A novel system for electromagnetic navigation in bronchoscopy (NaviCAD) to improve peripheral lesion targeting and diagnostic is currently under development. The virtual bronchoscopy module of this system, including the collision and resolution algorithm, together with some preliminary tests on a complex phantom are presented in this paper. The NaviCAD system consists of a planning and orientation software, a navigation forceps, and an electromagnetic tracking system connected to a computer running the NaviCAD software. NaviCAD can be used with any bronchoscopy system, it has a short set-up procedure time and learning curve. The system proves to be easy to use, accurate and useful for experienced users and novices, with precision in reaching targets in sub-segmental bronchi where a video-bronchoscope cannot reach.
Journal Information
Vol. 28. Issue 2.
Pages 162-166 (July - December 2016)
Vol. 28. Issue 2.
Pages 162-166 (July - December 2016)
Full text access
Virtual bronchoscopy method based on marching cubes and an efficient collision detection and resolution algorithm
Visits
1140
Catalin Ciobircaa, Teodoru Popab, Gabriel Gruionub,c, Thomas Langod, Hakon Olav Leirae, Stefan Dan Pastramaa,
, Lucian Gheorghe Gruionub
Corresponding author
a University Politehnica, Department of Strength of Materials, Splaiul Independentei 313, Sector 6, 060042, Bucharest, Romania
b University of Craiova, Department of Engineering and Management of Technological Systems, Calea Bucuresti nr. 107, 200512, Craiova, Dolj County, Romania
c Edwin L. Steele Laboratory for Tumor Biology, Harvard University, 55 Fruit Street Boston, MA 02114, USA
d SINTEF Technology and Society, Department of Medical Technology, Olav Kyrres gate 9, Trondheim, Norway
e St. Olavs Hospital, Department of Thoracic Medicine, Prinsesse Kristinas gate 3, Trondheim, Norway
This item has received
Article information
Abstract
Keywords:
bronchoscopy
navigation
electromagnetic tracking
biopsy
lung diagnosis
virtual bronchoscopy
Full text is only aviable in PDF
References
[2]
N. Shinagawa, K. Yamazaki, Y. Onodera, K. Miyasaka, E. Kikuchi, H. Dosaka-Akita, M. Nishimura.
Chest, 125 (2004), pp. 1138
[3]
W.A. Baaklini, M.A. Reinoso, A.B. Gorin, A. Sharafkaneh, P. Manian.
Chest, 117 (2000), pp. 1049
[5]
N. Kurimoto, T. Miyazawa, S. Okimasa, A. Maeda, H. Oiwa, Y. Miyazu, M. Murayama.
Chest, 126 (2004), pp. 959
[6]
H.D. Becker, F. Herth, A. Ernst, Y. Schwarz.
J. Bronchol., 12 (2005), pp. 9
[7]
Y. Schwarz, Y. Greif, H. Becker, A. Ernst, A. Mehta.
Chest, 129 (2006), pp. 988
[9]
J.S. Ferguson, G. McLennan.
Proc. Am. Thorac. Soc., 2 (2005), pp. 488
[10]
S.A. Merritt, L. Rai, W.E. Higgins, Proc SPIE 6143: Medical Imaging 2006: Physiology, Function, and Structure from Medical Images (2006) 1.
[11]
W.E. Lorensen, H.E. Cline.
Proc. 14th annual conference on Computer graphics and interactive techniques SIGGRAPH ‘87.
New York, (1987), pp. 163
[12]
E. Smistad, A.C. Elster, F. Lindseth, Proc. Norsk informatikkonferanse, Universitetet i Nordland, 2012, NIK-stiftelsen og Akademika forlag, Trondheim (2012) 141.
[13]
http://graphics.stanford.edu/∼mdfisher/MarchingCubes.html
Copyright © 2016. Portuguese Society of Materials (SPM)