierStyleInf">3</span> based electrochromic devices" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "135" "paginaFinal" => "144" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Ajitha Haridasan Haritha, Martin Rozman, Alicia Duran, Dušan Galusek, José Joaquín Velazquez, Yolanda Castro" "autores" => array:6 [ 0 => array:3 [ "nombre" => "Ajitha Haridasan" "apellidos" => "Haritha" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 1 => array:4 [ "nombre" => "Martin" "apellidos" => "Rozman" "email" => array:2 [ 0 => "martin.rozman@tnuni.sk" 1 => "castro@icv.csic.es" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "Alicia" "apellidos" => "Duran" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Dušan" "apellidos" => "Galusek" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 4 => array:3 [ "nombre" => "José Joaquín" "apellidos" => "Velazquez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "Yolanda" "apellidos" => "Castro" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "FunGlass, Alexander Dubček University of Trenčín, Trenčín, Slovakia" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Instituto de Cerámica y Vidrio (CSIC), Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Joint Glass Centre of the IIC SAS, TnUAD, and FChPT STU, Trenčín, Slovakia" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Películas delgadas de ZnO por sol-gel para su uso como contra-electrodos transparentes en dispositivos electrocrómicos base WO3" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0055" "etiqueta" => "Fig. 11" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr11.jpeg" "Alto" => 968 "Ancho" => 1258 "Tamanyo" => 81831 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Nyquist diagrams of C-CE (red) and ZnO-CE (black) based devices representing the tinted (triangles) and bleached (squares) state after an applied potential.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Electrochromism is the phenomenon in which color changes reversibly under applied electric potential or current, and keeps it steady even if the electrical source is removed <a class="elsevierStyleCrossRef" href="#bib0345">[1]</a>. Electrochromic devices (ECD) are thus capable of reversible switching of their optical properties through various redox or other reactions under applied potential. Electrochromic (EC) materials have been developed and extensively investigated in the past due to their considerable interest in power-saving displays, in order to develop devices with reduced carbon footprint, and to replace traditional paper with electronic counterpart <a class="elsevierStyleCrossRef" href="#bib0350">[2]</a>. For instance, EC materials have been widely used in fabricating energy-saving devices such as smart windows, electronic papers, glasses, and displays <a class="elsevierStyleCrossRefs" href="#bib0355">[3–7]</a>. In general, EC devices must exhibit low power consumption and commercial viability properties, such as high optical modulation, rapid response, excellent coloration efficiency, high durability, and long-term cyclic stability <a class="elsevierStyleCrossRef" href="#bib0380">[8]</a>. Typical cell of an EC device uses a sandwich configuration that involves a glass substrate/transparent conducting oxides (TCO)/optically transparent working electrodes (WEs), ionic electrolyte, and counter electrodes (CEs)/TCO/glass substrate <a class="elsevierStyleCrossRef" href="#bib0385">[9]</a>. In most common EC devices that use intercalation as a method of coloration change, the electrolyte contains dissolved electroactive material in the form of ions, such as protons (H<span class="elsevierStyleSup">+</span>) or lithium (Li<span class="elsevierStyleSup">+</span>). This allows a fast kinetics and high diffusion of ions and electrons during an electrochemical reaction causing the intercalation (coloring) and deintercalation (bleaching).</p><p id="par0010" class="elsevierStylePara elsevierViewall">During the last years, several useful approaches and novel types of ECD have been designed. Even though the basic principle behind the fabrication of almost all ECDs are the same, one suitable idea is the combination of electrochromic and energy-storage capabilities in a single device <a class="elsevierStyleCrossRefs" href="#bib0390">[10–12]</a>. Currently, attention has been paid toward broadening the range of applications of electrochromic materials and devices by developing new cells with improved functionality and characteristics. For instance, Ahmad et al. reported the preparation of MoSe<span class="elsevierStyleInf">2</span>/WO<span class="elsevierStyleInf">3</span> thin layer spin-coated on an indium tin oxide (ITO) glass and flexible ITO-coated poly ethylene terephthalate substrate with excellent electrochromic performance as well as stability with an applied potential range of 0 to −1.5<span class="elsevierStyleHsp" style=""></span>V <a class="elsevierStyleCrossRef" href="#bib0405">[13]</a>. Another recent work utilized the advantages of stainless-steel foils, such as greater electrical conductivity and mechanical flexibility, as electrode material instead of the traditionally TCO in WO<span class="elsevierStyleInf">3</span>-based ECD <a class="elsevierStyleCrossRef" href="#bib0410">[14]</a>. Most of the reported improvements are related only to electrochromic material and electrodes, while less research effort was devoted to the development of other items, such as CE material and electrolytes.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Generally, EC materials can be categorized into inorganic, organic materials, and metal complexes: these materials are considered as the main functional elements in the EC layer. Tungsten trioxide (WO<span class="elsevierStyleInf">3</span>) is among the most used metal oxides as EC materials due to its large-scale smart windows <a class="elsevierStyleCrossRef" href="#bib0415">[15]</a>. It has found its use in all sorts of applications <a class="elsevierStyleCrossRefs" href="#bib0420">[16–19]</a> as a distinctive dark blue color in its tinted state due to intercalation process <a class="elsevierStyleCrossRef" href="#bib0440">[20]</a>. Many other transition metal oxides, such as V<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span><a class="elsevierStyleCrossRef" href="#bib0445">[21]</a>, TiO<span class="elsevierStyleInf">2</span><a class="elsevierStyleCrossRef" href="#bib0450">[22]</a>, NiO <a class="elsevierStyleCrossRef" href="#bib0455">[23]</a>, MnO<span class="elsevierStyleInf">2</span><a class="elsevierStyleCrossRef" href="#bib0460">[24]</a>, etc., have also been extensively investigated as a color replacement of WE. However, the develop of new CEs has been received less attention during the development of ECDs. These materials must remain inert or undergo the opposite redox process (oxidation or reduction) than WEs. Materials such as platinum (Pt), graphite, CeO<span class="elsevierStyleInf">2</span>–TiO<span class="elsevierStyleInf">2</span>, indium tin oxide (ITO), and fluorine doped tin oxide (FTO) <a class="elsevierStyleCrossRefs" href="#bib0465">[25–27]</a> are some of the common CEs coupled with cathodic WO<span class="elsevierStyleInf">3</span> working electrode that acts as an reductive conductive material. However, their application as a counter electrode is limited either by a high cost, low transmittance in visible region or its poor charge-storage properties <a class="elsevierStyleCrossRef" href="#bib0480">[28]</a>. In addition, the lattice structure of metal oxides must often be controlled by a high-temperature annealing process, and the precursor materials and fabrication process are expensive <a class="elsevierStyleCrossRef" href="#bib0485">[29]</a>. ZnO has been studied in many fields, including field-effect transistors <a class="elsevierStyleCrossRef" href="#bib0490">[30]</a>, dye-sensitized solar cells <a class="elsevierStyleCrossRef" href="#bib0495">[31]</a>, and organic photovoltaics <a class="elsevierStyleCrossRef" href="#bib0500">[32]</a> as a transparent conductor. For example, Gopi et al. <a class="elsevierStyleCrossRef" href="#bib0505">[33]</a> reported the preparation of ZnO nanorods decorated with metal sulfides with excellent catalytic activity and super-stable as counter electrodes in polysulfide electrolyte-based quantum-dot-sensitized solar cells. Power conversion efficiency of 4.76% was reported. Similarly, ZnO combined with poly(3,4-ethylenedioxythiophene) (PEDOT): polystyrene sulfonate (PSS) was also prepared exhibiting efficient performance as a counter electrode in dye-sensitized solar cells (DSSC), and with a maximum power conversion efficiency of 8.17% <a class="elsevierStyleCrossRef" href="#bib0510">[34]</a>. On the other hand, other authors have been reported the preparation of N-doped ZnO as a counter electrode in DSSCs, observing that the incorporation of nitrogen improved the DSSC efficiency, surpassing the performance of Pt-based cells <a class="elsevierStyleCrossRef" href="#bib0510">[34]</a>. In addition, recent research indicates that nanostructured zinc oxide (ZnO), could be used as a promising materials for complementary layers in ECDs due to its large surface area, high electrical conductivity, and an easy manufacturing procedure <a class="elsevierStyleCrossRefs" href="#bib0485">[29,35,36]</a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">On the other hand, the most straightforward method of reducing switching time is to thin the EC layer, which would reduce the carrier diffusion length. However, this approach might result in a loss of color contrast <a class="elsevierStyleCrossRef" href="#bib0525">[37]</a>. To obtain high quality ZnO and WO<span class="elsevierStyleInf">3</span> thin films in terms of electrochromic properties, it is essential to identify an appropriate fabrication method for the film deposition. Current techniques of preparation of thin films of EC layers are mainly physical vapor deposition techniques such as sputtering <a class="elsevierStyleCrossRefs" href="#bib0530">[38–40]</a>, pulsed layer deposition <a class="elsevierStyleCrossRef" href="#bib0545">[41]</a>, etc. and wet chemical methods such as electrodeposition <a class="elsevierStyleCrossRef" href="#bib0550">[42]</a> or sol–gel <a class="elsevierStyleCrossRefs" href="#bib0465">[25,27]</a>. Despite the widespread use of physical vapor deposition techniques, the sol–gel spin coating stands out as a promising fabrication technique for the preparation of ZnO and WO<span class="elsevierStyleInf">3</span> thin films <a class="elsevierStyleCrossRefs" href="#bib0555">[43–45]</a>. This method has a lot of advantages such as excellent compositional control, homogeneity and lower synthesis temperatures <a class="elsevierStyleCrossRefs" href="#bib0465">[25,27,43–45]</a>. However, limited bibliography was found about the preparation of EC materials by sol–gel and their use in ECDs.</p><p id="par0025" class="elsevierStylePara elsevierViewall">In this context, the aim of the work is to prepare EC materials with potential use as WE and CE in ECDs using the sol–gel process. The novelty of the present study lies in a detailed characterization of the optical, structural, and electrochemical features of sol–gel derived ZnO electrodes with potential application as a counter-electrode in ECDs. To the best of our knowledge, there are no previous studies on ZnO thin films prepared by sol–gel spin coating method utilized as CE in WO<span class="elsevierStyleInf">3</span> based ECDs. The films were deposited by spin-coating technique on fluorine doped tin oxide (FTO) glass substrates and annealed at 500<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h in an oxygen atmosphere. The optical properties (transmittance) of the device were studied as well, and their possible use as CE in ECD was analyzed by cyclic voltammetry (CV) and chronoamperometry (CA).</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Materials</span><p id="par0030" class="elsevierStylePara elsevierViewall">Tungsten powder (fine powder 99+), zinc acetate dihydrate (ZAD, 98%), Triton X-100, ethanol (EtOH, 99%), diethanolamine (DEA, 99.5%), lithium perchlorate trihydrate (LiClO<span class="elsevierStyleInf">4</span>·3H<span class="elsevierStyleInf">2</span>O 95%) and γ-butyrolactone (GBL, 99%) were purchased from Sigma–Aldrich (Germany). Hydrogen peroxide (H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>, 30%) was purchased from PanReac AppliChem (Germany) and isopropanol (IPA, 99.5%) was purchased from J.T. Baker (Netherlands). Fluorine doped tin oxide (FTO, Tec-8) coated glass was purchased from Ossila Ltd. (The United Kingdom).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Methods</span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">WO<span class="elsevierStyleInf">3</span> sol preparation</span><p id="par0035" class="elsevierStylePara elsevierViewall">WO<span class="elsevierStyleInf">3</span> sol was prepared by a simple surfactant assisted sol–gel method from peroxo tungstenic acid (PTA). To produce peroxo tungstenic acid, 2<span class="elsevierStyleHsp" style=""></span>g of metallic tungsten powder was dissolved at room temperature in 20<span class="elsevierStyleHsp" style=""></span>mL of 30% H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>. The mixture was stirred for 10<span class="elsevierStyleHsp" style=""></span>min to completely dissolve the tungsten powder, resulting in a pale-yellow solution. As the reaction is exothermic, a large round bottom flask was used, which was closed with perforated parafilm. Subsequently, the mixture was diluted with 20<span class="elsevierStyleHsp" style=""></span>mL of IPA to decompose excess H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span><a class="elsevierStyleCrossRef" href="#bib0570">[46]</a>. Finally, 1<span class="elsevierStyleHsp" style=""></span>mL of non-ionic surfactant, Triton-100, was added to the solution and stirred for 20<span class="elsevierStyleHsp" style=""></span>min. As prepared WO<span class="elsevierStyleInf">3</span> sol was used for deposition on the FTO substrates.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">ZnO sol preparation</span><p id="par0040" class="elsevierStylePara elsevierViewall">Stable and transparent ZnO sol was also prepared by sol–gel method. 6.1<span class="elsevierStyleHsp" style=""></span>g of ZAD was dissolved in 32.3<span class="elsevierStyleHsp" style=""></span>mL of EtOH. The mixture was stirred at 60<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h in the reflux system. After complete dissolution of ZAD in EtOH, a mixture of DEA (2.6<span class="elsevierStyleHsp" style=""></span>mL) and deionized water (0.49<span class="elsevierStyleHsp" style=""></span>mL) was slowly added to the solution at room temperature. DEA acted as the stabilizer for the reaction. The molar ratio of ZAD with respect to DEA was kept at 1. The resultant sol was aged for 24<span class="elsevierStyleHsp" style=""></span>h before deposition onto FTO substrates.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Electrolyte preparation</span><p id="par0045" class="elsevierStylePara elsevierViewall">0.1<span class="elsevierStyleHsp" style=""></span>g of LiClO<span class="elsevierStyleInf">4</span>·3H<span class="elsevierStyleInf">2</span>O was added to 1<span class="elsevierStyleHsp" style=""></span>mL of GBL and stirred for 4<span class="elsevierStyleHsp" style=""></span>h at room temperature. The obtained solution was stored in an airtight container.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Thin film deposition</span><p id="par0050" class="elsevierStylePara elsevierViewall">WO<span class="elsevierStyleInf">3</span> and ZnO sols were deposited on clean FTO glass substrates by spin coating. The substrate was placed on the spin coater in such a way that the non-conductive side of the FTO was fixed on a sample holder, and the conducting side was facing upwards. Four drops of prepared sol were dropped on the conducting side and the substrates were subsequently spin-coated at 2000<span class="elsevierStyleHsp" style=""></span>rpm for 45<span class="elsevierStyleHsp" style=""></span>s using a Spin Coater ACE-200. The process was repeated five and three times for WO<span class="elsevierStyleInf">3</span> and ZnO thin films, respectively. After each layer, the coatings were annealed at 500<span class="elsevierStyleHsp" style=""></span>°C for 15<span class="elsevierStyleHsp" style=""></span>min, and finally, heat treated at 500<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h.</p><p id="par0055" class="elsevierStylePara elsevierViewall">FTO substrate was coated with a layer of graphite for using as a counter electrode (C coated FTO). The graphite coated was prepared by using a HB graphite grading scale pencil and following a similar process to that described in the literature <a class="elsevierStyleCrossRef" href="#bib0410">[14]</a>. The HB pencil coating was repeated until the entire surface of the conductive side of FTO was uniformly dark gray and glossy. Finally, excess pencil powder was removed by using compressed air.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Device assembling procedure</span><p id="par0060" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows a schematic representation of the electrochromic device assembly. Two different types of ECDs were prepared, in which the working electrode (WE) of both ECDs was WO<span class="elsevierStyleInf">3</span> on FTO and as counter electrode (CE) ZnO coated FTO or C coated FTO. The devices were labeled as ZnO-CE and C-CE, depending on the deposited counter electrode is ZnO or graphite, respectively. The device was assembled as follows. First, the edges of ZnO coated FTO and graphite coated FTO were covered with an insulation tape (Tesa, article no. 56192-10) to obtain a resulting active window of 15<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>15<span class="elsevierStyleHsp" style=""></span>mm. The spacing between the working and counter electrode is 0.20<span class="elsevierStyleHsp" style=""></span>mm.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0065" class="elsevierStylePara elsevierViewall">Then, both counter electrodes were placed on a rigid flat surface. After this, four drops of electrolyte (GBL) were added to the active window of the counter electrode (ZnO or graphite coated FTO), and then the working electrode (WO<span class="elsevierStyleInf">3</span> coated FTO) was gently placed on the top in such a way that the conductive sides of the counter and working electrodes were in contact with the electrolyte. Finally, after the elimination of air bubbles, the electrodes were clamped together.</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Characterization techniques</span><p id="par0070" class="elsevierStylePara elsevierViewall">The crystal structure of ZnO-FTO and WO<span class="elsevierStyleInf">3−</span>–FTO thin films were characterized by X-ray diffractometer (Bruker D8 Advance) equipped with a Cu–K radiation source (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.154<span class="elsevierStyleHsp" style=""></span>nm). The 2<span class="elsevierStyleItalic">θ</span> range was varied between 20° and 70° at a scan speed of 2<span class="elsevierStyleHsp" style=""></span>s/step. Raman spectra were acquired using a Raman spectroscopy system (Horiba Scientific, Xplora Plus) with a 532<span class="elsevierStyleHsp" style=""></span>nm excitation laser at room temperature. The spectral range of 100–1200<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> was probed to characterize the sample.</p><p id="par0075" class="elsevierStylePara elsevierViewall">A field emission scanning electron microscope (FE-SEM) coupled with an energy dispersive X-ray spectrometer (EDX) (LEO-Zeiss, Germany) was used to analyze the surface morphologies and textural features of ZnO–FTO and WO<span class="elsevierStyleInf">3−</span>–FTO thin films. The composition of the thin films was analyzed using X-ray photoelectron spectroscopy (XPS) with a PHI Quantera SXM system. Monochromatic Al Kα radiation (1486.8<span class="elsevierStyleHsp" style=""></span>eV) was used with a spot size of 100<span class="elsevierStyleHsp" style=""></span>μm, a pass energy of 280<span class="elsevierStyleHsp" style=""></span>eV, and a range of 0–1100<span class="elsevierStyleHsp" style=""></span>eV to determine the elemental composition of the sample.</p><p id="par0080" class="elsevierStylePara elsevierViewall">Finally, the EC devices were characterized by UV–Vis spectrophotometer (PerkinElmer Lambda 950) in the wavelength range 400–800<span class="elsevierStyleHsp" style=""></span>nm to study the optical properties. The electrochemical characterization was performed using Multichannel Potentiostat (VMP3 from Biologic, Seyssinet-Pariset, France) to study the stability and operation of the device. CV measurements were performed starting from 0.0<span class="elsevierStyleHsp" style=""></span>V and at the potential range of +4 to −4<span class="elsevierStyleHsp" style=""></span>V at a scan rate of 200<span class="elsevierStyleHsp" style=""></span>mV/s for 20 cycles. CA was performed with positive pulses of +3.5<span class="elsevierStyleHsp" style=""></span>V and negative pulses of −3.5<span class="elsevierStyleHsp" style=""></span>V for 20 cycles. Electrochemical impedance measurements (EIS) were performed using the same potentiostat/galvanostat and measured the open circuit potential (OCP) during 60<span class="elsevierStyleHsp" style=""></span>s before each measurement. EIS spectrum was recorded in the range from 100<span class="elsevierStyleHsp" style=""></span>kHz to 100<span class="elsevierStyleHsp" style=""></span>mHz, with 6 points per decade and amplitude of 10<span class="elsevierStyleHsp" style=""></span>mV versus the OCP. After each measurement the device was cycled using pulse of −3.5<span class="elsevierStyleHsp" style=""></span>V for 20<span class="elsevierStyleHsp" style=""></span>s to obtain tinted state. The device was then left to wait for 5<span class="elsevierStyleHsp" style=""></span>min after which the OCP and EIS measurement was repeated.</p></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Results and discussion</span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Structural and morphological characterization</span><p id="par0085" class="elsevierStylePara elsevierViewall">The XRD patterns of FTO glass, ZnO and WO<span class="elsevierStyleInf">3</span> thin films deposited on FTO glass substrates annealed at 500<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h are shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>. The diffraction peaks associated with the FTO substrate were identified and indexed with a tetragonal SnO<span class="elsevierStyleInf">2</span> phase (JCPDS card no 41-1445). XRD pattern obtained for WO<span class="elsevierStyleInf">3</span> film deposited on FTO glass shows diffraction peaks at 2<span class="elsevierStyleItalic">θ</span> angles of 23.9°, 25.2°, 35.1°, and 50.7° associated with a monoclinic crystal structure of WO<span class="elsevierStyleInf">3</span> (JCPDS No. 83-0950) <a class="elsevierStyleCrossRefs" href="#bib0575">[47,48]</a>. Moreover, the diffraction pattern of ZnO thin film shown reflections at 2<span class="elsevierStyleItalic">θ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>32.76°, 34.66°, and 35.36°, assigned to (1<span class="elsevierStyleHsp" style=""></span>0<span class="elsevierStyleHsp" style=""></span>0), (0<span class="elsevierStyleHsp" style=""></span>0<span class="elsevierStyleHsp" style=""></span>2), and (1<span class="elsevierStyleHsp" style=""></span>0<span class="elsevierStyleHsp" style=""></span>1) crystallographic planes of ZnO as hexagonal wurtzite structure (JCPDS No. 36-1451). The ZnO film is orientated along (0<span class="elsevierStyleHsp" style=""></span>0<span class="elsevierStyleHsp" style=""></span>2) plane indicating a wurtzite structure with a preferred <span class="elsevierStyleItalic">c</span>-axis orientation <a class="elsevierStyleCrossRefs" href="#bib0575">[47,49]</a>. In the X-ray diffraction patterns of WO<span class="elsevierStyleInf">3</span> and ZnO films are identified the peaks associated with the FTO substrate. Triton X-100 species are not identified in the XRD pattern of WO<span class="elsevierStyleInf">3</span> indicating that the surfactant has been completely removed during calcination and confirming the purity of the sample. The average crystallite size (<span class="elsevierStyleItalic">D</span>) was determined using the Debye–Scherrer equation <a class="elsevierStyleCrossRef" href="#bib0590">[50]</a> (Eq. <a class="elsevierStyleCrossRef" href="#eq0005">(1)</a>) based on XRD data.<elsevierMultimedia ident="eq0005"></elsevierMultimedia>where <span class="elsevierStyleItalic">D</span> is the calculated size of the particle, <span class="elsevierStyleItalic">λ</span> is the X-ray radiation wavelength (<span class="elsevierStyleItalic">λ</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.541<span class="elsevierStyleHsp" style=""></span>Å), <span class="elsevierStyleItalic">θ</span> is the Bragg angle, and <span class="elsevierStyleItalic">β</span> is the full width at half maximum intensity of the respective reflection (FWHM). The average crystallite size of ZnO coated FTO glass was found to be 42.2<span class="elsevierStyleHsp" style=""></span>nm, while the crystallite size of WO<span class="elsevierStyleInf">3</span> coated FTO glass was 38.5<span class="elsevierStyleHsp" style=""></span>nm.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> shows the Raman spectra of the WO<span class="elsevierStyleInf">3</span> and ZnO films deposited on FTO substrate. Raman spectrum of WO<span class="elsevierStyleInf">3</span> film (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3(a)</a>) shows well defined peaks at 136, 270, 320, 711 and 803<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> associated with the presence of monoclinic WO<span class="elsevierStyleInf">3</span>. The peaks around 270<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> and 320<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> can be ascribed to O<span class="elsevierStyleGlyphsbnd"></span>W<span class="elsevierStyleGlyphsbnd"></span>O bending mode of bridging oxygen, while the peaks at 711 and 803<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> are attributed to W<span class="elsevierStyleGlyphsbnd"></span>O<span class="elsevierStyleGlyphsbnd"></span>W stretching mode of WO<span class="elsevierStyleInf">3</span>. Finally, the peak at 136<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> corresponds to the vibrational mode of WO<span class="elsevierStyleInf">3</span> monoclinic lattice <a class="elsevierStyleCrossRef" href="#bib0595">[51]</a>. In the case of ZnO film, the Raman spectrum shows peaks at 119 and 436<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> corresponding to low and high frequency E2 (high) mode in Wurtzite ZnO <a class="elsevierStyleCrossRef" href="#bib0600">[52]</a>. The bands at 242, 629 and 1108<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">−1</span> are associated with the FTO substrate <a class="elsevierStyleCrossRef" href="#bib0600">[52]</a>. These results are in good agreement with XRD results shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0095" class="elsevierStylePara elsevierViewall">The crystal orientation and microstructural properties of WE and CE layers greatly influence the coloring and bleaching process <a class="elsevierStyleCrossRef" href="#bib0415">[15]</a>. Thus, FE-SEM studies of WO<span class="elsevierStyleInf">3</span> and ZnO thin films deposited on FTO substrates annealed at 500<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h were performed (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). SEM image of the WO<span class="elsevierStyleInf">3</span> thin film (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4(a)</a>) shows a surface with irregular nanoclusters with sizes between 30 and 100<span class="elsevierStyleHsp" style=""></span>nm in diameter, and a nanoporous structure. The porous structure of WO<span class="elsevierStyleInf">3</span> can facilitate the migration of lithium ions, and consequently enables coloration change of WO<span class="elsevierStyleInf">3</span> film <a class="elsevierStyleCrossRef" href="#bib0605">[53]</a>. On the other hand, <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4(b)</a> shows a hexagonal-shaped ZnO nanoparticles growing on FTO substrates. The average diameter of hexagonal crystals was about 30–100<span class="elsevierStyleHsp" style=""></span>nm, showing agglomeration of the particles. The SEM image of ZnO coated FTO shows a more mesoporous structure than the WO<span class="elsevierStyleInf">3</span> coated FTO, suggesting a larger surface area and better interaction with the electrolyte compared to graphite coated FTO. The total thickness of ZnO film on FTO glass substrates was found to be approximately 430–450<span class="elsevierStyleHsp" style=""></span>nm, as evidenced by the cross-sectional SEM image shown in <a class="elsevierStyleCrossRef" href="#sec0075">Fig. S1</a> Energy dispersive X-ray (EDX) analysis was performed to evaluate the chemical composition of deposited ZnO and WO<span class="elsevierStyleInf">3</span> thin films on FTO glass substrate (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>). The EDX analysis confirmed the presence of Zn and O elements in the ZnO film (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5b</a>), and W and O elements in the WO<span class="elsevierStyleInf">3</span> film (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5a</a>). The Sn element is present in both cases and is related to substrate FTO.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">In addition to EDX analysis, X-ray photoelectron spectroscopy (XPS) was also used to obtain more information about the surface elemental composition of WO<span class="elsevierStyleInf">3</span> and ZnO thin films and to identify the present chemical species. Binding energy (Ev) of WO<span class="elsevierStyleInf">3</span> and ZnO thin films in the range from 0 to 1100<span class="elsevierStyleHsp" style=""></span>eV was determined by the qualitative XPS survey scan. <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows the XPS spectra of the WO<span class="elsevierStyleInf">3</span> and ZnO thin films deposited on FTO glass and annealed at 500<span class="elsevierStyleHsp" style=""></span>°C <a class="elsevierStyleCrossRefs" href="#bib0610">[54,55]</a>. The appearance of W 4f, Zn 2p and O 1s peaks confirm the composition of films and the presence of WO<span class="elsevierStyleInf">3</span> and ZnO, respectively (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6a and b</a>). A weak C 1s peak at 284<span class="elsevierStyleHsp" style=""></span>eV was also observed and associated with carbon-containing molecules adsorbed onto the film surface.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Optical, electrochemical, and electrochromic properties</span><p id="par0105" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7(a–d)</a> shows the bleached and colored states of the EC devices for applied voltages of −2.5<span class="elsevierStyleHsp" style=""></span>V for coloration and +2.5<span class="elsevierStyleHsp" style=""></span>V for bleaching. The color of the C-CE and ZnO-CE based ECDs changes from transparent (bleached state) to blue (colored state). However, the intensity of coloration is much higher and visible in ZnO-CE (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7c, d</a>) than in C-CE based ECD (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7a, b</a>).</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">Following the assembling procedure of the ECDs (explained in “device assembling procedure” section), the difference in transmittance between colored and bleached states was determined in the wavelength range of 400–800<span class="elsevierStyleHsp" style=""></span>nm (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>). As seen in <a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>, the transmittance variation is also quite different for both devices in bleached and colored states. <a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a> shows a substantial decrease in transmittance under the bleached condition, attributed to reflection at the conducting glass electrodes <a class="elsevierStyleCrossRef" href="#bib0620">[56]</a>. The transmittance of FTO, graphite layer on FTO, 5-layers of WO<span class="elsevierStyleInf">3</span> on FTO, 3-layers of ZnO on FTO were also provided in <a class="elsevierStyleCrossRef" href="#sec0075">Fig. S2</a>. Before potential was applied, the initial state of the ECD has higher transmittance due to the absence of electrochromic reactions. However, during the ECD cycle, ion diffusion and intercalation processes were observed within the WE and CE electrodes <a class="elsevierStyleCrossRef" href="#bib0625">[57]</a>. Differences in transmittance and cathodic coloring at 445 and 435<span class="elsevierStyleHsp" style=""></span>nm were observed for C-CE and ZnO-CE EC devices, respectively. In particular, a considerable difference in the transmittance of bleached and colored states was observed in the visible–NIR spectrum (∼440–800<span class="elsevierStyleHsp" style=""></span>nm) for ZnO-CE based ECD (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8(b)</a>), associated with the higher transparency of ZnO thin films on FTO glass and indicating that the ZnO-CE device had better electrochromic properties than the C-CE <a class="elsevierStyleCrossRefs" href="#bib0630">[58,59]</a>.</p><elsevierMultimedia ident="fig0040"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">Coloration efficiency (<span class="elsevierStyleItalic">η</span>), defined as the change in optical density (OD) per unit of charge (<span class="elsevierStyleItalic">Q</span>) intercalated or deintercalated from the EC, is the most critical parameter to obtain a comprehensive evaluation of ECDs. A high (<span class="elsevierStyleItalic">η</span>) indicates a device that offers a large optical contrast. The <span class="elsevierStyleItalic">η</span> can be calculated from Eqs. <a class="elsevierStyleCrossRef" href="#eq0010">(2)</a> and <a class="elsevierStyleCrossRef" href="#eq0015">(3)</a>:<elsevierMultimedia ident="eq0010"></elsevierMultimedia><elsevierMultimedia ident="eq0015"></elsevierMultimedia>where Δ<span class="elsevierStyleItalic">OD</span> is change in optical density at 600<span class="elsevierStyleHsp" style=""></span>nm, <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">b</span></span> and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> represent the transmittance in bleached and colored states of the film at a certain wavelength, respectively and <span class="elsevierStyleItalic">Q</span> is the charge density per unit area. The changes in ECD transmittance at 600<span class="elsevierStyleHsp" style=""></span>nm were used to determine change in optical density. A transmittance modulation of 6.5% was observed for C-CE and 12.4% for ZnO-CE. The calculated <span class="elsevierStyleItalic">η</span> value of ZnO-CE and C-CE devices was 41.6 and 19.8<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>C<span class="elsevierStyleSup">−1</span>, respectively, similar to previously reported values <a class="elsevierStyleCrossRefs" href="#bib0640">[60–63]</a>.</p><p id="par0120" class="elsevierStylePara elsevierViewall">The electrochemical analysis provides information on the cathodic and anodic behavior of ZnO-CE and C-CE devices. To carry out the analysis the cyclic volatmetry (CV) and chronoamperometry measurements were performed (<a class="elsevierStyleCrossRefs" href="#fig0045">Figs. 9 and 10</a>). In general, a gradual increase in the intensity of blue coloration is observed for WO<span class="elsevierStyleInf">3</span>-Zn and WO<span class="elsevierStyleInf">3</span>-C devices as the result of cathodic polarization <a class="elsevierStyleCrossRef" href="#bib0625">[57]</a>. The optical changes involve redox processes in ZnO-CE and C-CE devices at the interface of electrodes accompanying the Li<span class="elsevierStyleSup">+</span> ions insertion to the surface of the WO<span class="elsevierStyleInf">3</span> thin film from the electrolyte. In the case of C-CE (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9(a)</a>) and ZnO-CE (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9(b)</a>) ECDs, the potential decreased during the cathodic scan, and at the potential of −4.0<span class="elsevierStyleHsp" style=""></span>V corresponded to deep blue coloration. At this point, W<span class="elsevierStyleSup">6+</span> was reduced to W<span class="elsevierStyleSup">5+</span>. The coloring occurs due to a rapid reduction reaction in the WO<span class="elsevierStyleInf">3</span> film involving Li<span class="elsevierStyleSup">+</span> insertion. An oxidation reaction with equivalent charge takes place at the CE (C or ZnO) surface to compensate for the current at the WO<span class="elsevierStyleInf">3</span> film. In the case of ZnO-CE, a reduction peak was observed at around −1.1<span class="elsevierStyleHsp" style=""></span>V, which could be due to the side reaction of ZnO with H<span class="elsevierStyleInf">2</span>O at the beginning of the experiment. After several cycles, the peak was gradually disappeared, suggesting that the water content had reacted completely with the Zn-OH hydroxyl groups, since no visible bubbles were observed that would suggest breakage of water into hydrogen and oxygen gas. In C-CE based ECD such peak was not observed.</p><elsevierMultimedia ident="fig0045"></elsevierMultimedia><elsevierMultimedia ident="fig0050"></elsevierMultimedia><p id="par0125" class="elsevierStylePara elsevierViewall">CA was performed to investigate the response time which is the measure of speed in which electrochromic device change between a colored state and a bleached state. <a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10(a, b)</a> shows chronoamperograms of the assembled C-CE and ZnO-CE based devices for the first 2 cycles recorded at ±3.5<span class="elsevierStyleHsp" style=""></span>V with a time interval of 20s. In <a class="elsevierStyleCrossRef" href="#fig0050">Fig. 10</a>, the current drawn for the coloring is higher in the case of C-CE based ECD (6.9<span class="elsevierStyleHsp" style=""></span>mA<span class="elsevierStyleHsp" style=""></span>s) than that for ZnO-CE based ECD (5.6<span class="elsevierStyleHsp" style=""></span>mA<span class="elsevierStyleHsp" style=""></span>s), for the first cycle. However, the current consumed to discharge Li<span class="elsevierStyleSup">+</span> for ZnO-CE is higher <a class="elsevierStyleCrossRef" href="#bib0660">[64]</a>. It was recently reported that constructing a heterostructure for electrode materials may be a useful way to accelerate charge transportation <a class="elsevierStyleCrossRef" href="#bib0665">[65]</a>.</p><p id="par0130" class="elsevierStylePara elsevierViewall">Electrochemical impedance spectroscopy tests were performed to understand the charge transfer and ion diffusion processes that occur at the coated electrode surface as well as to gain insight into the mechanism driving the electrochromic behavior. <a class="elsevierStyleCrossRef" href="#fig0055">Fig. 11</a> shows a Nyquist plot of ZnO-CE and C-CE based devices measured in the frequency region from 0.1<span class="elsevierStyleHsp" style=""></span>Hz to 100<span class="elsevierStyleHsp" style=""></span>kHz. The Bode plot illustrating the change in magnitude |<span class="elsevierStyleItalic">Z</span>| and phase angle as a function of frequency, Hz, for both the bleached and tinted states of the tested ECDs (<a class="elsevierStyleCrossRef" href="#sec0075">Fig. S3 of the supplementary file</a>). The semi-circle in the Nyquist plot indicates a capacitive behavior of the electrochromic device, which is caused by the capacitance of the double layer formed at the interface between the working electrode and the electrolyte <a class="elsevierStyleCrossRef" href="#bib0670">[66]</a>. For both EDCs, there are changes in impedance during the tinting and bleaching cycles. This indicates that there is a consistent change between the bleached and tinted state, which is likely related to Li<span class="elsevierStyleSup">+</span> intercalation and deintercalation. Specifically for C-CE device, the impedance shifts between relatively high impedance (<span class="elsevierStyleItalic">Z</span>) achieving over 5<span class="elsevierStyleHsp" style=""></span>kΩ for tinted state and then drops below 3<span class="elsevierStyleHsp" style=""></span>kΩ in bleached state. With the replacement of carbon electrode with ZnO, the difference between bleached and tinted states is more present. This change in impedance is likely due to changes in the concentration of Li<span class="elsevierStyleSup">+</span> ions in the electrolyte and changes in the saturation of Li<span class="elsevierStyleSup">+</span> ions in the nanopores of WO<span class="elsevierStyleInf">3</span> thin film as it intercalates or deintercalates from crystal lattice <a class="elsevierStyleCrossRef" href="#bib0410">[14]</a>. In the device where ZnO is used as a counter electrode, the change in impedance observed in the Nyquist plot could be attributed to the intercalation and deintercalation of Li<span class="elsevierStyleSup">+</span> ions, which results in changes in the surface of ZnO, such as the formation of ZnOH or other surface modifications <a class="elsevierStyleCrossRef" href="#bib0675">[67]</a>. The visual observations and recorded transmittance spectra suggest that the Li<span class="elsevierStyleSup">+</span> ions are being more effectively intercalated into the WO<span class="elsevierStyleInf">3</span> layer, affecting also to the surface of ZnO <a class="elsevierStyleCrossRefs" href="#bib0675">[67,68]</a>.</p><elsevierMultimedia ident="fig0055"></elsevierMultimedia></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conclusions</span><p id="par0135" class="elsevierStylePara elsevierViewall">Cost-effective and simple sol–gel method was used for the preparation of transparent stable WO<span class="elsevierStyleInf">3</span> and ZnO layers on FTO substrates by spin-coating. ECDs were successfully assembled using WO<span class="elsevierStyleInf">3</span> thin film as WE and ZnO thin film or graphite as CE, and a LiClO<span class="elsevierStyleInf">4</span>-GBL solution as the electrolyte. XRD results confirm the crystallization of monoclinic WO<span class="elsevierStyleInf">3</span> and hexagonal wurtzite (ZnO) phases after annealing at 500<span class="elsevierStyleHsp" style=""></span>°C/1<span class="elsevierStyleHsp" style=""></span>h. Under operative conditions, the ZnO film, used as a counter electrode, improves the coloration efficiency of ECD and almost doubles it compared to a graphite electrode. The higher optical contrast and coloration efficiency of ZnO-CE compared to C-CE ECDs are attributed to its high active specific surface area of ZnO nanoparticle coating. Thin films of ZnO as CE are compatible with WO<span class="elsevierStyleInf">3</span>-based electrochromic devices, obtaining higher coloration efficiency and better transparency of the device in bleached state. This indicates that ZnO thin films would be an efficient replacement for existing platinum and graphite thin film deposits and could influence the development of novel EC technologies.</p><p id="par0140" class="elsevierStylePara elsevierViewall">Since the studied device configuration uses a simple process of fabrication of the EC film, the ZnO-CE based ECD has a great potential for fabrication of large-area and practical electrochromic smart windows for greenhouse covers, electrochromic apertures and smart windows.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres2142312" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1818643" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres2142313" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1818644" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Materials" ] 1 => array:3 [ "identificador" => "sec0020" "titulo" => "Methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0025" "titulo" => "WO sol preparation" ] 1 => array:2 [ "identificador" => "sec0030" "titulo" => "ZnO sol preparation" ] 2 => array:2 [ "identificador" => "sec0035" "titulo" => "Electrolyte preparation" ] 3 => array:2 [ "identificador" => "sec0040" "titulo" => "Thin film deposition" ] 4 => array:2 [ "identificador" => "sec0045" "titulo" => "Device assembling procedure" ] ] ] 2 => array:2 [ "identificador" => "sec0050" "titulo" => "Characterization techniques" ] ] ] 6 => array:3 [ "identificador" => "sec0055" "titulo" => "Results and discussion" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Structural and morphological characterization" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Optical, electrochemical, and electrochromic properties" ] ] ] 7 => array:2 [ "identificador" => "sec0070" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "xack743579" "titulo" => "Acknowledgements" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2023-05-05" "fechaAceptado" => "2023-08-23" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1818643" "palabras" => array:5 [ 0 => "Electrochromism" 1 => "Intercalation" 2 => "Sol–gel" 3 => "Thin films" 4 => "Zinc oxide" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1818644" "palabras" => array:5 [ 0 => "Electrocrómico" 1 => "Intercalación" 2 => "Sol-gel" 3 => "Películas delgadas" 4 => "Óxido de zinc" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Electrochromic devices (ECDs) have the ability to show color even when electrical power is disconnected. However, challenges such as simple and cost-effective electrochromic material preparation, insufficient coloration, slow switching times, and poor cycling stability have yet to be overcome. The paper describes an electrochromic device with WO<span class="elsevierStyleInf">3</span> thin film as the electrochromic material for the working electrode and ZnO thin film as a counter electrode fabricated on FTO glass substrates by a simple sol–gel spin coating method. The optical contrast at 600<span class="elsevierStyleHsp" style=""></span>nm of ZnO counter electrode based ECD (12.4%) is almost double that of graphite counter electrode based ECD (6.5%), showing higher efficiency and better electrochromic response. The properties of ECD devices were also examined using cyclic voltammetry and chronoamperometry measurements with results showing that the devices were stable and the charge required to tint the device (5.6<span class="elsevierStyleHsp" style=""></span>mA<span class="elsevierStyleHsp" style=""></span>s) is reduced compared to typical graphite-coated counter electrode. These types of devices are promissing candidates to be used as smart windows.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Los dispositivos electrocrómicos (ECD) tienen la capacidad de mostrar color incluso cuando se desconectan de la energía eléctrica. Sin embargo, para su implantación total deben superarse importantes desafíos como la preparación de materiales electrocrómicos simples y rentables, la coloración insuficiente, los tiempos de conmutación que son lentos y la mala estabilidad del ciclo. En este artículo se describe la preparación de un dispositivo electrocrómico basado en una película delgada de WO<span class="elsevierStyleInf">3</span> como electrodo de trabajo y una película delgada de ZnO obtenida por sol-gel como contra-electrodo, todo fabricado sobre sustratos de vidrio FTO mediante un método simple de centrifugado. Como resultados destacar que el contraste óptico a 600 nm del ECD basado en el contra-electrodo de ZnO (12,4%) es casi el doble que el del sistema ECD basado en el contra-electro de grafito (6,5%), mostrando una mayor eficiencia y una mejor respuesta electrocrómica. Las propiedades del dispositivo ECD de ZnO también se examinaron mediante voltametría cíclica y cronoamperometría y los resultados mostraron que los dispositivos eran estables y la carga necesaria para teñir el dispositivo (5,6 mAs) se reducía comparado con el dispositivo ECD de grafito. Este tipo de dispositivos son candidatos prometedores para ser utilizados como ventanas inteligentes.</p></span>" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0155" class="elsevierStylePara elsevierViewall">The following are the supplementary data to this article:<elsevierMultimedia ident="upi0005"></elsevierMultimedia></p>" "etiqueta" => "Appendix B" "titulo" => "Supplementary material" "identificador" => "sec0080" ] ] ] ] "multimedia" => array:15 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1798 "Ancho" => 2341 "Tamanyo" => 210852 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Schematic representation of the procedure used to prepare thin films on WE and CE and the configuration of electrochromic device.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 909 "Ancho" => 1258 "Tamanyo" => 124088 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">XRD profiles of FTO (a), WO<span class="elsevierStyleInf">3</span> (b) and ZnO (c) thin films coated on FTO glass substrates.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1002 "Ancho" => 1258 "Tamanyo" => 126051 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Raman spectra of WO<span class="elsevierStyleInf">3</span> (a) and ZnO (b) thin films on FTO glass substrates.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 433 "Ancho" => 1252 "Tamanyo" => 91096 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">SEM images of WO<span class="elsevierStyleInf">3</span> (a) and ZnO (b) thin films coated on the FTO glass substrates.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 450 "Ancho" => 1250 "Tamanyo" => 65207 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">EDX of WO<span class="elsevierStyleInf">3</span> (a) and ZnO (b) thin films coated on the FTO glass substrates.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 560 "Ancho" => 1250 "Tamanyo" => 58784 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">XPS spectra of WO<span class="elsevierStyleInf">3</span> (a) and ZnO (b) thin films coated on the FTO glass substrates.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 327 "Ancho" => 1000 "Tamanyo" => 58223 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Photographic images of bleached and tinted states of C-CE (a, b) and ZnO-CE (c, d) based ECDs.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 499 "Ancho" => 1258 "Tamanyo" => 77232 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">UV–Vis transmittance spectra of bleached and tinted states of 2nd cycle for C-CE (a) and ZnO-CE (b) based ECDs. The bleached state shown in red line and tinted state shown in dotted red line. Black line represents without applying potential.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 494 "Ancho" => 1258 "Tamanyo" => 61996 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Cyclic voltammograms of C-CE (a) and ZnO-CE (b) based ECDs. 1st cycle is shown in black line and 20th cycle is shown in dotted red line.</p>" ] ] 9 => array:7 [ "identificador" => "fig0050" "etiqueta" => "Fig. 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 532 "Ancho" => 1258 "Tamanyo" => 43727 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">CA of ZnO-CE (a) and C-CE (b) for first 2 cylces. Charging and discharging are shown in black and red color respectively.</p>" ] ] 10 => array:7 [ "identificador" => "fig0055" "etiqueta" => "Fig. 11" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr11.jpeg" "Alto" => 968 "Ancho" => 1258 "Tamanyo" => 81831 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Nyquist diagrams of C-CE (red) and ZnO-CE (black) based devices representing the tinted (triangles) and bleached (squares) state after an applied potential.</p>" ] ] 11 => array:5 [ "identificador" => "upi0005" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc1.doc" "ficheroTamanyo" => 660310 ] ] 12 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "D=0.94λβcos θ" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 1301 "Alto" => 34 "Ancho" => 105 ] ] 13 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "η=ΔOD600 nmQ" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 1211 "Alto" => 34 "Ancho" => 98 ] ] 14 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ΔOD600 nm=log TbTc" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 1339 "Alto" => 33 "Ancho" => 127 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:68 [ 0 => array:3 [ "identificador" => "bib0345" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromism, a possible change of color producible in dyes by an electric field" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.R. Platt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1063/1.1731686" "Revista" => array:5 [ "tituloSerie" => "J. Chem. Phys." "fecha" => "1961" "volumen" => "862" "paginaInicial" => "2" "paginaFinal" => "4" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0350" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhancement on electrochromic properties of WO<span class="elsevierStyleInf">3</span>-based electrode prepared with hierarchical ZnO nanobricks" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.H. Yang" 1 => "J.H. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.vacuum.2020.109460" "Revista" => array:4 [ "tituloSerie" => "Vacuum" "fecha" => "2020" "volumen" => "179" "paginaInicial" => "109460" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0355" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic materials and devices for energy efficient windows" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C.M. Lampert" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/0165-1633(84)90024-8" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater." "fecha" => "1984" "volumen" => "11" "paginaInicial" => "1" "paginaFinal" => "27" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0360" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A vertically integrated solar-powered electrochromic window for energy efficient buildings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.L. Dyer" 1 => "R.H. Bulloch" 2 => "Y. Zhou" 3 => "B. Kippelen" 4 => "J.R. Reynolds" 5 => "F. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/adma.201401400" "Revista" => array:6 [ "tituloSerie" => "Adv. Mater." "fecha" => "2014" "volumen" => "26" "paginaInicial" => "4895" "paginaFinal" => "4900" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24863393" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0365" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Organic electrochromism for a new color electronic paper" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Kobayashi" 1 => "S. Miura" 2 => "M. Nishimura" 3 => "H. Urano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2007.02.027" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2008" "volumen" => "92" "paginaInicial" => "136" "paginaFinal" => "139" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0370" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Llordés" 1 => "G. Garcia" 2 => "J. Gazquez" 3 => "D.J. Milliron" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature12398" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2013" "volumen" => "500" "paginaInicial" => "323" "paginaFinal" => "326" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23955232" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0375" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic organic and polymeric materials for display applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.J. Mortimer" 1 => "A.L. Dyer" 2 => "J.R. Reynolds" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.displa.2005.03.003" "Revista" => array:5 [ "tituloSerie" => "Displays" "fecha" => "2006" "volumen" => "27" "paginaInicial" => "2" "paginaFinal" => "18" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0380" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Large area electrochromics for architectural applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "J.L. Ol" 1 => "J. Gordon" 2 => "H. Mathew" 3 => "S.P. Sapers" 4 => "M.J. Cumbo" 5 => "N.A. O’brien" 6 => "R.B. Sargent" 7 => "V.P. Raksha" 8 => "R.B. Lahaderne" 9 => "B.P. Hichwa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Non-Cryst. Solids" "fecha" => "1997" "volumen" => "218" "paginaInicial" => "342" "paginaFinal" => "346" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0385" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C.G. Granqvist" 1 => "M.A. Arvizu" 2 => "B. Pehlivan" 3 => "H.Y. Qu" 4 => "R.T. Wen" 5 => "G.A. Niklasson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2017.11.169" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2018" "volumen" => "259" "paginaInicial" => "1170" "paginaFinal" => "1182" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0390" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bi-functional Mo-doped WO<span class="elsevierStyleInf">3</span> nanowire array electrochromism-plus electrochemical energy storage" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:15 [ 0 => "D. Zhou" 1 => "F. Shi" 2 => "D. Xie" 3 => "D.H. Wang" 4 => "X.H. Xia" 5 => "X.L. Wang" 6 => "C.D. Gu" 7 => "J.P. Tu" 8 => "F. Shi" 9 => "D. Xie" 10 => "D.H. Wang" 11 => "X.H. Xia" 12 => "X.L. Wang" 13 => "C.D. Gu" 14 => "J.P. Tu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcis.2015.11.068" "Revista" => array:6 [ "tituloSerie" => "J. Colloid Interface Sci." "fecha" => "2016" "volumen" => "465" "paginaInicial" => "112" "paginaFinal" => "120" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26669497" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0395" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Energy storage electrochromic devices in the era of intelligent automation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Z. Lu" 1 => "X. Zhong" 2 => "X. Liu" 3 => "J. Wang" 4 => "X. Diao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/d1cp01398j" "Revista" => array:6 [ "tituloSerie" => "Phys. Chem. Chem. Phys." "fecha" => "2021" "volumen" => "23" "paginaInicial" => "14126" "paginaFinal" => "14145" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34164640" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0400" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "G. Cai" 1 => "R. Zhu" 2 => "S. Liu" 3 => "J. Wang" 4 => "C. Wei" 5 => "K.J. Griffith" 6 => "Y. Jia" 7 => "P.S. Lee" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Adv. Energy Mater." "fecha" => "2022" "volumen" => "12" "paginaInicial" => "2103106" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://doi.org/10.1002/aenm.202103106" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0405" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Design and fabrication of MoSe<span class="elsevierStyleInf">2</span>/WO<span class="elsevierStyleInf">3</span> thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Ahmad" 1 => "M.A. Shinde" 2 => "G. Song" 3 => "H. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2021.08.340" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2021" "volumen" => "47" "paginaInicial" => "34297" "paginaFinal" => "34306" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0410" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Flexible electrochromic tape using steel foil with WO<span class="elsevierStyleInf">3</span> thin film" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "M. Rozman" 1 => "B. Žener" 2 => "L. Matoh" 3 => "R.F. Godec" 4 => "A. Mourtzikou" 5 => "E. Stathatos" 6 => "U. Bren" 7 => "M. Lukšič" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2019.135329" "Revista" => array:4 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2020" "volumen" => "330" "paginaInicial" => "135329" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0415" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Simplified all-solid-state WO<span class="elsevierStyleInf">3</span> based electrochromic devices on single substrate: toward large area, low voltage, high contrast, and fast switching dynamics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "P. Cossari" 1 => "M. Pugliese" 2 => "C. Simari" 3 => "A. Mezzi" 4 => "V. Maiorano" 5 => "I. Nicotera" 6 => "G. Gigli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/admi.201901663" "Revista" => array:5 [ "tituloSerie" => "Adv. Mater. Interfaces" "fecha" => "2020" "volumen" => "7" "paginaInicial" => "1" "paginaFinal" => "13" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0420" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Baetens" 1 => "B.P. Jelle" 2 => "A. Gustavsen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2009.08.021" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2010" "volumen" => "94" "paginaInicial" => "87" "paginaFinal" => "105" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0425" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Opportunities and challenges in science and technology of WO<span class="elsevierStyleInf">3</span> for electrochromic and related applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "S.K. Deb" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2007.01.026" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2008" "volumen" => "92" "paginaInicial" => "245" "paginaFinal" => "258" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0430" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A solar-powered multifunctional and multimode electrochromic smart window based on WO<span class="elsevierStyleInf">3</span>/Prussian blue complementary structure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "Z. Liu" 1 => "J. Yang" 2 => "G. Leftheriotis" 3 => "H. Huang" 4 => "Y. Xia" 5 => "Y. Gan" 6 => "W. Zhang" 7 => "J. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.susmat.2021.e00372" "Revista" => array:4 [ "tituloSerie" => "Sustain. Mater. Technol." "fecha" => "2022" "volumen" => "31" "paginaInicial" => "e00372" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0435" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure and properties of WO<span class="elsevierStyleInf">3</span> thin films for electrochromic device application" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.C. RAO" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Non-Oxide Glas." "fecha" => "2013" "volumen" => "5" "paginaInicial" => "1" "paginaFinal" => "8" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://chalcogen.ro/1_Rao.pdf" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0440" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "All-solid-state proton-based tandem structure achieving ultrafast switching electrochromic windows" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z. Shao" 1 => "A. Huang" 2 => "C. Ming" 3 => "J. Bell" 4 => "P. Yu" 5 => "Y. Sun" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nature Electronics." "fecha" => "2022" "volumen" => "5" "paginaInicial" => "45" "paginaFinal" => "52" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://doi.org/10.21203/rs.3.rs-321790/v1" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0445" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "V<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">5</span> nanowires as a functional material for electrochromic device" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.C. Cheng" 1 => "F.R. Chen" 2 => "J.J. Kai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2005.07.006" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2006" "volumen" => "90" "paginaInicial" => "1156" "paginaFinal" => "1165" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0450" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Coloured electrochromic windows based on nanostructured TiO<span class="elsevierStyleInf">2</span> films modified by adsorbed redox chromophores" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Cinnsealach" 1 => "G. Boschloo" 2 => "S.N. Rao" 3 => "D. Fitzmaurice" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0927-0248(98)00156-1" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "1999" "volumen" => "57" "paginaInicial" => "107" "paginaFinal" => "125" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0455" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structure and electronic properties of electrochromic NiO films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.A. Wruck" 1 => "M. Rubin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1149/1.2056205" "Revista" => array:5 [ "tituloSerie" => "J. Electrochem. Soc." "fecha" => "1993" "volumen" => "140" "paginaInicial" => "1097" "paginaFinal" => "1104" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0460" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic films composed of MnO<span class="elsevierStyleInf">2</span> nanosheets with controlled optical density and high coloration efficiency" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Sakai" 1 => "Y. Ebina" 2 => "K. Takada" 3 => "T. Sasaki" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1149/1.2104227" "Revista" => array:4 [ "tituloSerie" => "J. Electrochem. Soc." "fecha" => "2005" "volumen" => "152" "paginaInicial" => "E384" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0465" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dip-coated TiO<span class="elsevierStyleInf">2</span>–CeO<span class="elsevierStyleInf">2</span> films as transparent counter electrode for transmissive elctrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Baudry" 1 => "A.C.M. Rodrigues" 2 => "M.A. Aegerter" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Non-Cryst. Solids" "fecha" => "1990" "volumen" => "121" "paginaInicial" => "319" "paginaFinal" => "322" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0470" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochemical insertion in sol–gel made CeO<span class="elsevierStyleInf">2</span>–TiO<span class="elsevierStyleInf">2</span> from lithium conducting polymer electrolyte: relation with the material structure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D. Kéomany" 1 => "J.P. Petit" 2 => "D. Deroo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/0927-0248(94)00190-1" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "1995" "volumen" => "36" "paginaInicial" => "397" "paginaFinal" => "408" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0475" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The CeO<span class="elsevierStyleInf">2</span>–TiO<span class="elsevierStyleInf">2</span>–ZrO<span class="elsevierStyleInf">2</span> sol–gel film: a counter-electrode for electrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.O. Avellaneda" 1 => "L.O.S. Bulhões" 2 => "A. Pawlicka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.tsf.2004.04.039" "Revista" => array:5 [ "tituloSerie" => "Thin Solid Films" "fecha" => "2005" "volumen" => "471" "paginaInicial" => "100" "paginaFinal" => "104" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0480" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surface-enhanced counter electrode materials for the fabrication of ultradurable electrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R. Ahmad" 1 => "V. Dipalo" 2 => "M. Bell" 3 => "I.I. Ebralidze" 4 => "O.V. Zenkina" 5 => "E.B. Easton" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/acsaem.1c03480" "Revista" => array:5 [ "tituloSerie" => "ACS Appl. Energy Mater." "fecha" => "2022" "volumen" => "5" "paginaInicial" => "3905" "paginaFinal" => "3914" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0485" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrodeposition of zinc oxide nanowires as a counter electrode in electrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.C. Lim" 1 => "E. Park" 2 => "I.S. Shin" 3 => "J.I. Hong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/bkcs.11953" "Revista" => array:5 [ "tituloSerie" => "Bull. Korean Chem. Soc." "fecha" => "2020" "volumen" => "41" "paginaInicial" => "358" "paginaFinal" => "361" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0490" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C. Li" 1 => "Y. Li" 2 => "Y. Wu" 3 => "B.S. Ong" 4 => "R.O. Loutfy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1063/1.2773683" "Revista" => array:5 [ "tituloSerie" => "J. Appl. Phys." "fecha" => "2007" "volumen" => "102" "paginaInicial" => "2005" "paginaFinal" => "2008" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0495" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of preannealing temperature of ZnO thin films on the performance of dye-sensitized solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.C. Kao" 1 => "H.Z. Chen" 2 => "S.L. Young" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00339-009-5467-9" "Revista" => array:5 [ "tituloSerie" => "Appl. Phys. A Mater. Sci. Process." "fecha" => "2010" "volumen" => "98" "paginaInicial" => "595" "paginaFinal" => "599" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0500" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "D.C. Lim" 1 => "W.H. Shim" 2 => "K.D. Kim" 3 => "H.O. Seo" 4 => "J.H. Lim" 5 => "Y. Jeong" 6 => "Y.D. Kim" 7 => "K.H. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2011.06.028" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2011" "volumen" => "95" "paginaInicial" => "3036" "paginaFinal" => "3040" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0505" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C.V.V.M. Gopi" 1 => "M. Venkata-Haritha" 2 => "Y.S. Lee" 3 => "H.J. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c6ta02415g" "Revista" => array:5 [ "tituloSerie" => "J. Mater. Chem. A" "fecha" => "2016" "volumen" => "4" "paginaInicial" => "8161" "paginaFinal" => "8171" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0510" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.S.A. Ahmed" 1 => "W. Xiang" 2 => "I.S. Amiinu" 3 => "Z. Li" 4 => "R. Yu" 5 => "X. Zhao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c8se00594j" "Revista" => array:5 [ "tituloSerie" => "Sustain. Energy Fuels" "fecha" => "2019" "volumen" => "3" "paginaInicial" => "1976" "paginaFinal" => "1987" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0515" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Implementation of high-performance electrochromic device based on all-solution-fabricated Prussian blue and tungsten trioxide thin film" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N.S. Pham" 1 => "Y.H. Seo" 2 => "E. Park" 3 => "T.D.D. Nguyen" 4 => "I.S. Shin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.electacta.2020.136446" "Revista" => array:4 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2020" "volumen" => "353" "paginaInicial" => "136446" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0520" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Data on characterization and electrochemical analysis of zinc oxide and tungsten trioxide as counter electrodes for electrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N.S. Pham" 1 => "Y.H. Seo" 2 => "E. Park" 3 => "T.D.D. Nguyen" 4 => "I.S. Shin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.dib.2020.105891" "Revista" => array:5 [ "tituloSerie" => "Data Brief" "fecha" => "2020" "volumen" => "31" "paginaInicial" => "105891" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32637497" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0525" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fast switchable electrochromic properties of tungsten oxide nanowire bundles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S.J. Yoo" 1 => "J.W. Lim" 2 => "Y.-E. Sung" 3 => "Y.H. Jung" 4 => "H.G. Choi" 5 => "D.K. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1063/1.2734395" "Revista" => array:5 [ "tituloSerie" => "Appl. Phys. Lett." "fecha" => "2007" "volumen" => "173126" "paginaInicial" => "1" "paginaFinal" => "4" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0530" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IR electrochromic WO<span class="elsevierStyleInf">3</span> thin films: from optimization to devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K. Sauvet" 1 => "L. Sauques" 2 => "A. Rougier" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.solmat.2009.05.003" "Revista" => array:5 [ "tituloSerie" => "Sol. Energy Mater. Sol. Cells" "fecha" => "2009" "volumen" => "93" "paginaInicial" => "2045" "paginaFinal" => "2049" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0535" "etiqueta" => "[39]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.C. Wang" 1 => "K.Y. Liu" 2 => "J.L. Huang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.tsf.2011.08.046" "Revista" => array:5 [ "tituloSerie" => "Thin Solid Films" "fecha" => "2011" "volumen" => "520" "paginaInicial" => "1454" "paginaFinal" => "1459" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0540" "etiqueta" => "[40]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The preparation and investigation of all thin film electrochromic devices based on reactively sputtered MoO<span class="elsevierStyleInf">3</span> thin films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Q. Han" 1 => "R. Wang" 2 => "H. Zhu" 3 => "M. Wan" 4 => "Y. Mai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mssp.2021.105686" "Revista" => array:4 [ "tituloSerie" => "Mater. Sci. Semicond. Process." "fecha" => "2021" "volumen" => "126" "paginaInicial" => "105686" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0545" "etiqueta" => "[41]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of pulsed laser deposited WO<span class="elsevierStyleInf">3</span> thin films for electrochromic devices" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Rougier" 1 => "F. Portemer" 2 => "A. Quede" 3 => "M. El Marssi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Appl. Surf. Sci." "fecha" => "1999" "paginaInicial" => "1" "paginaFinal" => "9" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0550" "etiqueta" => "[42]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrodeposition of WO<span class="elsevierStyleInf">3</span> nanostructured thin films for electrochromic and H<span class="elsevierStyleInf">2</span>S gas sensor applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "S. Poongodi" 1 => "P.S. Kumar" 2 => "D. Mangalaraj" 3 => "N. Ponpandian" 4 => "P. Meena" 5 => "Y. Masuda" 6 => "C. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jallcom.2017.05.122" "Revista" => array:5 [ "tituloSerie" => "J. Alloys Compd." "fecha" => "2017" "volumen" => "719" "paginaInicial" => "71" "paginaFinal" => "81" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0555" "etiqueta" => "[43]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preparation and characterization of ZnO thin films deposited by spin coating method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Charlesbabu" 1 => "K. Gopalakrishnan" 2 => "M. Elango" 3 => "K. Vasudevan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/24701556.2016.1242627" "Revista" => array:5 [ "tituloSerie" => "J. Optoelctron. Adv. Mater." "fecha" => "2008" "volumen" => "10" "paginaInicial" => "2578" "paginaFinal" => "2583" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0560" "etiqueta" => "[44]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tungsten oxide (WO<span class="elsevierStyleInf">3</span>) films prepared by sol–gel spin-coating technique" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "B.W.C. Au" 1 => "K.Y. Chan" 2 => "W.L. Pang" 3 => "C.L. Lee" 4 => "A.H. Mustafa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4028/www.scientific.net/SSP.280.71" "Revista" => array:5 [ "tituloSerie" => "Solid State Phenom." "fecha" => "2018" "volumen" => "280" "paginaInicial" => "71" "paginaFinal" => "75" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0565" "etiqueta" => "[45]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "WO<span class="elsevierStyleInf">3</span> thin films by sol–gel for electrochromic applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Cremonesi" 1 => "D. Bersani" 2 => "P.P. Lottici" 3 => "Y. Djaoued" 4 => "P.V. Ashrit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jnoncrysol.2004.08.073" "Revista" => array:5 [ "tituloSerie" => "J. Non-Cryst. Solids" "fecha" => "2004" "volumen" => "345–346" "paginaInicial" => "500" "paginaFinal" => "504" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0570" "etiqueta" => "[46]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic properties of sol–gel synthesized macroporous tungsten oxide films doped with gold nanoparticles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Alsawafta" 1 => "Y.M. Golestani" 2 => "T. Phonemac" 3 => "S. Badilescu" 4 => "V. Stancovski" 5 => "V.-V. Truong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1149/2.012405jes" "Revista" => array:5 [ "tituloSerie" => "J. Electrochem. Soc." "fecha" => "2014" "volumen" => "161" "paginaInicial" => "H276" "paginaFinal" => "H283" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0575" "etiqueta" => "[47]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physical and chemical defects in WO<span class="elsevierStyleInf">3</span> thin films and their impact on photoelectrochemical water splitting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Y. Zhao" 1 => "S. Balasubramanyam" 2 => "R. Sinha" 3 => "R. Lavrijsen" 4 => "M.A. Verheijen" 5 => "A.A. Bol" 6 => "A. Bieberle-Hütter" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/acsaem.8b00849" "Revista" => array:5 [ "tituloSerie" => "ACS Appl. Energy Mater." "fecha" => "2018" "volumen" => "1" "paginaInicial" => "5887" "paginaFinal" => "5895" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0580" "etiqueta" => "[48]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of Ti and Zn dopants on structural properties and electrochromic performance of Sol–Gel derived WO<span class="elsevierStyleInf">3</span> thin films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Paipitak" 1 => "W. Techitdheera" 2 => "S. Porntheeraphat" 3 => "W. Pecharapa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.egypro.2013.06.801" "Revista" => array:5 [ "tituloSerie" => "Energy Proc." "fecha" => "2013" "volumen" => "34" "paginaInicial" => "689" "paginaFinal" => "696" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0585" "etiqueta" => "[49]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characterization of ZnO thin film by low cost modified SILAR technique" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H.D. Dhaygude" 1 => "S.K. Shinde" 2 => "N.B. Velhal" 3 => "G.M. Lohar" 4 => "V.J. Fulari" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3934/matersci.2016.2.349" "Revista" => array:5 [ "tituloSerie" => "AIMS Mater. Sci." "fecha" => "2016" "volumen" => "3" "paginaInicial" => "349" "paginaFinal" => "356" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0590" "etiqueta" => "[50]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The scherrer formula for X-ray particle size determination" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.L. Patterson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1103/PhysRev.56.978" "Revista" => array:5 [ "tituloSerie" => "Phys. Rev." "fecha" => "1939" "volumen" => "56" "paginaInicial" => "978" "paginaFinal" => "982" ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0595" "etiqueta" => "[51]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Facile hydrothermal synthesis of WO<span class="elsevierStyleInf">3</span> nanoconifer thin film: multifunctional behavior for gas sensing and field emission applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "P.S. Kolhe" 1 => "P.S. Shirke" 2 => "N. Maiti" 3 => "M.A. More" 4 => "K.M. Sonawane" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10904-018-0962-0" "Revista" => array:5 [ "tituloSerie" => "J. Inorg. Organomet. Polym. Mater." "fecha" => "2019" "volumen" => "29" "paginaInicial" => "41" "paginaFinal" => "48" ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0600" "etiqueta" => "[52]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and characterization of nano zinc oxide by sol gel spin coating" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Raji" 1 => "K. Kumar" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Recent Res. Sci." "fecha" => "2011" "volumen" => "3" "paginaInicial" => "48" "paginaFinal" => "52" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "http://recent-science.com/index.php/rrst/article/viewArticle/6075" ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0605" "etiqueta" => "[53]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Facile single-step fabrications of electrochromic WO<span class="elsevierStyleInf">3</span> micro-patterned films using the novel photosensitive sol–gel method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y. Ren" 1 => "Y. Gao" 2 => "G. Zhao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ceramint.2014.08.084" "Revista" => array:5 [ "tituloSerie" => "Ceram. Int." "fecha" => "2015" "volumen" => "41" "paginaInicial" => "403" "paginaFinal" => "408" ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0610" "etiqueta" => "[54]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic performance of WO<span class="elsevierStyleInf">3</span> films: optimization by crystal network topology modification" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "R. Yu" 1 => "Z.H. Meng" 2 => "M.D. Ye" 3 => "Y.H. Lin" 4 => "N.B. Lin" 5 => "X.Y. Liu" 6 => "W.D. Yu" 7 => "X.Y. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1039/c5ce00445d" "Revista" => array:5 [ "tituloSerie" => "CrystEngComm" "fecha" => "2015" "volumen" => "17" "paginaInicial" => "6583" "paginaFinal" => "6590" ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0615" "etiqueta" => "[55]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of vertically aligned ZnO nanorods surface morphology on the ambient-atmosphere fabricated organic solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "B.S. Mwankemwa" 1 => "T.D. Malevu" 2 => "M.G. Sahini" 3 => "S.A. Vuai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rinma.2022.100271" "Revista" => array:4 [ "tituloSerie" => "Results Mater." "fecha" => "2022" "volumen" => "14" "paginaInicial" => "100271" ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0620" "etiqueta" => "[56]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expanded graphite/pencil-lead as counter electrode for dye-sensitized solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y.S. Wei" 1 => "Q.Q. Jin" 2 => "T.Z. Ren" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.sse.2011.05.019" "Revista" => array:5 [ "tituloSerie" => "Solid State Electron." "fecha" => "2011" "volumen" => "63" "paginaInicial" => "76" "paginaFinal" => "82" ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0625" "etiqueta" => "[57]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrochromic behavior of WO<span class="elsevierStyleInf">3</span> nanoplate thin films in acid aqueous solution and a protic ionic liquid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. De Ribamar Martins Neto" 1 => "R.M. Torresi" 2 => "S.I. Cordoba De Torresi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jelechem.2015.08.032" "Revista" => array:5 [ "tituloSerie" => "J. Electroanal. Chem." "fecha" => "2016" "volumen" => "765" "paginaInicial" => "111" "paginaFinal" => "117" ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0630" "etiqueta" => "[58]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Growth of ZnO nanorods on FTO glass substrate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H. Slimani" 1 => "N. Bessous" 2 => "S. Dagher" 3 => "A. Hilal-Alnaqbi" 4 => "M. El Gamal" 5 => "B. Akhozheya" 6 => "M. Mohammed" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1088/2053-1591/ab727b" "Revista" => array:3 [ "tituloSerie" => "Mater. Res. Express." "fecha" => "2020" "volumen" => "7" ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0635" "etiqueta" => "[59]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electronic supplementary information for flexible electrochromic tape using steel foil with WO<span class="elsevierStyleInf">3</span> thin film" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "M. Rozman" 1 => "B. Žener" 2 => "L. Matoh" 3 => "R.F. Godec" 4 => "A. Mourtzikou" 5 => "E. Stathatos" 6 => "U. Bren" 7 => "M. Lukšič" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1107/S1600536809047072" "Revista" => array:5 [ "tituloSerie" => "Electrochim. Acta" "fecha" => "2020" "volumen" => "330" "paginaInicial" => "S1" "paginaFinal" => "S4" ] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0640" "etiqueta" => "[60]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Crystalline WO<span class="elsevierStyleInf">3</span> nanoparticles for highly improved electrochromic applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "S.H. Lee" 1 => "R. Deshpande" 2 => "P.A. Parilla" 3 => "K.M. Jones" 4 => "B. To" 5 => "A.H. Mahan" 6 => "A.C. Dillon" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/adma.200501953" "Revista" => array:5 [ "tituloSerie" => "Adv. Mater." "fecha" => "2006" "volumen" => "18" "paginaInicial" => "763" "paginaFinal" => "766" ] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0645" "etiqueta" => "[61]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A case study of optical properties and structure of sol–gel derived nanocrystalline electrochromic WO<span class="elsevierStyleInf">3</span> films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Deepa" 1 => "A.K. Srivastava" 2 => "M. Kar" 3 => "S.A. Agnihotry" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1088/0022-3727/39/9/025" "Revista" => array:5 [ "tituloSerie" => "J. Phys. D Appl. Phys." "fecha" => "2006" "volumen" => "39" "paginaInicial" => "1885" "paginaFinal" => "1893" ] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0650" "etiqueta" => "[62]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Experimental study of the electrochromic properties of WO<span class="elsevierStyleInf">3</span> thin films derived by electrochemical method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C.G. Kuo" 1 => "C.Y. Chou" 2 => "Y.C. Tung" 3 => "J.H. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.6119/JMST-011-0221-2" "Revista" => array:5 [ "tituloSerie" => "J. Mar. Sci. Technol." "fecha" => "2012" "volumen" => "20" "paginaInicial" => "365" "paginaFinal" => "368" ] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0655" "etiqueta" => "[63]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of annealing temperature on optical and electrochromic properties of tungsten oxide thin films" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Abareshi" 1 => "H. Haratizadeh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.18869/acadpub.ijpr.16.3.47" "Revista" => array:5 [ "tituloSerie" => "Iran. J. Phys. Res." "fecha" => "2016" "volumen" => "16" "paginaInicial" => "47" "paginaFinal" => "54" ] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0660" "etiqueta" => "[64]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H. Li" 1 => "Y. Wei" 2 => "Y. Zhang" 3 => "F. Yin" 4 => "C. Zhang" 5 => "G. Wang" 6 => "Z. Bakenov" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11581-016-1661-x" "Revista" => array:5 [ "tituloSerie" => "Ionics (Kiel)" "fecha" => "2016" "volumen" => "22" "paginaInicial" => "1387" "paginaFinal" => "1393" ] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0665" "etiqueta" => "[65]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Constructing a directional ion acceleration layer at WO<span class="elsevierStyleInf">3</span>/ZnO heterointerface to enhance Li-ion transfer and storage" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "C. Tu" 1 => "Z. Zhang" 2 => "A. Shao" 3 => "X. Qi" 4 => "C. Zhu" 5 => "C. Li" 6 => "Z. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.compositesb.2020.108511" "Revista" => array:4 [ "tituloSerie" => "Compos. Part B Eng." "fecha" => "2021" "volumen" => "205" "paginaInicial" => "108511" ] ] ] ] ] ] 65 => array:3 [ "identificador" => "bib0670" "etiqueta" => "[66]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of surface modification via sol–gel spin coating of ZnO nanoparticles on the performance of WO<span class="elsevierStyleInf">3</span> photoanode based dye sensitized solar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Biswas" 1 => "S. Chatterjee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijleo.2019.164142" "Revista" => array:4 [ "tituloSerie" => "Optik (Stuttg.)" "fecha" => "2020" "volumen" => "212" "paginaInicial" => "164142" ] ] ] ] ] ] 66 => array:3 [ "identificador" => "bib0675" "etiqueta" => "[67]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Determination of carrier density of ZnO nanowires by electrochemical techniques" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "I. Mora-Seró" 1 => "F. Fabregat-Santiago" 2 => "B. Denier" 3 => "J. Bisquert" 4 => "R. Tena-Zaera" 5 => "J. Elias" 6 => "C. Lévy-Clément" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1063/1.2390667" "Revista" => array:5 [ "tituloSerie" => "Appl. Phys. Lett." "fecha" => "2006" "volumen" => "89" "paginaInicial" => "1" "paginaFinal" => "4" ] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib0680" "etiqueta" => "[68]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Zinc oxidation in dilute alkaline solutions studied by real-time electrochemical impedance spectroscopy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Ko" 1 => "S.M. Park" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/jp211227u" "Revista" => array:5 [ "tituloSerie" => "J. Phys. Chem. C" "fecha" => "2012" "volumen" => "116" "paginaInicial" => "7260" "paginaFinal" => "7268" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack743579" "titulo" => "Acknowledgements" "texto" => "<p id="par0145" class="elsevierStylePara elsevierViewall">This work is a part of the activities of the FunGlass project. This project has received funding from the <span class="elsevierStyleGrantSponsor" id="gs1">European Union Horizon 2020 Research and Innovation Program</span> under Grant <span class="elsevierStyleGrantNumber" refid="gs1">739566</span>. This work was also supported by the Grant <span class="elsevierStyleGrantNumber" refid="gs2">VEGA 1/0844/21</span> of the <span class="elsevierStyleGrantSponsor" id="gs2">Grant Agency of the Slovak Republic</span> and the authors are grateful to the <span class="elsevierStyleGrantSponsor" id="gs3">JECS Trust</span> for funding (contract No. 2022301).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03663175/0000006300000002/v1_202405090749/S0366317523000419/v1_202405090749/en/main.assets" "Apartado" => array:4 [ "identificador" => "94818" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Editorial" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/03663175/0000006300000002/v1_202405090749/S0366317523000419/v1_202405090749/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0366317523000419?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 2 | 6 |
2024 October | 65 | 10 | 75 |
2024 September | 54 | 11 | 65 |
2024 August | 71 | 22 | 93 |
2024 July | 44 | 9 | 53 |
2024 June | 37 | 10 | 47 |
2024 May | 54 | 15 | 69 |
2024 April | 47 | 18 | 65 |
2024 March | 70 | 18 | 88 |
2024 February | 48 | 13 | 61 |
2024 January | 64 | 22 | 86 |
2023 December | 78 | 16 | 94 |
2023 November | 75 | 23 | 98 |
2023 October | 93 | 28 | 121 |
2023 September | 40 | 27 | 67 |