was read the article
array:24 [ "pii" => "S1517838217307670" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.04.012" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "413" "copyright" => "Sociedade Brasileira de Microbiologia" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:801-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 406 "formatos" => array:3 [ "EPUB" => 49 "HTML" => 201 "PDF" => 156 ] ] "itemSiguiente" => array:19 [ "pii" => "S1517838217306573" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.01.002" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "359" "copyright" => "Sociedade Brasileira de Microbiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:808-15" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 622 "formatos" => array:3 [ "EPUB" => 94 "HTML" => 299 "PDF" => 229 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Biotechnology and Industrial Microbiology</span>" "titulo" => "<span class="elsevierStyleItalic">Saccharomyces cerevisiae</span> populations and other yeasts associated with indigenous beers (<span class="elsevierStyleItalic">chicha</span>) of Ecuador" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "808" "paginaFinal" => "815" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1615 "Ancho" => 1667 "Tamanyo" => 315148 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Chicha de jora</span> (A); <span class="elsevierStyleItalic">Morocho</span> (white maize) (B); <span class="elsevierStyleItalic">Chicha de morocho</span> ready to drink (C); seven-grain <span class="elsevierStyleItalic">chicha</span> (D); cassava for <span class="elsevierStyleItalic">chicha de yuca</span> production (E); <span class="elsevierStyleItalic">Chicha de yuca</span> ready to drink after addition of seeds of the <span class="elsevierStyleItalic">Ungurahua</span> palm (F).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Fernanda Barbosa Piló, Enrique Javier Carvajal-Barriga, Maria Cristina Guamán-Burneo, Patricia Portero-Barahona, Arthur Matoso Morato Dias, Larissa Falabella Daher de Freitas, Fátima de Cássia Oliveira Gomes, Carlos Augusto Rosa" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Fernanda Barbosa" "apellidos" => "Piló" ] 1 => array:2 [ "nombre" => "Enrique Javier" "apellidos" => "Carvajal-Barriga" ] 2 => array:2 [ "nombre" => "Maria Cristina" "apellidos" => "Guamán-Burneo" ] 3 => array:2 [ "nombre" => "Patricia" "apellidos" => "Portero-Barahona" ] 4 => array:2 [ "nombre" => "Arthur Matoso Morato" "apellidos" => "Dias" ] 5 => array:2 [ "nombre" => "Larissa Falabella Daher de" "apellidos" => "Freitas" ] 6 => array:2 [ "nombre" => "Fátima de Cássia Oliveira" "apellidos" => "Gomes" ] 7 => array:2 [ "nombre" => "Carlos Augusto" "apellidos" => "Rosa" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1517838217306573?idApp=UINPBA00004N" "url" => "/15178382/0000004900000004/v1_201810050636/S1517838217306573/v1_201810050636/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1517838217305099" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.02.007" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "378" "copyright" => "Sociedade Brasileira de Microbiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:795-800" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 615 "formatos" => array:3 [ "EPUB" => 98 "HTML" => 272 "PDF" => 245 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Veterinary Microbiology</span>" "titulo" => "Occurrence of serological reactions for serogroup Sejroe (CTG and Prajtino) in female buffalo in the state of Pernambuco, Brazil" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "795" "paginaFinal" => "800" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2813 "Ancho" => 2250 "Tamanyo" => 434656 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Distribution and occurrence of anti-<span class="elsevierStyleItalic">Leptospira</span> spp. in buffaloes of the state of Pernambuco, Brazil.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Pollyanne Raysa Fernandes de Oliveira, Larice Bruna Ferreira Soares, Jonas de Melo Borges, Noelle de Castro Barrosa, Hélio Langoni, Daniel Friguglietti Brandespim, José Wilton Pinheiro Junior, Rinaldo Aparecido Mota" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Pollyanne Raysa Fernandes de" "apellidos" => "Oliveira" ] 1 => array:2 [ "nombre" => "Larice Bruna Ferreira" "apellidos" => "Soares" ] 2 => array:2 [ "nombre" => "Jonas de Melo" "apellidos" => "Borges" ] 3 => array:2 [ "nombre" => "Noelle de Castro" "apellidos" => "Barrosa" ] 4 => array:2 [ "nombre" => "Hélio" "apellidos" => "Langoni" ] 5 => array:2 [ "nombre" => "Daniel Friguglietti" "apellidos" => "Brandespim" ] 6 => array:2 [ "nombre" => "José Wilton Pinheiro" "apellidos" => "Junior" ] 7 => array:2 [ "nombre" => "Rinaldo Aparecido" "apellidos" => "Mota" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1517838217305099?idApp=UINPBA00004N" "url" => "/15178382/0000004900000004/v1_201810050636/S1517838217305099/v1_201810050636/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Veterinary Microbiology</span>" "titulo" => "Direct identification of bovine mastitis pathogens by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in pre-incubated milk" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "801" "paginaFinal" => "807" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Juliana R. Barreiro, Juliano L. Gonçalves, Rafaella Grenfell, Renata F. Leite, Luiz Juliano, Marcos V. Santos" "autores" => array:6 [ 0 => array:3 [ "nombre" => "Juliana R." "apellidos" => "Barreiro" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Juliano L." "apellidos" => "Gonçalves" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Rafaella" "apellidos" => "Grenfell" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Renata F." "apellidos" => "Leite" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "Luiz" "apellidos" => "Juliano" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 5 => array:4 [ "nombre" => "Marcos V." "apellidos" => "Santos" "email" => array:1 [ 0 => "mveiga@usp.br" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Universidade de São Paulo (USP), Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção animal, Pirassununga, SP, Brazil" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Universidade Federal de São Paulo, Departamento de Biofísica, São Paulo, SP, Brazil" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author at</span>: Duque de Caxias Norte Avenue 225, Pirassununga, SP 13635-900, Brazil. Tel.: +55 19 3545 4240." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1295 "Ancho" => 2341 "Tamanyo" => 118844 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Spectra ranging from 2000 to 20,000<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">z</span>: (a) <span class="elsevierStyleItalic">Staphylococcus aureus</span> identified by the direct MALDI-TOF method of an experimentally inoculated milk sample, (b) <span class="elsevierStyleItalic">Staphylococcus aureus</span> identified in the colony (ATCC 29213) by the standard MALDI-TOF protocol using bacterial colonies grown on blood agar, and (c) a quarter milk sample without microbiological growth.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Conventional microbiological culture of milk samples is based on biochemical tests for identification of microorganisms causing subclinical mastitis. Different bacterial characteristics are evaluated for identification of a single species, such as growth conditions, colony morphology, growth characteristics in selective medium, carbohydrate fermenting capacity, metabolic and antigenic characteristics, and antibiotic susceptibility.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">1</span></a> The procedures are time consuming, and it may take 2–7 days for the complete diagnosis of the causative pathogen of the intramammary infection (IMI).</p><p id="par0010" class="elsevierStylePara elsevierViewall">The mass spectrometry (MS) technique using matrix assisted laser desorption/ionization source (MALDI) and a time-of-flight type mass analyzer (TOF) can be used for rapid identification of bacteria and yeast from colonies previously cultured on solid medium. Such methodology provides a rapid identification of mastitis-causing bacteria by means of the extraction of ribosomal proteins from bacterial colonies cultured on blood agar<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">2</span></a> or using a direct transfer protocol.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> However, the MALDI-TOF MS method has been used for direct identification of bacteria from human blood samples as a rapid diagnostic tool in hospital laboratories, since it does not depend on previous bacterial isolation using microbiological culture.<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">4,5</span></a> The direct classification of Gram-positive and Gram-negative bacteria at the genus level showed a 100% positive predictive value (PPV) when spectra consisting of joint ribosomal proteins (“fingerprints”) were acquired from blood samples.<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">4,6</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">Urinary tract pathogens have been also successfully directly identified by MALDI-TOF MS using urine samples with bacterial counts >10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cfu/mL. According to Ferreira et al.,<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">7</span></a> the direct identification of microorganisms by MALDI-TOF MS in urine samples showed 91.8% agreement at the species level and 92.7% at the genus level, when compared to microbiological culture identification. These results suggested that MALDI-TOF MS allowed the identification of Gram-negative bacteria directly from urine samples in a short period of time when samples contained elevated bacterial counts.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">7</span></a> The MALDI-TOF MS method was also applied to clinical samples of cerebrospinal fluid and correctly classified the pathogens when bacterial counts in samples were between 10<span class="elsevierStyleSup">4</span> and 10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>cfu/mL.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">8</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">The scores used for the direct (nonculture based) identification MALDI-TOF method (direct-MALDI-TOF) in blood samples were lower than those of isolates obtained from bacterial cultures obtained from hemoculture, indicating that these scores can be influenced by the bacterial count. Previous studies utilized serial dilutions and obtained excellent identification spectra when the bacterial count in the blood sample was ≥10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>cfu/mL, though the direct classification of microorganisms at the species level (75.8%) by MALDI-TOF MS was done considering scores ≥1.7.<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">9</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall">The total bacterial count is a critical factor for the direct identification of pathogens that cause mastitis by MALDI-TOF MS.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> According to Moussaoui et al.,<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">10</span></a> the pre-incubation of blood samples enabled higher precision in the direct identification of bacteria using the MALDI-TOF MS method. Recently, our research group has evaluated the detection limit of MALDI-TOF MS for direct identification, without previous microbiological culture, of bovine mastitis-causing bacteria from milk samples.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> Therefore, we suggested that the non-culture-based protocol could be applied in diagnostic laboratories by subjecting all milk samples to direct MALDI-TOF, and those without a positive identification could be submitted to pre-incubation protocol, being identified by MALDI-TOF MS combined with standard bacteriology. However, the effect of pre-incubation of quarter milk samples from cows affected with subclinical mastitis has not been evaluated using direct identification of bacteria by the MALDI-TOF method. Thus, the objective of the present study was to compare two MALDI-TOF identification methods [(a) direct sample identification after pre-incubation protocol; or (b) use of bacteria isolated on pre-culture] to standard, traditional bench microbiology.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Material and methods</span><p id="par0030" class="elsevierStylePara elsevierViewall">Ethics approval was obtained through the Ethical Committee on the Use of Animals of the School of Veterinary Medicine and Animal Science (University of São Paulo, Brazil, protocol number 3002/2013) before the commencement of the study.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Sample collection and bacterial identification</span><p id="par0035" class="elsevierStylePara elsevierViewall">Composite milk samples were collected from all cows on 2 commercial dairies located in the Midwest region of São Paulo State, Brazil. Based upon these results, milk samples were aseptically collected from all quarters of previously culture-positive cows. Microbiological culture (reference method) was performed using procedures consistent with National Mastitis Council guidelines. Briefly, 10<span class="elsevierStyleHsp" style=""></span>μL of milk per sample (quarter) were inoculated on blood agar plates with 5% defibrinated bovine blood. Inverted plates were incubated aerobically at 37<span class="elsevierStyleHsp" style=""></span>°C for 48<span class="elsevierStyleHsp" style=""></span>h and observed every 24<span class="elsevierStyleHsp" style=""></span>h for colony characteristics (shape, size, number, and color), hemolytic ability (presence and type). Gram stain, potassium hydroxide test (KOH) and catalase tests were performed to determine the morphology and differentiation between genera. Specific microbiology procedures such as coagulase, CAMP, esculin, bile esculin and pyr test were performed as described by Oliver et al.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">11</span></a> A total of 120 quarter milk samples from 40 cows were positive, with the following numbers of quarters positive per cow: 4 cows with 1, 8 cows with 2, 12 cows with 3 and 16 cows with 4 infected quarters per cow. All quarter milk samples were also submitted to the nonculture based identification MALDI-TOF method (direct sample identification-MALDI-TOF).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Direct sample identification of mastitis-causing pathogen by MALDI-TOF MS</span><p id="par0040" class="elsevierStylePara elsevierViewall">For direct sample identification of mastitis causing pathogens, fat was removed (skimmed) from 1<span class="elsevierStyleHsp" style=""></span>mL of milk samples by centrifugation (10,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>/10<span class="elsevierStyleHsp" style=""></span>min, followed by removal of the superior layer of fat. After skimming, milk samples were agitated in a vortex for 30<span class="elsevierStyleHsp" style=""></span>s (Kasvi basic K45 2820, Paraná, Brazil) and submitted to pre-incubation at 37<span class="elsevierStyleHsp" style=""></span>°C for 12<span class="elsevierStyleHsp" style=""></span>h in a water bath with agitation (Solab, SL 155/10, São Paulo, Brazil). After the incubation period, one aliquot of each milk sample (40<span class="elsevierStyleHsp" style=""></span>mL) was taken and submitted for total bacterial count (TBC) using a flow cytometry equipment BactoCount (Bentley Instruments, Chaska, MN, USA).</p><p id="par0045" class="elsevierStylePara elsevierViewall">The remainder of each of the milk samples was submitted to a preparation protocol for bacterial ribosomal protein extraction using the MALDI Sepsityper<span class="elsevierStyleSup">®</span> kit (Bruker Daltonik, Bremen, Germany). Initially, 200<span class="elsevierStyleHsp" style=""></span>μL of the “Lysis Buffer” solution was added to 1000<span class="elsevierStyleHsp" style=""></span>μL of milk sample, followed by a centrifugation step at 13,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> during 2<span class="elsevierStyleHsp" style=""></span>min. After centrifugation, the supernatant was discarded using a 1000<span class="elsevierStyleHsp" style=""></span>μL pipette. Next, the pellet was re-suspended in 1000<span class="elsevierStyleHsp" style=""></span>μL of distilled water and 200<span class="elsevierStyleHsp" style=""></span>μL of the “Lysis Buffer” solution, followed by a second centrifugation step at 13,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>. After discarding the supernatant using a 1000<span class="elsevierStyleHsp" style=""></span>μL pipette, the pellet was diluted in 1000<span class="elsevierStyleHsp" style=""></span>μL of “Washing Buffer” solution, followed by a third round of centrifugation at 13,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> and disposal of the supernatant.</p><p id="par0050" class="elsevierStylePara elsevierViewall">The bacterial pellet was diluted in 1200<span class="elsevierStyleHsp" style=""></span>μL of a 75% ethanol/water solution (900<span class="elsevierStyleHsp" style=""></span>μL/300<span class="elsevierStyleHsp" style=""></span>μL) in order to inactivate the bacteria. The bacterial sediment was then centrifuged and the supernatant discarded by tube inversion. Next, a second centrifugation step was done to remove the remaining ethanol present in the sample and the supernatant discarded using a pipette. After pellet drying at room temperature, a 70% solution of formic acid was added in enough volume to cover the pellet (∼30–50<span class="elsevierStyleHsp" style=""></span>μL) and lyse the bacterial cells, followed by addition of the same volume of 100% acetonitrile (∼30–50<span class="elsevierStyleHsp" style=""></span>μL). During the final stage of preparation, the samples were centrifuged (13,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>/2<span class="elsevierStyleHsp" style=""></span>min) to separate the sediment of bacterial cells from the supernatant containing bacterial proteins, consisting mainly of ribosomal proteins (Biotyper 3.0 manual page 157; Bruker Daltonik, Bremen, Germany). Volumes of 1.0<span class="elsevierStyleHsp" style=""></span>μL of the bacterial extract were applied onto steel target plates (mtp 384 Target Polished Steel; Bruker Daltonik, Bremen, Germany), followed by drying at room temperature. The dried supernatant was overlaid with 1.0<span class="elsevierStyleHsp" style=""></span>μL of matrix solution, consisting of α-cyano-4-hydroxy-cinnamic acid diluted in 50% acetonitrile and 2.5% trifluoroacetic acid.</p><p id="par0055" class="elsevierStylePara elsevierViewall">After the protocol for bacterial ribosomal protein extraction, the aliquots were submitted for MALDI-TOF MS analysis as described by Barreiro et al.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">2</span></a> The Bruker Bacterial Test Standard (BTS) was used for the mass calibration and instrument parameter optimization. Briefly, the mass spectra were obtained using an Autoflex III (Bruker Daltonik, Billerica, USA) mass spectrometer and were collected within a 2000–20,000<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">z</span> mass range. Spectral data processing was done using the Biotyper 3.0 (Bruker Daltonik, Bremen, Germany) computer software for microorganism identification (MBT version 6903 MPS library).</p><p id="par0060" class="elsevierStylePara elsevierViewall">The result was given by means of an algorithm (score) obtained by the Biotyper 3.0 software, in which scores <1.7 were considered as non-reliable diagnoses; scores ≥1.7 but <2.0 were considered as reliable for genus identification; and scores ≥2.0 were reliable for identification of genus and bacterial species.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Standard protocol for mastitis pathogen identification by MALDI-TOF MS</span><p id="par0065" class="elsevierStylePara elsevierViewall">The bacterial isolates (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120) were also submitted for identification by MALDI-TOF MS using bacterial colonies grown on blood agar, and using the lysis protocol described by Barreiro et al.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">2</span></a> Briefly, the colonies were diluted in 1200<span class="elsevierStyleHsp" style=""></span>μL of a 75% ethanol/water solution (900<span class="elsevierStyleHsp" style=""></span>μL/300<span class="elsevierStyleHsp" style=""></span>μL) for bacterial inactivation. The bacterial sediment was centrifuged and the supernatant discarded by tube inversion. A second round of centrifugation was done to remove remaining ethanol present in the sample, and afterwards, the supernatant was removed using a pipette. All centrifugation steps were performed at 13,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 2<span class="elsevierStyleHsp" style=""></span>min. The pellet was left drying at room temperature, and a 70% formic acid solution was added in enough volume to cover the pellet (∼30–50<span class="elsevierStyleHsp" style=""></span>μL) and lyse the bacterial cells. After that, the same volume of 100% acetonitrile (∼30–50<span class="elsevierStyleHsp" style=""></span>μL) was added. During the final stage of preparation, centrifugation was done in order to separate the sediments of the bacterial cells from the supernatant containing bacterial proteins, mainly ribosomal proteins (Biotyper 3.0 manual page 157; Bruker Daltonik, Bremen, Germany). After that, MALDI-TOF MS spectra were obtained and used for bacterial classification using the Biotyper 3.0 computer program for microorganism identification.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Statistical analysis</span><p id="par0070" class="elsevierStylePara elsevierViewall">Statistical tests were performed using McNemar test on the paired proportions<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">12</span></a> and statistical significance was declared at P<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05. Under the null hypothesis there was no difference between standard microbiological culture (used as the reference method) and non-culture direct-MALDI-TOF method of milk samples after pre-incubation protocol.</p></span></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Results</span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Standard MALDI-TOF MS protocol using bacterial colonies grown on blood agar vs. direct sample identification after pre-incubation protocol</span><p id="par0075" class="elsevierStylePara elsevierViewall">The reference method, standard microbiological culture of the 120 quarter milk samples, identified <span class="elsevierStyleItalic">Streptococcus agalactiae</span> (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>32); <span class="elsevierStyleItalic">Streptococcus uberis</span> (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>19); <span class="elsevierStyleItalic">Staphylococcus aureus</span> (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14) and coagulase-negative <span class="elsevierStyleItalic">Staphylococci</span>, CNS (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>55) (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). Among <span class="elsevierStyleItalic">Streptococcus agalactiae</span> isolates identified by microbiological culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>32), the standard MALDI-TOF protocol using bacterial colonies grown on blood agar correctly identified 31 isolates as <span class="elsevierStyleItalic">Streptococcus agalactiae</span> and one isolate as <span class="elsevierStyleItalic">Streptococcus dysgalactiae</span>. For <span class="elsevierStyleItalic">Streptococcus uberis</span> isolates identified by microbiological culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>19), MALDI-TOF MS identified 14 isolates as <span class="elsevierStyleItalic">Streptococcus uberis</span>, and the remaining of isolates as <span class="elsevierStyleItalic">Streptococcus agalactiae</span> (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3) and <span class="elsevierStyleItalic">Streptococcus dysgalactiae</span> (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2). Considering <span class="elsevierStyleItalic">Staphylococcus aureus</span> isolates (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14) identified by microbiological culture, 10 were identified by the standard MALDI-TOF protocol using bacterial colonies grown on blood agar as <span class="elsevierStyleItalic">Staphylococcus aureus</span>, and the remaining (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4) as <span class="elsevierStyleItalic">Staphylococcus haemolyticus</span>. With respect to CNS identified by microbiological culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>55), the standard MALDI-TOF protocol using bacterial colonies grown on blood agar identified 51 CNS (various species, see <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>), 3 isolates as <span class="elsevierStyleItalic">Lactococcus garvieae</span> and one as <span class="elsevierStyleItalic">Staphylococcus</span> spp., identified at the genus level (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall">Percentage agreement using standard MALDI-TOF protocol using bacterial colonies grown on blood agar for the identification of pathogens causing subclinical mastitis was of 96.8% for <span class="elsevierStyleItalic">Streptococcus agalactiae</span>; 73.6% for <span class="elsevierStyleItalic">Streptococcus uberis</span>; 71.4% for <span class="elsevierStyleItalic">Staphylococcus aureus</span> and 92.7% for CNS, when compared to microbiological culture results.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Mastitis pathogen identification using direct sample identification after pre-incubation protocol</span><p id="par0085" class="elsevierStylePara elsevierViewall">In comparison to the reference microbiology method, the direct sample identification after pre-incubation protocol (direct MALDI-TOF MS method) only identified 15 (27.2%) of the 55 isolates as CNS (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). This protocol identified CNS in 9/15 milk samples, at the genus and species level (score ≥2.0), 1/15 at the genus level (score ≥1.7–1.9), 2/15 milk samples were not reliably identified at the genus and species level (score <1.7), and 3/15 were identified as <span class="elsevierStyleItalic">Staphylococcus</span> spp. with scores ≥2.0 but without species suggestion by spectral data processing using the Biotyper 3.0. Among the remaining milk samples identified as CNS by microbiological culture, identification by direct-MALDI-TOF method was not possible in 24/55 (43.6%; not reliable identification by direct-MALDI-TOF), and for the other samples, there was disagreement between direct-MALDI-TOF and by microbiological culture. For example, 15/55 samples (27.2%) previously identified as CNS were identified using direct-MALDI-TOF as <span class="elsevierStyleItalic">Lactobacillus</span> spp., and 1/55 (1.8%) as <span class="elsevierStyleItalic">Staphylococcus aureus</span> with a score ≤1.7 (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall">Seven out of 32 (21.8%) milk samples were identified as <span class="elsevierStyleItalic">Streptococcus agalactiae</span> by direct-MALDI-TOF method, 1/32 (3.1%) isolate being identified at the genus and species level (score ≥2.0), 1/32 (3.1%) at the genus level (score ≥1.7–1.9), and 5/32 (15.6%) showed to be indicative of <span class="elsevierStyleItalic">Streptococcus agalactiae</span> but had an identification score of <1.7. For the remaining <span class="elsevierStyleItalic">Streptococcus agalactiae</span> identified by culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>25), 12/25 isolates (48%) were identified as <span class="elsevierStyleItalic">Lactobacillus</span> spp. by the direct-MALDI-TOF method, and for 13/25 (52%) isolates it was not possible to identify any pathogen using this method (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).</p><p id="par0095" class="elsevierStylePara elsevierViewall">The direct-MALDI-TOF method correctly identified 1/19 isolate (5.2%) of <span class="elsevierStyleItalic">Streptococcus uberis</span>, although it was only at the genus level (score ≥1.7–1.9). Among the remaining <span class="elsevierStyleItalic">Streptococcus uberis</span> identified by culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>18), for 12/18 milk samples there was no identification of any pathogen causing subclinical mastitis by the direct-MALDI-TOF (66.6%), 5/18 milk samples (27.7%) were identified as <span class="elsevierStyleItalic">Lactobacillus</span> spp. and 1/18 sample (5.5%) as <span class="elsevierStyleItalic">Streptococcus agalactiae</span> (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).</p><p id="par0100" class="elsevierStylePara elsevierViewall">The methodology of direct identification of pathogens causing subclinical mastitis by MALDI-TOF MS identified 2/14 isolates (14.3%) as <span class="elsevierStyleItalic">Staphylococcus aureus</span>, although with scores <1.7. Among the remaining <span class="elsevierStyleItalic">Staphylococcus aureus</span> identified by culture (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>12), for 8/12 isolates (66.6%) <span class="elsevierStyleItalic">Staphylococcus aureus</span> was not identifiable when submitted to direct-MALDI-TOF, and for 4/12 samples (33.3%), <span class="elsevierStyleItalic">Lactobacillus</span> spp. was identified by direct-MALDI-TOF, with scores ≤1.6 (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).</p><p id="par0105" class="elsevierStylePara elsevierViewall">The evaluated methods were significantly different, indicating disagreement of identification of subclinical mastitis-causing pathogens between both methods (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05). The direct-MALDI-TOF method, when compared to microbiological culture, correctly identified isolates of coagulase-negative <span class="elsevierStyleItalic">Staphylococci</span> (27.2%), <span class="elsevierStyleItalic">Streptococcus agalactiae</span> (21.8%), <span class="elsevierStyleItalic">Staphylococcus aureus</span> (14.2%), and <span class="elsevierStyleItalic">Streptococcus uberis</span> (5.2%).</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Discussion</span><p id="par0110" class="elsevierStylePara elsevierViewall">The method using a pre-incubation procedure for a non-culture direct sample-MALDI-TOF method showed low accuracy of identification of mastitis causing pathogens in our study when compared with the results obtained by microbiological culture. The identification of pathogens by direct sample-MALDI-TOF in clinical samples of human urine and cerebrospinal fluid was successfully described when the bacterial count was >10<span class="elsevierStyleSup">4</span>–10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>cfu/mL. These bacterial count values were obtained in patients with urinary tract infection.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">7</span></a> Similar to the urine samples, the cerebrospinal fluid was evaluated by direct-MALDI-TOF for identification of microorganisms that cause bacterial meningitis.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">8</span></a> In the present study, we observed TBC varied from 1.4 to 9.9<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>cfu/mL after pre-incubation of milk samples. However, attaining a similar identification percentage of the pathogens causing subclinical mastitis by direct-MALDI-TOF was not possible in milk samples from mammary quarters, as described previously for urine and cerebrospinal fluid samples.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">8</span></a></p><p id="par0115" class="elsevierStylePara elsevierViewall">The bacterial count in experimentally contaminated milk samples was a limiting factor that influenced the analytic sensitivity of the direct-MALDI-TOF method for identification of pathogens that cause mastitis.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">13</span></a> According to Moussaoui et al.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">10</span></a> the pre-incubation of blood samples allowed the identification of bacteria by the direct-MALDI-TOF method. Similarly, Ferreira et al.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">7</span></a> reported that the direct-MALDI-TOF method was efficient in bacterial identification in infected urine when the bacterial count was >10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cfu/mL. Nonetheless, in the present study, using the cutoff of TBC published from Barreiro et al.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> combined with a 12-h pre-incubation protocol of the quarter milk samples did not result in higher identification of mastitis-causing pathogens, since the direct-MALDI-TOF method identified ≤20.8% (25/120 isolates) of specific pathogen identified by microbiological culture.</p><p id="par0120" class="elsevierStylePara elsevierViewall">The TBC of the milk samples from naturally infected cows may have been an influencing factor in the reduced identification capacity of the pathogens by the direct-MALDI-TOF method. Also, the pre-incubation of the milk samples may have favored the growth of symbiotic or contaminant bacteria that could be present in milk samples, such as <span class="elsevierStyleItalic">Lactobacillus</span> spp., which would not allow sufficient bacterial count for the identification of pathogens causing subclinical mastitis by the direct-MALDI-TOF method. Another possible interfering factor was the presence of milk components (protein and fat), even after the washing protocol using Lysis Buffer, which may have interfered in spectra acquisition for the direct identification of the pathogens causing subclinical mastitis by direct-MALDI-TOF method. Milk proteins could affect classification results with the effective range between 3,000 and 20,000 <span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">z</span>. While comparing mass spectra originating from the Standard MALDI-TOF protocol using bacterial colonies grown on blood agar <span class="elsevierStyleItalic">vs.</span> direct sample-MALDI-TOF identification protocol, interference peaks ranging between 2,000 and 7,000 <span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">z</span> were observed for identification of <span class="elsevierStyleItalic">Staphylococcus aureus</span> (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). One of the main limiting factors of the direct-MALDI-TOF method is related to the great heterogeneity and complexity of the set of proteins present in milk. Thus, the lower the concentration of the target proteins of identification, the higher the risk to be misidentified by direct-MALDI-TOF method, due to the detection limit and to the possible overlapping of milk proteins, which present similar molecular weight and isoelectric points.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0125" class="elsevierStylePara elsevierViewall">The direct-MALDI-TOF method, when compared to microbiological culture, correctly identified 27.2%, 21.8%, 14.2% and 5.2% of the CNS, <span class="elsevierStyleItalic">Streptococcus agalactiae</span>, <span class="elsevierStyleItalic">Staphylococcus aureus</span> and <span class="elsevierStyleItalic">Streptococcus uberis</span> isolates, respectively. According to La Scola and Raoult,<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">14</span></a> the agreement between MALDI-TOF MS results for the direct identification of bacteria in blood and in microbiological cultures was 59% of evaluated samples. However, the later study found that for samples in which <span class="elsevierStyleItalic">Streptococcus</span> spp. was isolated, there was low agreement with the reference method (4/25, 16%). After modifying the preparation protocol for blood samples, there was an increase of 67% in the efficiency of Gram-positive identification, mainly for <span class="elsevierStyleItalic">Staphylococcus</span> spp., though for <span class="elsevierStyleItalic">Streptococcus</span> spp., identification remained low (4/17, 23%).<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">14</span></a> We believed that the decreased percentage of identification using the direct-MALDI-TOF method may be occurred because MALDI-TOF MS does not identify spectra from mixed cultures reliably. The correctness of classification is based on the false assumption that the “reference ID method” pathogen is the only organism present. Despite it remain a disadvantage, the direct MALDI-TOF MS method may be used as an alternative to conventional bacterial identification.</p><p id="par0130" class="elsevierStylePara elsevierViewall">Regardless of the pathogen type studied, we observed the frequency of 36/120 <span class="elsevierStyleItalic">Lactobacillus</span> spp. (30%) identified by the direct-MALDI-TOF MS method combined with the pre-incubation protocol. The identification frequency of <span class="elsevierStyleItalic">Lactobacillus</span> spp. may have occurred due to the pre-incubation protocol of the milk samples, which allowed an increase in the bacterial count of these symbiotic microorganisms.</p><p id="par0135" class="elsevierStylePara elsevierViewall">In the present study, regarding all isolates correctly identified as CNS (15 isolates) by the direct-MALDI-TOF MS method, 9/15 of them were identified at the genus and species level (score ≥2.0). With regard to the <span class="elsevierStyleItalic">Streptococcus agalactiae</span> isolates, only two were identified at the genus and species level (score >2.0). The level of identification reliability was even lower in <span class="elsevierStyleItalic">Streptococcus uberis</span> (score ≥1.7–1.9) and <span class="elsevierStyleItalic">Staphylococcus aureus</span> (score <1.7). Therefore, the direct-MALDI-TOF method for the identification of the pathogens causing subclinical mastitis showed low identification percentages when compared to microbiological culture.</p><p id="par0140" class="elsevierStylePara elsevierViewall">In this study, the standard MALDI-TOF protocol using bacterial colonies grown on blood agar identified 88.3% (106/120) of the pathogens causing subclinical mastitis at the genus and species level (score ≥2.0), when compared to microbiological culture. The use of standard MALDI-TOF protocol using bacterial colonies grown on blood agar for the identification of bacteria in clinical bacteriology has become more common. Our results are similar to other studies on bacterial identification by MALDI-TOF using bacterial colonies, in which identification percentages at the genus level were 97–99%, and at the species level, 85–97%.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">15</span></a> On the other hand, the pre-incubation of the quarter milk samples for identification of pathogen causing subclinical mastitis by the direct-MALDI-TOF method did not display satisfactory results. Furthermore, the milk sample pre-incubation protocol may have favored symbiotic and other contaminant bacterial growth (e.g. <span class="elsevierStyleItalic">Lactobacillus</span> spp.), resulting in low frequency of identification by the direct sample-MALDI-TOF method.</p><p id="par0145" class="elsevierStylePara elsevierViewall">In an previous study developed by our research group, we observed that a minimum of TBC varying of ≥10<span class="elsevierStyleSup">6</span> to ≥10<span class="elsevierStyleSup">8</span><span class="elsevierStyleHsp" style=""></span>cfu/mL would be required for successful identification scores at the gender and species level, and it also varied according to the mastitis causing pathogen.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> However, the present study aimed to evaluate a rapid identification protocol (without culture) using the pre-incubation of milk samples followed by direct identification by MALDI-TOF MS. Therefore, milk samples were submitted to TBC in order to identify whether the microbial load before the pre-incubation protocol was within the range of TBC proposed in the previous study.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> Thus, it would be possible to use a rapid and direct sample protocol for identification of mastitis causing pathogens. However, we did not expect that the pre-incubation protocol would have favored symbiotic and bacterial growth (e.g., <span class="elsevierStyleItalic">Lactobacillus</span> spp.). These results suggest that we could have included the identification of milk samples after pre-incubation protocol by traditional bench microbiology and specific microbial counting methods (e.g. standard plate count – SPC) prior to the use of the milk sample incubation protocol, which we recognize as limitations of the present study. An alternative approach that may improve results would be to develop some method of inactivating symbiotic bacteria prior to pre-incubation.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conclusions</span><p id="par0150" class="elsevierStylePara elsevierViewall">The nonculture based identification MALDI-TOF MS method, even after the 12<span class="elsevierStyleHsp" style=""></span>h pre-incubation protocol of the quarter milk samples, did not accurately help to promote the rapid identification of mastitis pathogens. The pre-incubation protocol of milk samples, associated to the direct identification (nonculture-based) method by MALDI-TOF MS, did not increase the identification at species level (score >2.0) of pathogens causing subclinical mastitis in comparison to the method without previous incubation.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Conflict of interest statement</span><p id="par0155" class="elsevierStylePara elsevierViewall">The authors declare no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1091256" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1034378" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "sec0010" "titulo" => "Material and methods" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Sample collection and bacterial identification" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Direct sample identification of mastitis-causing pathogen by MALDI-TOF MS" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Standard protocol for mastitis pathogen identification by MALDI-TOF MS" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Statistical analysis" ] ] ] 4 => array:3 [ "identificador" => "sec0035" "titulo" => "Results" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0040" "titulo" => "Standard MALDI-TOF MS protocol using bacterial colonies grown on blood agar vs. direct sample identification after pre-incubation protocol" ] 1 => array:2 [ "identificador" => "sec0045" "titulo" => "Mastitis pathogen identification using direct sample identification after pre-incubation protocol" ] ] ] 5 => array:2 [ "identificador" => "sec0050" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "sec0055" "titulo" => "Conclusions" ] 7 => array:2 [ "identificador" => "sec0060" "titulo" => "Conflict of interest statement" ] 8 => array:2 [ "identificador" => "xack370737" "titulo" => "Acknowledgments" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-08-09" "fechaAceptado" => "2018-04-16" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1034378" "palabras" => array:4 [ 0 => "Milk" 1 => "Bacteria" 2 => "Mastitis" 3 => "Mass spectrometry" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The present study aimed to compare two MALDI-TOF identification methods [(a) direct sample identification after pre-incubation; or (b) use of bacteria isolated on pre-culture)] to standard, traditional bench microbiology. A total of 120 quarter milk samples from 40 Holstein lactating cows were screened based on culture-positive results obtained by microbiological culture (reference method) with the following numbers of quarters positive per cow: 4 cows with 1, 8 cows with 2, 12 cows with 3 and 16 cows with 4 infected quarters per cow. For direct identification method, quarter milk samples (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120) were skimmed by centrifugation (10,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>/10<span class="elsevierStyleHsp" style=""></span>min) and pre-incubated at 37<span class="elsevierStyleHsp" style=""></span>°C for 12<span class="elsevierStyleHsp" style=""></span>h. After pre-incubation, quarter milk samples were submitted to total bacterial count by flow cytometry and for a preparation protocol for bacterial ribosomal protein extraction followed by MALDI-TOF MS analysis. The direct MALDI-TOF MS identification method compared to microbiological culture correctly identified isolates of coagulase-negative <span class="elsevierStyleItalic">Staphylococci</span> (27.2%), <span class="elsevierStyleItalic">Streptococcus agalactiae</span> (21.8%), <span class="elsevierStyleItalic">Staphylococcus aureus</span> (14.2%), and <span class="elsevierStyleItalic">Streptococcus uberis</span> (5.2%). The pre-incubation protocol of milk samples, associated to the direct identification method by MALDI-TOF MS, did not increase the identification at species level (score >2.0) of pathogens causing subclinical mastitis in comparison to the method without previous incubation.</p></span>" ] ] "multimedia" => array:3 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1295 "Ancho" => 2341 "Tamanyo" => 118844 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Spectra ranging from 2000 to 20,000<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">z</span>: (a) <span class="elsevierStyleItalic">Staphylococcus aureus</span> identified by the direct MALDI-TOF method of an experimentally inoculated milk sample, (b) <span class="elsevierStyleItalic">Staphylococcus aureus</span> identified in the colony (ATCC 29213) by the standard MALDI-TOF protocol using bacterial colonies grown on blood agar, and (c) a quarter milk sample without microbiological growth.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Microbiological culture \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">n</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Standard MALDI-TOF protocol using bacterial colonies grown on blood agar<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">n</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Divergence<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">32 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus dysgalactiae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="3" align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus uberis</span></td><td class="td" title="table-entry " align="char" valign="top">19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus uberis</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus dysgalactiae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus aureus</span></td><td class="td" title="table-entry " align="char" valign="top">14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus aureus</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus haemolyticus</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="10" align="left" valign="top">CNS<a class="elsevierStyleCrossRef" href="#tblfn0015"><span class="elsevierStyleSup">c</span></a></td><td class="td" title="table-entry " align="char" valign="top">55 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus chromogenes</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus haemolyticus</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus xylosus</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus epidermidis</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus capitis</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus hominis</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus saprophyticus</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus simulans</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Lactococcus garvieae</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus</span> spp. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">120 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">120 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1865921.png" ] ] ] "notaPie" => array:3 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Identification at species level (score >2.0);</p>" ] 1 => array:3 [ "identificador" => "tblfn0010" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Divergence between methodologies, number of isolates;</p>" ] 2 => array:3 [ "identificador" => "tblfn0015" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0015">CNS: coagulase-negative <span class="elsevierStyleItalic">Staphylococcus</span>.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Results of the identification of mastitis causing pathogens (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120) using the standard MALDI-TOF protocol using bacterial colonies grown on blood agar and microbiological culture.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="table-head ; entry_with_role_rowhead " align="left" valign="top" scope="col">Microbiological culture results (<span class="elsevierStyleItalic">n</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="2" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">MALDI-TOF MS</th><th class="td" title="table-head " align="center" valign="top" scope="col">TBC (×10<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Isolates (<span class="elsevierStyleItalic">n</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Biotyper<a class="elsevierStyleCrossRef" href="#tblfn0020"><span class="elsevierStyleSup">a</span></a> score \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " rowspan="5" align="left" valign="top">Coagulase-negative <span class="elsevierStyleItalic">Staphylococcus</span> (55)</td><td class="td" title="table-entry " align="left" valign="top">Unclassified samples (24) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1412.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus epidermidis</span> (2)<br><span class="elsevierStyleItalic">Staphylococcus haemolyticus</span> (1)<br><span class="elsevierStyleItalic">Staphylococcus chromogenes</span> (9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2)<br>≥1.7–1.9 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1)<br>≥2.0 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1979.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Lactobacillus</span> spp. (15) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9)<span class="elsevierStyleHsp" style=""></span>≥<span class="elsevierStyleHsp" style=""></span>2.0 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1832.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus</span> spp. (3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">≥2.0 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">3772.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus aureus</span> (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">3657.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="3" align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> (32)</td><td class="td" title="table-entry " align="left" valign="top">Unclassified samples (13) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">6776.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> (7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>5)<span class="elsevierStyleHsp" style=""></span>≥<span class="elsevierStyleHsp" style=""></span>1.7–1.9 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1)<span class="elsevierStyleHsp" style=""></span>≥<span class="elsevierStyleHsp" style=""></span>2.0 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7777.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Lactobacillus</span> spp. (12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">6634.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="4" align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus uberis</span> (19)</td><td class="td" title="table-entry " align="left" valign="top">Unclassified samples (12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">3083.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus uberis</span> (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">≥1.7–1.9 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">5153.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Lactobacillus</span> spp. (5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3)<span class="elsevierStyleHsp" style=""></span>≥<span class="elsevierStyleHsp" style=""></span>2.0 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">3454.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Streptococcus agalactiae</span> (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9999.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="3" align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus aureus</span> (14)</td><td class="td" title="table-entry " align="left" valign="top">Unclassified samples (8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4251.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Staphylococcus aureus</span> (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Lactobacillus</span> spp. (4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><1.7 (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4028.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1865920.png" ] ] ] "notaPie" => array:1 [ 0 => array:3 [ "identificador" => "tblfn0020" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0020">Identification at genus and species level, score ≥2.0; identification at genus level, score ≥1.7; unreliable identification, score <1.7.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Efficiency of the direct sample identification of mastitis causing pathogens by MALDI-TOF MS in quarter milk samples (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>120) <span class="elsevierStyleItalic">vs.</span> microbiological culture.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:15 [ 0 => array:3 [ "identificador" => "bib0080" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Trends in DNA fingerprinting research" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.M. Read" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2005" "editorial" => "Nova Science Publisher Inc." "editorialLocalizacion" => "New York, NY" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0085" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Short communication: identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.R. Barreiro" 1 => "C.R. Ferreira" 2 => "G.B. Sanvido" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3168/jds.2010-3614" "Revista" => array:7 [ "tituloSerie" => "J Dairy Sci" "fecha" => "2010" "volumen" => "93" "numero" => "12" "paginaInicial" => "5661" "paginaFinal" => "5667" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21094737" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0090" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.R. Barreiro" 1 => "J.L. Goncalves" 2 => "P.A. Braga" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3168/jds.2016-11741" "Revista" => array:7 [ "tituloSerie" => "J Dairy Sci" "fecha" => "2017" "volumen" => "100" "numero" => "4" "paginaInicial" => "2928" "paginaFinal" => "2934" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28161160" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0095" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper and time of flight mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Kok" 1 => "L.C. Thomas" 2 => "T. Olma" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0023285" "Revista" => array:6 [ "tituloSerie" => "PLoS One" "fecha" => "2011" "volumen" => "6" "numero" => "8" "paginaInicial" => "e23285" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21858058" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0100" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Schubert" 1 => "K. Weinert" 2 => "C. Wagner" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jmoldx.2011.07.004" "Revista" => array:7 [ "tituloSerie" => "J Mol Diagn" "fecha" => "2011" "volumen" => "13" "numero" => "6" "paginaInicial" => "701" "paginaFinal" => "706" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21889611" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0105" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic <span class="elsevierStyleItalic">Neisseria</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "E.N. Ilina" 1 => "A.D. Borovskaya" 2 => "M.M. Malakhova" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2353/jmoldx.2009.080079" "Revista" => array:7 [ "tituloSerie" => "J Mol Diagn" "fecha" => "2009" "volumen" => "11" "numero" => "1" "paginaInicial" => "75" "paginaFinal" => "86" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19095774" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0110" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "L. Ferreira" 1 => "F. Sanchez-Juanes" 2 => "M. Gonzalez-Avila" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1128/JCM.02215-09" "Revista" => array:7 [ "tituloSerie" => "J Clin Microbiol" "fecha" => "2010" "volumen" => "48" "numero" => "6" "paginaInicial" => "2110" "paginaFinal" => "2115" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20392910" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0115" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Segawa" 1 => "S. Sawai" 2 => "S. Murata" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cca.2014.04.024" "Revista" => array:6 [ "tituloSerie" => "Clin Chim Acta" "fecha" => "2014" "volumen" => "435" "paginaInicial" => "59" "paginaFinal" => "61" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24797349" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0120" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L.G. Stevenson" 1 => "S.K. Drake" 2 => "P.R. Murray" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1128/JCM.01541-09" "Revista" => array:7 [ "tituloSerie" => "J Clin Microbiol" "fecha" => "2010" "volumen" => "48" "numero" => "2" "paginaInicial" => "444" "paginaFinal" => "447" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19955282" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0125" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Moussaoui" 1 => "B. Jaulhac" 2 => "A.M. Hoffmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1469-0691.2010.03356.x" "Revista" => array:7 [ "tituloSerie" => "Clin Microbiol Infect" "fecha" => "2010" "volumen" => "16" "numero" => "11" "paginaInicial" => "1631" "paginaFinal" => "1638" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20825442" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0130" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "p. 1–40; 44–46" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.P.O. Oliver" 1 => "R.N. González" 2 => "J.S. Hogan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "edicion" => "4th ed." "titulo" => "A global organization for mastitis control and milk quality" "fecha" => "2004" "editorial" => "National Mastitis Council" "editorialLocalizacion" => "Verona, WI" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0135" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Statistical methods for assessing agreement between two methods of clinical measurement" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.M. Bland" 1 => "D.G. Altman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Lancet (Lond, England)" "fecha" => "1986" "volumen" => "1" "numero" => "8476" "paginaInicial" => "307" "paginaFinal" => "310" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0140" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nonculture-based identification of bacteria in milk by protein fingerprinting" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.R. Barreiro" 1 => "P.A. Braga" 2 => "C.R. Ferreira" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/pmic.201200053" "Revista" => array:7 [ "tituloSerie" => "Proteomics" "fecha" => "2012" "volumen" => "12" "numero" => "17" "paginaInicial" => "2739" "paginaFinal" => "2745" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22807025" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0145" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B. La Scola" 1 => "D. Raoult" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0008041" "Revista" => array:6 [ "tituloSerie" => "PLoS One" "fecha" => "2009" "volumen" => "4" "numero" => "11" "paginaInicial" => "e8041" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19946369" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0150" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MALDI-TOF mass spectrometry: transformative proteomics for clinical microbiology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "R. Patel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1373/clinchem.2012.183558" "Revista" => array:7 [ "tituloSerie" => "Clin Chem" "fecha" => "2013" "volumen" => "59" "numero" => "2" "paginaInicial" => "340" "paginaFinal" => "342" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22665917" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack370737" "titulo" => "Acknowledgments" "texto" => "<p id="par0165" class="elsevierStylePara elsevierViewall">We are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil, for a scholarship award (2011/14456-0) and research funding (2011/15815-4). The authors are grateful to Dr. Kevin L. Anderson (Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University) who reviewed the English writing.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/15178382/0000004900000004/v1_201810050636/S1517838217307670/v1_201810050636/en/main.assets" "Apartado" => array:4 [ "identificador" => "47984" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Veterinary Microbiology" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/15178382/0000004900000004/v1_201810050636/S1517838217307670/v1_201810050636/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1517838217307670?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 8 | 3 | 11 |
2024 October | 27 | 6 | 33 |
2024 September | 32 | 9 | 41 |
2024 August | 38 | 9 | 47 |
2024 July | 31 | 6 | 37 |
2024 June | 32 | 14 | 46 |
2024 May | 24 | 16 | 40 |
2024 April | 49 | 29 | 78 |
2024 March | 59 | 13 | 72 |
2024 February | 42 | 13 | 55 |
2024 January | 88 | 19 | 107 |
2023 December | 36 | 11 | 47 |
2023 November | 49 | 5 | 54 |
2023 October | 73 | 14 | 87 |
2023 September | 44 | 8 | 52 |
2023 August | 43 | 6 | 49 |
2023 July | 42 | 8 | 50 |
2023 June | 54 | 4 | 58 |
2023 May | 101 | 9 | 110 |
2023 April | 85 | 9 | 94 |
2023 March | 81 | 10 | 91 |
2023 February | 36 | 5 | 41 |
2023 January | 29 | 4 | 33 |
2022 December | 41 | 8 | 49 |
2022 November | 55 | 9 | 64 |
2022 October | 43 | 11 | 54 |
2022 September | 55 | 15 | 70 |
2022 August | 24 | 12 | 36 |
2022 July | 21 | 10 | 31 |
2022 June | 28 | 15 | 43 |
2022 May | 24 | 10 | 34 |
2022 April | 24 | 20 | 44 |
2022 March | 40 | 17 | 57 |
2022 February | 60 | 8 | 68 |
2022 January | 53 | 11 | 64 |
2021 December | 54 | 16 | 70 |
2021 November | 57 | 17 | 74 |
2021 October | 31 | 25 | 56 |
2021 September | 37 | 13 | 50 |
2021 August | 38 | 10 | 48 |
2021 July | 26 | 15 | 41 |
2021 June | 28 | 12 | 40 |
2021 May | 17 | 6 | 23 |
2021 April | 48 | 31 | 79 |
2021 March | 21 | 20 | 41 |
2021 February | 16 | 14 | 30 |
2021 January | 18 | 9 | 27 |
2020 December | 25 | 14 | 39 |
2020 November | 13 | 2 | 15 |
2020 October | 10 | 10 | 20 |
2020 September | 10 | 10 | 20 |
2020 August | 15 | 14 | 29 |
2020 July | 21 | 10 | 31 |
2020 June | 14 | 7 | 21 |
2020 May | 20 | 11 | 31 |
2020 April | 14 | 12 | 26 |
2020 March | 14 | 10 | 24 |
2020 February | 14 | 1 | 15 |
2020 January | 6 | 5 | 11 |
2019 December | 12 | 9 | 21 |
2019 November | 10 | 9 | 19 |
2019 October | 13 | 10 | 23 |
2019 September | 7 | 10 | 17 |
2019 August | 4 | 4 | 8 |
2019 July | 8 | 8 | 16 |
2019 June | 14 | 17 | 31 |
2019 May | 23 | 26 | 49 |
2019 February | 1 | 1 | 2 |
2019 January | 1 | 0 | 1 |
2018 November | 57 | 24 | 81 |
2018 October | 39 | 18 | 57 |
2018 September | 0 | 15 | 15 |