was read the article
array:24 [ "pii" => "S151783821730789X" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.01.006" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "373" "copyright" => "Sociedade Brasileira de Microbiologia" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:832-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 918 "formatos" => array:3 [ "EPUB" => 107 "HTML" => 592 "PDF" => 219 ] ] "itemSiguiente" => array:19 [ "pii" => "S151783821730237X" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.03.003" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "382" "copyright" => "Sociedade Brasileira de Microbiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:840-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 537 "formatos" => array:3 [ "EPUB" => 85 "HTML" => 235 "PDF" => 217 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Biotechnology and Industrial Microbiology</span>" "titulo" => "The potential of compounds isolated from <span class="elsevierStyleItalic">Xylaria</span> spp. as antifungal agents against anthracnose" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "840" "paginaFinal" => "847" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 888 "Ancho" => 2083 "Tamanyo" => 76735 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Structures of the piliformic acid (C<span class="elsevierStyleInf">11</span>H<span class="elsevierStyleInf">18</span>O<span class="elsevierStyleInf">4</span>) (A) and cytochalasin D (C<span class="elsevierStyleInf">30</span>H<span class="elsevierStyleInf">37</span>NO<span class="elsevierStyleInf">6</span>) (B) produced by <span class="elsevierStyleItalic">Xylaria</span> sp. 249 and <span class="elsevierStyleItalic">Xylaria</span> sp. 214, respectively, isolated from guarana plant.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Luciana M. Elias, Diana Fortkamp, Sérgio B. Sartori, Marília C. Ferreira, Luiz H. Gomes, João L. Azevedo, Quimi V. Montoya, André Rodrigues, Antonio G. Ferreira, Simone P. Lira" "autores" => array:10 [ 0 => array:2 [ "nombre" => "Luciana M." "apellidos" => "Elias" ] 1 => array:2 [ "nombre" => "Diana" "apellidos" => "Fortkamp" ] 2 => array:2 [ "nombre" => "Sérgio B." "apellidos" => "Sartori" ] 3 => array:2 [ "nombre" => "Marília C." "apellidos" => "Ferreira" ] 4 => array:2 [ "nombre" => "Luiz H." "apellidos" => "Gomes" ] 5 => array:2 [ "nombre" => "João L." "apellidos" => "Azevedo" ] 6 => array:2 [ "nombre" => "Quimi V." "apellidos" => "Montoya" ] 7 => array:2 [ "nombre" => "André" "apellidos" => "Rodrigues" ] 8 => array:2 [ "nombre" => "Antonio G." "apellidos" => "Ferreira" ] 9 => array:2 [ "nombre" => "Simone P." "apellidos" => "Lira" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S151783821730237X?idApp=UINPBA00004N" "url" => "/15178382/0000004900000004/v1_201810050636/S151783821730237X/v1_201810050636/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1517838217304859" "issn" => "15178382" "doi" => "10.1016/j.bjm.2018.02.001" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "365" "copyright" => "Sociedade Brasileira de Microbiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Braz J Microbiol. 2018;49:823-31" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 789 "formatos" => array:3 [ "EPUB" => 99 "HTML" => 426 "PDF" => 264 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Biotechnology and Industrial Microbiology</span>" "titulo" => "Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "823" "paginaFinal" => "831" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 791 "Ancho" => 2154 "Tamanyo" => 86432 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Digestion profile of lactic acid bacteria isolated from cassava fermentation in a cassava flour manufacturer. Lanes: 1: 1<span class="elsevierStyleHsp" style=""></span>kb DNA ladder; 2–4: <span class="elsevierStyleItalic">Lactobacillus ghanensis</span> profile (2-<span class="elsevierStyleItalic">Msp</span>I, 3-<span class="elsevierStyleItalic">Hae</span>III, 4-<span class="elsevierStyleItalic">Hinf</span>I); 5–7: <span class="elsevierStyleItalic">Enterococcus faecium</span> profile (5-<span class="elsevierStyleItalic">Msp</span>I, 6-<span class="elsevierStyleItalic">Hae</span>III, 7-<span class="elsevierStyleItalic">Hinf</span>I); 8–10: <span class="elsevierStyleItalic">Weisella cibaria</span> profile (8-<span class="elsevierStyleItalic">Msp</span>I, 9-<span class="elsevierStyleItalic">Hae</span>III, 10-<span class="elsevierStyleItalic">Hinf</span>I); 11–13: <span class="elsevierStyleItalic">Lactococcus garvieae</span> profile (11-<span class="elsevierStyleItalic">Msp</span>I, 12-<span class="elsevierStyleItalic">Hae</span>III, 13-<span class="elsevierStyleItalic">Hinf</span>I);14–16: <span class="elsevierStyleItalic">Lactobacillus lactis</span> profile (14-<span class="elsevierStyleItalic">Msp</span>I, 15-<span class="elsevierStyleItalic">Hae</span>III, 16-<span class="elsevierStyleItalic">Hinf</span>I); 17–19: <span class="elsevierStyleItalic">Leuconostoc mesenteroides</span> profile (17-<span class="elsevierStyleItalic">Msp</span>I, 18-<span class="elsevierStyleItalic">Hae</span>III, 19-<span class="elsevierStyleItalic">Hinf</span>I).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Fernanda Corrêa Leal Penido, Fernanda Barbosa Piló, Sávio Henrique de Cicco Sandes, Álvaro Cantini Nunes, Gecernir Colen, Evelyn de Souza Oliveira, Carlos Augusto Rosa, Inayara Cristina Alves Lacerda" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Fernanda Corrêa Leal" "apellidos" => "Penido" ] 1 => array:2 [ "nombre" => "Fernanda Barbosa" "apellidos" => "Piló" ] 2 => array:2 [ "nombre" => "Sávio Henrique de Cicco" "apellidos" => "Sandes" ] 3 => array:2 [ "nombre" => "Álvaro Cantini" "apellidos" => "Nunes" ] 4 => array:2 [ "nombre" => "Gecernir" "apellidos" => "Colen" ] 5 => array:2 [ "nombre" => "Evelyn de Souza" "apellidos" => "Oliveira" ] 6 => array:2 [ "nombre" => "Carlos Augusto" "apellidos" => "Rosa" ] 7 => array:2 [ "nombre" => "Inayara Cristina Alves" "apellidos" => "Lacerda" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1517838217304859?idApp=UINPBA00004N" "url" => "/15178382/0000004900000004/v1_201810050636/S1517838217304859/v1_201810050636/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Biotechnology and Industrial Microbiology</span>" "titulo" => "Screening of medium constituents for clavulanic acid production by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "832" "paginaFinal" => "839" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Kaio César da Silva Rodrigues, Arianne Tairyne de Souza, Alberto Colli Badino, Danielle Biscaro Pedrolli, Marcel Otavio Cerri" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Kaio César da Silva" "apellidos" => "Rodrigues" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Arianne Tairyne de" "apellidos" => "Souza" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Alberto Colli" "apellidos" => "Badino" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Danielle Biscaro" "apellidos" => "Pedrolli" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 4 => array:4 [ "nombre" => "Marcel Otavio" "apellidos" => "Cerri" "email" => array:1 [ 0 => "marcel@fcfar.unesp.br" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Universidade Federal de São Carlos, Departamento de Engenharia Química, São Carlos, SP, Brazil" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Departamento de Química, Biotecnologia e Bioprocessos, Ouro Branco, MG, Brazil" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Universidade Estadual Paulista (UNESP), Departamento de Bioprocessos e Biotecnologia, Araraquara, SP, Brazil" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Ozcengiz and Demain.<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">26</span></a>" "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1881 "Ancho" => 3161 "Tamanyo" => 286192 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">CA biosynthetic pathway starting from C3 and C5 precursors. Solid lines represent steps catalyzed by known enzymes; the broken line indicates the step for which no enzyme has yet been characterized. ceaS, carboxyethylarginine synthase; gcaS, glycylclavaminate synthase; bls, β-lactam synthetase; cas, clavaminate synthase; pah, proclavaminate amidinohydrolase; cad, clavaldehyde dehydrogenase.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Clavulanic acid (CA) is a β-lactam compound with potent inhibitory activity against β-lactamases.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">1</span></a> These enzymes catalyze the hydrolysis of β-lactam ring in antibiotics, hence inactivating them.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">2</span></a> Although CA is considered an antibiotic, it has weak antibacterial activity and is ineffective if administrated alone. Therefore, CA in the form of the potassium salt is used in conjunction with β-lactamase-sensitive antibiotics such as penicillin and cephalosporin.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">3</span></a> Such combinations increase the effectiveness of infection treatments, which makes CA clinically and economically important.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Traditionally, CA is produced from cultures of <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>, a filamentous aerobic bacterium belonging to the actinomycetes group.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">4</span></a> Although numerous studies concerning CA production have been published in recent decades,<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">5</span></a> the process can still be improved. Strategies to enhance CA production include manipulation of bioreactor operation mode<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">6</span></a> and conditions of agitation and aeration,<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">7</span></a> as well as optimization of medium composition.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">8</span></a> Many different culture media have been reported for CA production. Recent studies have used glycerol or lipid as carbon and energy sources.<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">9</span></a> Soybean derivatives (flour, protein isolate, and meal) have been used as sources of nitrogen.<a class="elsevierStyleCrossRefs" href="#bib0205"><span class="elsevierStyleSup">10,11</span></a> Compounds containing phosphorus and magnesium are also included in culture media used for CA production.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a> Ortiz et al.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">13</span></a> investigated the effects of soybean flour and soybean protein isolate as primary sources of nitrogen on CA production by <span class="elsevierStyleItalic">S. clavuligerus</span>. Soybean flour provided the highest CA production. Teodoro et al.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">14</span></a> evaluated the effect of the initial concentration of the nitrogen source in the medium. A high initial nitrogen concentration (about 4.5<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> total N) resulted in greater release of catabolic products in the broth, inhibiting CA production. Use of an initial total N concentration of about 3.0<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> provided good cell growth and the highest CA production among the cultivations tested.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Some compounds are directly used to build the CA molecule and are essential for CA biosynthesis. This phenomenon has been extensively studied and is well understood. The first reaction is the condensation of precursors of C5 and C3 units.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">15</span></a> The C5 precursor is arginine,<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">16</span></a> which can be synthesized from ornithine and glutamate.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">17</span></a> Khaleeli et al.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">15</span></a> showed that the C3 precursor originates from glycerol. Chen et al.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">18</span></a> studied the effects of feeding glycerol, ornithine and arginine on CA production in batch cultures. The combination glycerol and ornithine (molar ratio of 22:1) significantly increased CA production and provided greater stimulation of CA biosynthesis, compared to glycerol and arginine (molar ratio of 22:1). Wang et al.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a> examined the effect of the addition of ornithine at different concentrations. The highest CA yield was obtained using 1.2<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> of ornithine. Saudagar and Singhal<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">19</span></a> evaluated the influence of feeding with glycerol, arginine, and threonine in fed-batch cultures, finding that the two amino acids acted to stimulate CA production. Domingues et al.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">20</span></a> optimized the glycerol:ornithine molar ratio in the feed medium in continuous cultures using a 5<span class="elsevierStyleHsp" style=""></span>L working volume bioreactor. The best molar ratio was approximately 40:1.</p><p id="par0020" class="elsevierStylePara elsevierViewall">Progress has been made in elucidating the roles of amino acids such as ornithine, arginine, threonine, and glutamate in CA biosynthesis. However, few studies have quantitatively determined the effects of these amino acids in CA production. The aim of this study was therefore to screen several compounds involved in CA biosynthesis, using experimental design. This is a very useful tool that enables analysis not only of the effects of individual factors, but also the interactions between factors, in order to find the best conditions for the process. Firstly, cultivations were carried out in order to evaluate the influence of the primary nitrogen source and salts composition on CA production. Subsequently, the effect on CA production of supplementation of the primary nitrogen source with the amino acids arginine, threonine, ornithine, and glutamate was evaluated using experimental design and response surface analysis.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Microorganism</span><p id="par0025" class="elsevierStylePara elsevierViewall">The strain of <span class="elsevierStyleItalic">S. clavuligerus</span> used in this study was purchased from the American Type Culture Collection (ATCC-27064). Vegetative cells were stored at −70<span class="elsevierStyleHsp" style=""></span>°C in cryotubes with 10% (v<span class="elsevierStyleHsp" style=""></span>v<span class="elsevierStyleSup">−1</span>) glycerol.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Culture media</span><p id="par0030" class="elsevierStylePara elsevierViewall">The seed medium had the following composition (g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> in distilled water), as proposed by Rosa et al.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">21</span></a>: glycerol, 10.0; yeast extract, 1.0; bacto peptone, 10.0; malt extract, 10.0; K<span class="elsevierStyleInf">2</span>HPO<span class="elsevierStyleInf">4</span>, 2.5; MgSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O, 0.75; MnCl<span class="elsevierStyleInf">2</span>·4H<span class="elsevierStyleInf">2</span>O, 0.001; FeSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O, 0.001; ZnSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O, 0.001; 3-(N-morpholino) propanesulfonic acid (MOPS) buffer, 21.0 (100<span class="elsevierStyleHsp" style=""></span>mM).</p><p id="par0035" class="elsevierStylePara elsevierViewall">The inoculum and production media had the same composition. First, the influence of the primary nitrogen source (soybean flour – SF and soybean protein isolate – SPI) and the salts composition (FeSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O, K<span class="elsevierStyleInf">2</span>HPO<span class="elsevierStyleInf">4</span>, KH<span class="elsevierStyleInf">2</span>PO<span class="elsevierStyleInf">4</span>, and MgSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O) was investigated. Five different production media (M1–M5) were tested, based on those reported previously by Teodoro et al.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">14</span></a> and Wang et al.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a><a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> presents the media compositions (g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> in distilled water). Subsequently, the influence on CA production of supplementation of the primary nitrogen source with the amino acids arginine, threonine, ornithine, and glutamate was investigated using an experimental design. The M2 medium containing SPI was used as the basis for supplementation and the amounts of amino acids were altered according to the experimental design. In all cases, the pH of the medium was adjusted to 6.8, followed by autoclaving at 121<span class="elsevierStyleHsp" style=""></span>°C for 15<span class="elsevierStyleHsp" style=""></span>min.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Experimental design</span><p id="par0040" class="elsevierStylePara elsevierViewall">A two-level central composite rotatable design (CCRD) and response surface methodology<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">22</span></a> were employed in this study. Previous reports<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">12,16,18,19</span></a> indicated that arginine, threonine, ornithine, and glutamate significantly affect CA biosynthesis. In this study, these amino acids were chosen as the independent variables, denoted <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">2</span>, <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">3</span>, and <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">4</span>. The response variable was the CA concentration. A second order polynomial was used to calculate the predicted response (Eq. <a class="elsevierStyleCrossRef" href="#eq0005">(1)</a>).<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0045" class="elsevierStylePara elsevierViewall">In Eq. <a class="elsevierStyleCrossRef" href="#eq0005">(1)</a>, yˆ represents the predicted response; <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">0</span> is the intercept; <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">2</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">3</span>, and <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">4</span> are the linear terms; <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">11</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">22</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">33</span>, and <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">44</span> are the quadratic terms; <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">12</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">13</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">14</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">23</span>, <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">24</span>, and <span class="elsevierStyleItalic">b</span><span class="elsevierStyleInf">34</span> are the interaction terms; and <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">2</span>, <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">3</span>, and <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">4</span> are the independent variables studied.</p><p id="par0050" class="elsevierStylePara elsevierViewall">A total of 26 experiments were carried out, with 16 factorial points, 8 axial points (<span class="elsevierStyleItalic">α</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2), and 2 central points. Statistica (version 7.0) software was used for the regression and for constructing the response surface for analysis of the experimental data.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Cultivation procedure</span><p id="par0055" class="elsevierStylePara elsevierViewall">Vegetative cell suspensions kept in cryotubes (3.5<span class="elsevierStyleHsp" style=""></span>mL) were inoculated into 50<span class="elsevierStyleHsp" style=""></span>mL of seed medium in 500<span class="elsevierStyleHsp" style=""></span>mL Erlenmeyer flasks, followed by incubation in a rotary shaker (New Brunswick Scientific) at 27<span class="elsevierStyleHsp" style=""></span>°C and 250<span class="elsevierStyleHsp" style=""></span>rpm for 24<span class="elsevierStyleHsp" style=""></span>h. Erlenmeyer flasks (250<span class="elsevierStyleHsp" style=""></span>mL) containing 22.5<span class="elsevierStyleHsp" style=""></span>mL of inoculum medium were inoculated with 2.5<span class="elsevierStyleHsp" style=""></span>mL of the cultivated seed broth and incubated at 27<span class="elsevierStyleHsp" style=""></span>°C and 250<span class="elsevierStyleHsp" style=""></span>rpm for 24<span class="elsevierStyleHsp" style=""></span>h. In the production stage, the inoculum suspensions were transferred (using a proportion of 10% v<span class="elsevierStyleHsp" style=""></span>v<span class="elsevierStyleSup">−1</span>) to 250<span class="elsevierStyleHsp" style=""></span>mL Erlenmeyer flasks containing 22.5<span class="elsevierStyleHsp" style=""></span>mL of production medium, followed by incubation at 27<span class="elsevierStyleHsp" style=""></span>°C and 250<span class="elsevierStyleHsp" style=""></span>rpm for 72–84<span class="elsevierStyleHsp" style=""></span>h. The M1–M5 cultivations were performed in duplicate, with samples (1<span class="elsevierStyleHsp" style=""></span>mL) being withdrawn at 48, 60, 72, and 84<span class="elsevierStyleHsp" style=""></span>h. In the factorial design runs, samples were only removed at 72<span class="elsevierStyleHsp" style=""></span>h. The samples were centrifuged at 3720<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 15<span class="elsevierStyleHsp" style=""></span>min to obtain a clear supernatant for CA analyses.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Determination of clavulanic acid concentration</span><p id="par0060" class="elsevierStylePara elsevierViewall">The CA concentration in the fermentation broth was determined spectrophotometrically, as described by Bird et al.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">23</span></a> A volume of 0.4<span class="elsevierStyleHsp" style=""></span>mL of sample was added to 2.0<span class="elsevierStyleHsp" style=""></span>mL of imidazole solution (60<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> and pH 6.8). After a 15<span class="elsevierStyleHsp" style=""></span>min period at 30<span class="elsevierStyleHsp" style=""></span>°C, the derivative produced by the reaction between CA and imidazole was detected at 311<span class="elsevierStyleHsp" style=""></span>nm. The standard used was CA contained in the pharmaceutical product Clavulin<span class="elsevierStyleSup">®</span> (Glaxo-SmithKline Farmacêutica, Rio de Janeiro, Brazil).</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Results</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Influence of primary nitrogen source and salts composition</span><p id="par0065" class="elsevierStylePara elsevierViewall">Firstly, in order to evaluate the effects of the primary nitrogen source and the salts composition, cultivations were carried out using the five production media (M1–M5). The time courses of CA production (C<span class="elsevierStyleInf">CA</span>) are shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>. The M1 medium was based on that proposed by Teodoro et al.,<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">14</span></a> in which SPI was used as the primary nitrogen source. The M2 and M3 media were similar to M1, but with modification of the salts composition. The M4 medium was the same as the one used by Wang et al.,<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a> containing SF as the primary nitrogen source, while the M5 medium had an altered salt composition, compared to M4. The total nitrogen concentration was the same in all the media. The highest and lowest maximum CA production (<span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span>) in the broth were obtained after 60<span class="elsevierStyleHsp" style=""></span>h in M2 (437<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) and 48<span class="elsevierStyleHsp" style=""></span>h in M1 (41<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), respectively. The main difference between the compositions of the media used in these assays was the presence of ferrous sulfate in M2, which indicated the importance of this salt for CA biosynthesis. <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span> in M2 was 1.34-fold higher than in M3 (325<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), which contained ornithine. With respect to primary nitrogen sources tested, SPI supported higher CA production than SF present in M4 (<span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>317<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) and M5 media (<span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>196<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>). In contrast, the CA production remained steady for longer in M4 and M5.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Quantitative effects of amino acids supplementation</span><p id="par0070" class="elsevierStylePara elsevierViewall">Since the highest <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span> was achieved in the M2 medium, which contained SPI as primary nitrogen source, M2 was chosen as the basis for supplementation with amino acids, according to the experimental design. <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> summarizes the two-level four-factor CCRD, with the ranges and levels of the independent variables (arginine, threonine, ornithine, and glutamate) and the corresponding CA concentrations after 72<span class="elsevierStyleHsp" style=""></span>h of cultivation (response variable). The runs were conducted randomly in order to minimize errors in the experimental design. The results shown in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> were used to evaluate the effects of the variables on the CA concentration and obtain the regression coefficients for the second order polynomial model. Statistica software (version 7.0) was employed for these analyses, adopting a 95% confidence level.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0075" class="elsevierStylePara elsevierViewall">The Pareto diagram shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> illustrates the influence of the independent variables on the CA concentration, considering the effects of linear (l) and quadratic (q) terms. The horizontal bars show the magnitudes of the effects and the vertical line (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.05) indicates the limit above which an effect was considered statistically significant. It can be seen that CA production was significantly influenced by glutamate and ornithine. The linear effect of glutamate was most important in reducing the CA concentration. Although the quadratic term for glutamate showed a positive effect, the negative effect of the linear term was considerably higher. Ornithine also had a negative effect on CA production.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall">Statistical evaluation of the significance of the fitted model was performed using analysis of variance (ANOVA), with the results shown in <a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>. This analysis was carried out using the <span class="elsevierStyleItalic">F</span>-test to determine the quality of the fit and the associated probability <span class="elsevierStyleItalic">p</span>-value. Calculation of the determination coefficient (<span class="elsevierStyleItalic">R</span><span class="elsevierStyleSup">2</span>) provided a measure of the extent of variation (using the regression equation). The ANOVA results revealed that the model was statistically significant (at the 95% confidence level) and was able to satisfactorily describe the data, since the calculated <span class="elsevierStyleItalic">F</span> value (54.70) was higher than the tabulated value (2.84). The coefficient of determination (<span class="elsevierStyleItalic">R</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.9124) was also satisfactory, indicating that 91.24% of the variation in the CA concentration could be explained. The observed and predicted CA concentrations are shown in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>.</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0085" class="elsevierStylePara elsevierViewall">Eq. <a class="elsevierStyleCrossRef" href="#eq0010">(2)</a> shows the second order regression equation with the estimated coefficients. The model was simplified by the elimination of statistically insignificant terms. The independent variables <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">3</span> (ornithine) and <span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">4</span> (glutamate) are expressed as their coded values and the CA concentration values at 72<span class="elsevierStyleHsp" style=""></span>h of cultivation are expressed in mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>.<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0090" class="elsevierStylePara elsevierViewall">The response surface method consists of the association of the independent and dependent variables of a model in the form of a surface graph. This method was used to identify the best conditions for amino acid supplementation of the primary nitrogen source, maximizing CA production. <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a> shows the response surface for CA concentration as a function of the concentrations of the amino acids ornithine and glutamate. The most evident feature was the decrease in CA yield at higher glutamate concentrations. The model predicted a maximum CA concentration when the glutamate concentration was minimal. The distorted contours associated with the axes of ornithine and glutamate suggested interaction between these two parameters.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Discussion</span><p id="par0095" class="elsevierStylePara elsevierViewall">The substantial difference between the <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span> values in M1 and M2 media indicated the importance of the ferrous sulfate for CA biosynthesis, as mentioned by Wang et al.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a> The CA biosynthesis employs <span class="elsevierStyleSmallCaps">l</span>-arginine (C5-precursor) and <span class="elsevierStyleSmallCaps">d</span>-glyceraldehyde 3-phosphate (C3-precursor) in nine catalyzed reactions, as shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>. The conversion of N-glycylclavaminic acid to clavaldehyde (step 8) is the only reaction for which the enzyme has not yet been characterized. Six enzymes are known to catalyze the other eight steps. Five monofunctional enzymes catalyze steps 1, 2, 4, 7, and 9, while one multifunctional enzyme, clavaminate synthase (cas, EC 1.14.11.21), catalyzes steps 3, 5, and 6. Clavaminate synthase is a nonheme Fe<span class="elsevierStyleSup">2+</span>-dependent enzyme present as two isoforms in <span class="elsevierStyleItalic">S. clavuligerus</span>.<a class="elsevierStyleCrossRefs" href="#bib0275"><span class="elsevierStyleSup">24,25</span></a> The iron dependency of this essential enzyme in the CA biosynthesis explains the improvement in CA production observed when the medium was enriched with ferrous sulfate.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">The lower <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span> value achieved in M3 (containing ornithine) compared to M2 contrasts with the findings of Chen et al.,<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">18</span></a> who reported that CA production could be enhanced by adding ornithine to a batch culture. In M4, <span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CAmax</span> (317<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) was lower than those reported by Wang et al.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">12</span></a> (670<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) using the same medium. An explanation for this difference lies in the cultivation procedures used and the media employed for strain preservation and propagation.<a class="elsevierStyleCrossRefs" href="#bib0290"><span class="elsevierStyleSup">27,28</span></a> According to Mayer and Deckwer,<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">29</span></a> the presence of soybean flour particles in the medium might induce the production of extracellular proteases by <span class="elsevierStyleItalic">S. clavuligerus</span>. These proteases maintained the degradation of soybean flour during the growth phase, providing a steady supply of essential nutrients to the microorganism. This explains the maintenance of the CA production steady for longer in M4 and M5 relative to M2.</p><p id="par0105" class="elsevierStylePara elsevierViewall">With respect to experimental design results, in the biosynthetic pathway in <span class="elsevierStyleItalic">S. clavuligerus</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>), glutamate can be converted to 2-oxoglutarate, which enters the citric acid cycle. The conversion is catalyzed by a glutamate dehydrogenase and releases ammonium (see <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>), which inhibits CA biosynthesis<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">30</span></a> and induces CA degradation,<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">31</span></a> hence explaining the negative influence of glutamate on CA production. Although the glycerol supply was high, supplementation with C5 precursors (arginine, ornithine, and glutamate) did not result in any increase in CA production. This could be attributed to possible overload of the capacity of carboxyethylarginine synthase (CeaS2) to process the substrates. In such a scenario, the soybean protein isolate would provide sufficient arginine (as a C5 precursor) for the enzyme dosage in the cell, making supplementation unnecessary under the selected production conditions. The commercial soybean protein isolate used in this study (Nutrisoy Alimentos) contained arginine (8.0% w/w), threonine (3.6% w/w), and glutamate (20.4% w/w), which reinforces this assumption.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Conclusion</span><p id="par0110" class="elsevierStylePara elsevierViewall">The findings demonstrated that ferrous sulfate should be included in the composition of fermentation media used for CA production, because the enzymes involved in CA biosynthesis are Fe<span class="elsevierStyleSup">2+</span>-dependent. In contrast, according to the results of the experimental design, supplementation of media containing soybean protein isolate with amino acids (arginine, threonine, ornithine, and glutamate) is unnecessary, since the isolate provides enough C5 precursor (arginine) for CA biosynthesis, under the conditions tested. This study simultaneously investigated the influence of several medium constituents in order to determine the best formulation for CA production by <span class="elsevierStyleItalic">S. clavuligerus</span>. This approach is especially important for maximizing CA yields, as well as for reducing the cost of fermentative production of CA.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Conflicts of interest</span><p id="par0115" class="elsevierStylePara elsevierViewall">The authors declare no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1091272" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1034394" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Microorganism" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Culture media" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Experimental design" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Cultivation procedure" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Determination of clavulanic acid concentration" ] ] ] 4 => array:3 [ "identificador" => "sec0040" "titulo" => "Results" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Influence of primary nitrogen source and salts composition" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "Quantitative effects of amino acids supplementation" ] ] ] 5 => array:2 [ "identificador" => "sec0055" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "sec0060" "titulo" => "Conclusion" ] 7 => array:2 [ "identificador" => "sec0065" "titulo" => "Conflicts of interest" ] 8 => array:2 [ "identificador" => "xack370740" "titulo" => "Acknowledgments" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-08-15" "fechaAceptado" => "2018-01-24" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1034394" "palabras" => array:4 [ 0 => "Clavulanic acid" 1 => "<span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" 2 => "Ferrous sulfate" 3 => "Amino acids supplementation" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Clavulanic acid is a β-lactam compound with potent inhibitory activity against β-lactamases. Studies have shown that certain amino acids play essential roles in CA biosynthesis. However, quantitative evaluations of the effects of these amino acids are still needed in order to improve CA production. Here, we report a study of the nutritional requirements of <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> for CA production. Firstly, the influence of the primary nitrogen source and the salts composition was investigated. Subsequently, soybean protein isolate was supplemented with arginine (0.0–3.20<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), threonine (0.0–1.44<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), ornithine (0.0–4.08<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), and glutamate (0.0–8.16<span class="elsevierStyleHsp" style=""></span>g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>), according to a two-level central composite rotatable design. A medium containing ferrous sulfate yielded CA production of 437<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>, while a formulation without this salt produced only 41<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span> of CA. This substantial difference suggested that Fe<span class="elsevierStyleSup">2+</span> is important for CA biosynthesis. The experimental design showed that glutamate and ornithine negatively influenced CA production while arginine and threonine had no influence. The soybean protein isolate provided sufficient C5 precursor for CA biosynthesis, so that supplementation was unnecessary. Screening of medium components, together with experimental design tools, could be a valuable way of enhancing CA titers and reducing the process costs.</p></span>" ] ] "multimedia" => array:11 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1191 "Ancho" => 1584 "Tamanyo" => 80229 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Time courses of CA concentration (<span class="elsevierStyleItalic">C</span><span class="elsevierStyleInf">CA</span>) for cultivations with the M1, M2, M3, M4, and M5 media.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1071 "Ancho" => 1567 "Tamanyo" => 129944 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Pareto diagram for CA concentration, at a 95% confidence level.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1176 "Ancho" => 1576 "Tamanyo" => 87244 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Observed versus predicted CA concentrations (mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>).</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1323 "Ancho" => 1550 "Tamanyo" => 139522 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Response surface for CA concentration as a function of the independent variables ornithine and glutamate.</p>" ] ] 4 => array:8 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Ozcengiz and Demain.<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">26</span></a>" "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1881 "Ancho" => 3161 "Tamanyo" => 286192 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">CA biosynthetic pathway starting from C3 and C5 precursors. Solid lines represent steps catalyzed by known enzymes; the broken line indicates the step for which no enzyme has yet been characterized. ceaS, carboxyethylarginine synthase; gcaS, glycylclavaminate synthase; bls, β-lactam synthetase; cas, clavaminate synthase; pah, proclavaminate amidinohydrolase; cad, clavaldehyde dehydrogenase.</p>" ] ] 5 => array:8 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Bushell et al.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">17</span></a>" "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2045 "Ancho" => 2499 "Tamanyo" => 261067 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">CA biosynthetic pathway in <span class="elsevierStyleItalic">S. clavuligerus</span> showing the conversion of glutamate to 2-oxoglutarate, which causes the release of ammonium.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Composition (g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">M1 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">M2 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">M3 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">M4 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">M5 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Glycerol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">18.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">18.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Yeast extract \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Soybean protein isolate \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Soybean flour \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">38.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">38.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Ornithine \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">MOPS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21.0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">21.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">K<span class="elsevierStyleInf">2</span>HPO<span class="elsevierStyleInf">4</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">KH<span class="elsevierStyleInf">2</span>PO<span class="elsevierStyleInf">4</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.125 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">MgSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">FeSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">MnCl<span class="elsevierStyleInf">2</span>·4H<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">ZnSO<span class="elsevierStyleInf">4</span>·7H<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1865956.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Compositions of inoculum and production media M1–M5.</p>" ] ] 7 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="table-head ; entry_with_role_rowhead " align="left" valign="top" scope="col">Run \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="4" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Independent variables (g<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>)</th><th class="td" title="table-head " align="center" valign="top" scope="col">CA concentration (mg<span class="elsevierStyleHsp" style=""></span>L<span class="elsevierStyleSup">−1</span>) \t\t\t\t\t\t\n \t\t\t\t</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Arginine (<span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">1</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Threonine (<span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">2</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Ornithine (<span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">3</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Glutamate (<span class="elsevierStyleItalic">x</span><span class="elsevierStyleInf">4</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">536.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">502.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">479.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">422.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">311.8 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">262.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">300.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">403.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">24.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">12 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (1.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">58.8 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">7.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−1 (0.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">35.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (2.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (1.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (3.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+1 (6.12) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">173.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">175.8 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−2 (0.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">234.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+2 (3.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">100.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−2 (0.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">392.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+2 (1.44) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">145.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−2 (0.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+2 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (4.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">9.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−2 (0.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">717.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (1.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (2.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">+2 (8.16) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1865957.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Ranges and levels of the independent variables, in coded and original units, according to the two-level four-factor CCRD, and results of CA concentration after 72<span class="elsevierStyleHsp" style=""></span>h of cultivation.</p>" ] ] 8 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Source of variation \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Degrees of freedom \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Square sum \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Mean square \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">cal</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Regression \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1,007,064 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">251,766 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">54.70<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Residuals \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">96,652 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4602 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1,103,716 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1865958.png" ] ] ] "notaPie" => array:1 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0005"><span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">6;47;0.05</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.84; <span class="elsevierStyleItalic">R</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.9124.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Analysis of variance for the regression model of CA production.</p>" ] ] 9 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "yˆ=b0+b1x1+b2x2+b3x3+b4x4+b11x12+b22x22+b33x32+b44x42  +b12x1x2+b13x1x3+b14x1x4+b23x2x3+b24x2x4+b34x3x4" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 5291 "Alto" => 36 "Ancho" => 348 ] ] 10 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "CCA=210.90−188.37x4−47.03x32+39.88x42+46.19x3x4" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 3312 "Alto" => 17 "Ancho" => 385 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:31 [ 0 => array:3 [ "identificador" => "bib0160" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Naturally-occurring beta-lactamase inhibitors with antibacterial activity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.G. Brown" 1 => "D. Butterworth" 2 => "M. Cole" 3 => "G. Hanscomb" 4 => "J.D. Hood" 5 => "C. Reading" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "J Antibiot" "fecha" => "1976" "volumen" => "29" "numero" => "6" "paginaInicial" => "668" "paginaFinal" => "669" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/950324" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0165" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A functional classification scheme for beta-lactamases and its correlation with molecular-structure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K. Bush" 1 => "G.A. Jacoby" 2 => "A.A. Medeiros" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Antimicrob Agents Chemother" "fecha" => "1995" "volumen" => "39" "numero" => "6" "paginaInicial" => "1211" "paginaFinal" => "1233" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7574506" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0170" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chemistry and biosynthesis of clavulanic acid and other clavams" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.H. Baggaley" 1 => "A.G. Brown" 2 => "C.J. Schofield" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Nat Prod Rep" "fecha" => "1997" "volumen" => "14" "numero" => "4" "paginaInicial" => "309" "paginaFinal" => "333" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9281835" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0175" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Streptomyces clavuligerus</span> sp. nov., a β-lactam antibiotic producer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Higgens" 1 => "R. Kastner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Int J Syst Evol Microbiol" "fecha" => "1971" "volumen" => "21" "numero" => "4" "paginaInicial" => "326" "paginaFinal" => "331" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0180" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fermentation conditions that affect clavulanic acid production in <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>: a systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "H.L. Ser" 1 => "J.W.F. Law" 2 => "N. Chaiyakunapruk" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fmicb.2016.02140" "Revista" => array:4 [ "tituloSerie" => "Front Microbiol" "fecha" => "2016" "volumen" => "7" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28101087" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0185" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Production of clavulanic acid and cephamycin C by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> under different fed-batch conditions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C. Bellão" 1 => "T. Antonio" 2 => "M.L.G.d.C. Araujo" 3 => "A.C. Badino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Braz J Chem Eng" "fecha" => "2013" "volumen" => "30" "numero" => "2" "paginaInicial" => "257" "paginaFinal" => "266" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0190" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of aeration and agitation on extractive fermentation of clavulanic acid by using aqueous two-phase system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D.A.V. Marques" 1 => "V.C. Santos-Ebinuma" 2 => "A. Pessoa" 3 => "A.L.F. Porto" 4 => "B.R. Torres" 5 => "A. Converti" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/btpr.2333" "Revista" => array:6 [ "tituloSerie" => "Biotechnol Prog" "fecha" => "2016" "volumen" => "32" "paginaInicial" => "1444" "paginaFinal" => "1452" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27451982" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0195" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhancement of clavulanic acid production by <span class="elsevierStyleItalic">Streptomyces</span> sp. MU-NRC77 via mutation and medium optimization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "I.G. Said" 1 => "N.A.M. Abdelwahed" 2 => "H.M. Awad" 3 => "M.A. Shallan" 4 => "K.Y.I. El-Shahed" 5 => "E.A. Abdel-Rahim" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Trop J Pharm Res" "fecha" => "2017" "volumen" => "16" "paginaInicial" => "31" "paginaFinal" => "42" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0200" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clavulanic acid production by the MMS 150 mutant obtained from wild type <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> ATCC 27064" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "E.d.S. Vasconcelos" 1 => "V.A.d. Lima" 2 => "L.S. Goto" 3 => "I.L. Cruz-Hernández" 4 => "C.O. Hokka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1590/S1517-83822014005000005" "Revista" => array:7 [ "tituloSerie" => "Braz J Microbiol" "fecha" => "2013" "volumen" => "44" "numero" => "4" "paginaInicial" => "1049" "paginaFinal" => "1057" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24688492" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0205" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Screening of wild type <span class="elsevierStyleItalic">Streptomyces</span> isolates able to overproduce clavulanic acid" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "D.A.V. Marques" 1 => "V.d.C. Santos-Ebinuma" 2 => "P.M. Sobral de Oliveira" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Braz J Microbiol" "fecha" => "2014" "volumen" => "45" "numero" => "3" "paginaInicial" => "919" "paginaFinal" => "928" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25477926" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0210" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overproduction of clavulanic acid by extractive fermentation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.L.L. Costa" 1 => "A.C. Badino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Electron J Biotechnol" "fecha" => "2015" "volumen" => "18" "numero" => "3" "paginaInicial" => "154" "paginaFinal" => "160" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0215" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimization of medium composition for the production of clavulanic acid by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y.H. Wang" 1 => "B. Yang" 2 => "J. Ren" 3 => "M.L. Dong" 4 => "D. Liang" 5 => "A.L. Xu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Process Biochem" "fecha" => "2005" "volumen" => "40" "numero" => "3–4" "paginaInicial" => "1161" "paginaFinal" => "1166" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0220" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utilization of soybean derivatives on clavulanic acid production by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.C.A. Ortiz" 1 => "C.O. Hokka" 2 => "A.C. Badino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Enzyme Microb Technol" "fecha" => "2007" "volumen" => "40" "numero" => "5" "paginaInicial" => "1071" "paginaFinal" => "1077" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0225" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.C. Teodoro" 1 => "A. Baptista-Neto" 2 => "I.L. Cruz-Hernandez" 3 => "C.O. Hokka" 4 => "A.C. Badino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00253-005-0273-6" "Revista" => array:7 [ "tituloSerie" => "Appl Microbiol Biotechnol" "fecha" => "2006" "volumen" => "72" "numero" => "3" "paginaInicial" => "450" "paginaFinal" => "455" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16395544" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0230" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Origin of the beta-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N. Khaleeli" 1 => "R.F. Li" 2 => "C.A. Townsend" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Am Chem Soc" "fecha" => "1999" "volumen" => "121" "numero" => "39" "paginaInicial" => "9223" "paginaFinal" => "9224" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0235" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evidence that arginine is a later metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "B.P. Valentine" 1 => "C.R. Bailey" 2 => "A. Doherty" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "J Chem Soc Chem Commun" "fecha" => "1993" "paginaInicial" => "1210" "paginaFinal" => "1211" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0240" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Manipulation of the physiology of clavulanic acid biosynthesis with the aid of metabolic flux analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.E. Bushell" 1 => "S. Kirk" 2 => "H.J. Zhao" 3 => "C.A. Avignone-Rossa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Enzyme Microb Technol" "fecha" => "2006" "volumen" => "39" "numero" => "1" "paginaInicial" => "149" "paginaFinal" => "157" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0245" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhancement of clavulanic acid production in <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> with ornithine feeding" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.C. Chen" 1 => "Y.H. Lin" 2 => "J.Y. Wu" 3 => "S.C.J. Hwang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Enzyme Microb Technol" "fecha" => "2003" "volumen" => "32" "numero" => "1" "paginaInicial" => "152" "paginaFinal" => "156" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0250" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimization of nutritional requirements and feeding strategies for clavulanic acid production by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.S. Saudagar" 1 => "R.S. Singhal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biortech.2006.08.003" "Revista" => array:7 [ "tituloSerie" => "Bioresour Technol" "fecha" => "2007" "volumen" => "98" "numero" => "10" "paginaInicial" => "2010" "paginaFinal" => "2017" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17011778" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0255" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimisation of the glycerol-to-ornithine molar ratio in the feed medium for the continuous production of clavulanic acid by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "L.C.G. Domingues" 1 => "J.C. Teodoro" 2 => "C.O. Hokka" 3 => "A.C. Badino" 4 => "M.L.G.C. Araujo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Biochem Eng J" "fecha" => "2010" "volumen" => "53" "paginaInicial" => "7" "paginaFinal" => "11" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0260" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of dissolved oxygen and shear conditions on clavulanic acid production by <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.C. Rosa" 1 => "A.B. Neto" 2 => "C.O. Hokka" 3 => "A.C. Badino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00449-004-0386-9" "Revista" => array:7 [ "tituloSerie" => "Bioprocess Biosyst Eng" "fecha" => "2005" "volumen" => "27" "numero" => "2" "paginaInicial" => "99" "paginaFinal" => "104" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15592878" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0265" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Experimental Design and Process Optimization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.I. Rodrigues" 1 => "A.F. Iemma" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2014" "editorial" => "CRC Press" "editorialLocalizacion" => "Florida" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0270" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spectrophotometric assay of clavulanic acid by reaction with imidazole" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.E. Bird" 1 => "J.M. Bellis" 2 => "B.C. Gasson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Analyst" "fecha" => "1982" "volumen" => "107" "paginaInicial" => "1241" "paginaFinal" => "1245" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0275" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression and purification of 2 isozymes of clavaminate synthase and initial characterization of the iron-binding site – general error analysis in polymerase chain-reaction amplification" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "R.W. Busby" 1 => "M.D.T. Chang" 2 => "R.C. Busby" 3 => "J. Wimp" 4 => "C.A. Townsend" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "J Biol Chem" "fecha" => "1995" "volumen" => "270" "numero" => "9" "paginaInicial" => "4262" "paginaFinal" => "4269" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7876185" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0280" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "D199–D205" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Data, information, knowledge and principle: back to metabolism in KEGG" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Kanehisa" 1 => "S. Goto" 2 => "Y. Sato" 3 => "M. Kawashima" 4 => "M. Furumichi" 5 => "M. Tanabe" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gku450" "Revista" => array:5 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2014" "volumen" => "42" "numero" => "D1" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24957597" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0285" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Ozcengiz" 1 => "A.L. Demain" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biotechadv.2012.12.001" "Revista" => array:7 [ "tituloSerie" => "Biotechnol Adv" "fecha" => "2013" "volumen" => "31" "numero" => "2" "paginaInicial" => "287" "paginaFinal" => "311" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23228980" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0290" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cell density influences antibiotic biosynthesis in <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "L. Sanchez" 1 => "A.F. Brana" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1099/13500872-142-5-1209" "Revista" => array:6 [ "tituloSerie" => "Microbiology" "fecha" => "1996" "volumen" => "142" "paginaInicial" => "1209" "paginaFinal" => "1220" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8704961" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0295" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of preculture variability on clavulanic acid fermentation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.A. Neves" 1 => "L.M. Vieira" 2 => "J.C. Menezes" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Biotechnol Bioeng" "fecha" => "2001" "volumen" => "72" "numero" => "6" "paginaInicial" => "628" "paginaFinal" => "633" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11460254" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0300" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Simultaneous production and decomposition of clavulanic acid during <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> cultivations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.F. Mayer" 1 => "W.D. Deckwer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Appl Microbiol Biotechnol" "fecha" => "1996" "volumen" => "45" "numero" => "1–2" "paginaInicial" => "41" "paginaFinal" => "46" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8920178" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0305" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dissociation of cephamycin and clavulanic acid biosynthesis in <span class="elsevierStyleItalic">Streptomyces clavuligerus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Romero" 1 => "P. Liras" 2 => "J. Martin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Appl Microbiol Biotechnol" "fecha" => "1984" "volumen" => "20" "numero" => "5" "paginaInicial" => "318" "paginaFinal" => "325" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0310" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clavulanic acid degradation in <span class="elsevierStyleItalic">Streptomyces clavuligerus</span> fed-batch cultivations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.A. Roubos" 1 => "P. Krabben" 2 => "W. de Laat" 3 => "R. Babuska" 4 => "J.J. Heijnen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/bp020294n" "Revista" => array:7 [ "tituloSerie" => "Biotechnol Prog" "fecha" => "2002" "volumen" => "18" "numero" => "3" "paginaInicial" => "451" "paginaFinal" => "457" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12052058" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack370740" "titulo" => "Acknowledgments" "texto" => "<p id="par0120" class="elsevierStylePara elsevierViewall">The authors would like to thank <span class="elsevierStyleGrantSponsor" id="gs1">Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil)</span> and the <span class="elsevierStyleGrantSponsor" id="gs2">National Council for Scientific and Technological Development</span> (CNPQ, Brazil, Process Number 471848/2013-1) for financial support of this work.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/15178382/0000004900000004/v1_201810050636/S151783821730789X/v1_201810050636/en/main.assets" "Apartado" => array:4 [ "identificador" => "62401" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Biotechnology and Industrial Microbiology" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/15178382/0000004900000004/v1_201810050636/S151783821730789X/v1_201810050636/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S151783821730789X?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 12 | 0 | 12 |
2024 October | 44 | 21 | 65 |
2024 September | 52 | 5 | 57 |
2024 August | 50 | 24 | 74 |
2024 July | 37 | 4 | 41 |
2024 June | 59 | 7 | 66 |
2024 May | 52 | 8 | 60 |
2024 April | 50 | 11 | 61 |
2024 March | 68 | 7 | 75 |
2024 February | 85 | 14 | 99 |
2024 January | 99 | 7 | 106 |
2023 December | 69 | 6 | 75 |
2023 November | 90 | 8 | 98 |
2023 October | 79 | 21 | 100 |
2023 September | 56 | 4 | 60 |
2023 August | 46 | 9 | 55 |
2023 July | 36 | 2 | 38 |
2023 June | 58 | 5 | 63 |
2023 May | 80 | 8 | 88 |
2023 April | 65 | 2 | 67 |
2023 March | 53 | 3 | 56 |
2023 February | 39 | 2 | 41 |
2023 January | 28 | 8 | 36 |
2022 December | 44 | 6 | 50 |
2022 November | 29 | 7 | 36 |
2022 October | 37 | 7 | 44 |
2022 September | 24 | 28 | 52 |
2022 August | 29 | 8 | 37 |
2022 July | 19 | 10 | 29 |
2022 June | 22 | 13 | 35 |
2022 May | 15 | 7 | 22 |
2022 April | 15 | 18 | 33 |
2022 March | 24 | 10 | 34 |
2022 February | 22 | 14 | 36 |
2022 January | 43 | 8 | 51 |
2021 December | 18 | 11 | 29 |
2021 November | 25 | 21 | 46 |
2021 October | 36 | 19 | 55 |
2021 September | 33 | 14 | 47 |
2021 August | 35 | 13 | 48 |
2021 July | 17 | 9 | 26 |
2021 June | 15 | 9 | 24 |
2021 May | 26 | 11 | 37 |
2021 April | 75 | 9 | 84 |
2021 March | 38 | 12 | 50 |
2021 February | 32 | 17 | 49 |
2021 January | 27 | 11 | 38 |
2020 December | 36 | 8 | 44 |
2020 November | 28 | 20 | 48 |
2020 October | 18 | 8 | 26 |
2020 September | 23 | 12 | 35 |
2020 August | 31 | 24 | 55 |
2020 July | 16 | 11 | 27 |
2020 June | 18 | 23 | 41 |
2020 May | 24 | 10 | 34 |
2020 April | 15 | 7 | 22 |
2020 March | 14 | 8 | 22 |
2020 February | 9 | 3 | 12 |
2020 January | 13 | 8 | 21 |
2019 December | 19 | 4 | 23 |
2019 November | 8 | 5 | 13 |
2019 October | 17 | 7 | 24 |
2019 September | 15 | 7 | 22 |
2019 August | 4 | 2 | 6 |
2019 July | 22 | 8 | 30 |
2019 June | 18 | 16 | 34 |
2019 May | 6 | 17 | 23 |
2019 February | 1 | 1 | 2 |
2018 November | 284 | 26 | 310 |
2018 October | 181 | 19 | 200 |
2018 September | 0 | 14 | 14 |
2018 August | 0 | 14 | 14 |
2018 July | 0 | 13 | 13 |
2018 June | 0 | 11 | 11 |
2018 May | 0 | 7 | 7 |
2018 April | 0 | 27 | 27 |
2018 March | 0 | 11 | 11 |