covid
Buscar en
Ciência & Tecnologia dos Materiais
Toda la web
Inicio Ciência & Tecnologia dos Materiais Embedment strength characterization of pine wood. Numerical study of the non-lin...
Journal Information
Vol. 27. Issue 1.
Pages 15-26 (January - June 2015)
Share
Share
Download PDF
More article options
Vol. 27. Issue 1.
Pages 15-26 (January - June 2015)
Full text access
Embedment strength characterization of pine wood. Numerical study of the non-linear behaviour
Visits
1708
Cristóvão L. dos Santosa,b,
Corresponding author
clsantos@utad.pt

Corresponding author.
, Abílio M.P. de Jesusc,d, José J.L. Moraisa,b
a Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências e Tecnologia, Quinta de Prados, 5001-801 Vila Real, Portugal
b CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
c Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
d INEGI/LAETA, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
This item has received
Article information
Abstract

This paper presents experimental and numerical results from embedment tests carried out accordingly the EN383 standard. The experimental program included series of compressive embedment tests, along the parallel and perpendicular-to-grain directions. The specimens were manufactured with maritime pine wood and were loaded using a steel dowel. The load-displacement curves resulted from experimental tests allowed to estimate the embedding strength and the foundation modulus. Concerning the numerical simulations, a plasticity model, based on Hill's criterion, was used to simulate the mechanical behaviour observed in the embedment tests. The wood was modelled as an orthotropic material following an elasto-plastic behaviour. The steel dowel was considered isotropic material and modelled with elastic behaviour. Besides, the interaction between both materials was modelled using contact finite elements. A parametric study to evaluate the influence of dowel/wood clearance and different friction coefficients was performed. The proposed 3D finite element model showed the capability to simulate the non-linear behaviour observed in the experimental embedment tests. An experimental/numerical procedure for the identification of constitutive models aiming the simulation of ductile behaviour of wood was presented. This is particularly important to simulate the mechanical behaviour of doweled joints.

Keywords:
maritime pine wood (Pinus pinaster Ait.)
embedment tests
finite element analysis
Hill's plasticity model
hole/fastener clearance
friction.
Full text is only aviable in PDF
References
[1]
CEN1995-1-1. Eurocode 5: Design of timber structures - Part 1-1: General rules and rules for buildings, CEN/TC 250/SC5 (2004).
[2]
CEN383. Timber Structures - Test methods - Determination of embedment strength and foundation values for dowel type fasteners. European Committee for Standardization (2007).
[3]
K.W. Johansen.
International Association for Bridge and Structural Engineering.
IABSE Journal, 9 (1949),
[4]
T. Zhou, Z.W. Guan.
Prog. Struct. Engng Mater, 8 (2006),
[5]
T. Zhou, Z.W. Guan.
Constr. Build. Mater, 25 (2011), pp. 598
[6]
M. Patton-Mallory, P.J. Pellicane, F.W. Smith.
J. Struct. Eng, 123 (1997),
[7]
K. Sawata, M. Yasamura.
J. Wood Sci, 49 (2003),
[8]
C.J. Chen, T.L. Lee, T.L.D.S. Jeng.
Comput. Struct, 81 (2003),
[9]
P. Racher, J.F. Bocquet.
Electron J. Struct. Eng., 5 (2005),
[10]
N. Kharouf, G. McClure, I. Smith.
Comput. Struct., 81 (2003),
[11]
A. Reiterer, S.E. Stanzl-Tschegg.
Mech. Mater., 33 (2001), pp. 705
[12]
B.H. Xu, A. Bouchaïr, M. Taazount, P. Racher.
Constr. Build. Mater., 23 (2009),
[13]
A.M.P.G. Dias, J.W.G. Van de Kuilen, H.M.P. Cruz, S.M.R. Lopes.
Wood Fiber Sci., 42 (2010),
[14]
J.-P. Hong, J.D. Barrett, F. Lam.
J. Wood Sci., 57 (2011),
[15]
M. Oudjene, M. Khelifa.
Constr. Build. Mater., 23 (2009), pp. 3359
[16]
D.M. Moses, H.G.L. Prion.
Can. J. Civil. Eng., 30 (2003),
[17]
D.M. Moses, H.G.L. Prion.
Compos. Part B-Eng., 35 (2004),
[18]
M. Patton-Mallory, S.M. Cramer, F.W. Smith, P.J. Pellicane.
J. Struct. Eng., 123 (1997),
[19]
B.H. Xu, A. Bouchaïr, M. Taazount, P. Racher.
J. Wood Sci., 59 (2013),
[20]
M. Yasumura, L. Daudeville.
J. Wood Sci., 46 (2000),
[21]
M. Ballerini, M. Rizzi.
Mater. Struct., 40 (2007), pp. 139
[22]
L. Daudeville, M. Yasumura.
Mater. Struct., 29 (1996),
[23]
E. Resch, M. Kaliske.
Computers and Structures, 88 (2010),
[24]
E. Resch, M. Kaliske.
Engineering Structures, 41 (2012),
[25]
C.L. Santos, J.J.L. Morais, A.M.P. de Jesus.
Frattura ed Integrità Strutturale, 31 (2015),
[26]
R. Hill.
A theory of the yielding and plastic flow ofanisotropic metals, Proceedings of the Royal Society of London Series A, 193 (1948), pp. 281-297
[27]
C.L. Santos, A.M.P. de Jesus, J.J.L. Morais, J.L.P.C. Lousada.
Strain., 46 (2010),
[28]
J. Sjodin, E. Serrano, B. Enquist.
Holz Roh Werkst., 66 (2008),
[29]
W. Munoz, A. Salenikovich, M. Mohammad, P. Quenneville.
Determination of yield point and ductility of timber assemblies: in search for a harmonized approach, Proc. of Meeting 41 of CIB-W18, Canada.
St Andrews, (2008),
[30]
A.M.P. de Jesus, A.M.V. Lima, J.J.L. Morais, J.L.C. Lousada.
An investigation on compressive quasi-static behaviour of pine wood, 10th Portuguese Conference on Fracture.
Guimarães, 22-24th February, (2006),
[31]
J.C. Xavier, N.M. Garrido, M. Oliveira, J.L. Morais, P.P. Camanho, F. Pierron.
Composites: Part A., 35 (2004),
[32]
J.C. Xavier, M. Oliveira, J.L. Morais, T. Pinto.
Holzforschung, 63 (2009),
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos