In this work some of the key issues which affect the performance of catalysts for the anode and cathode electrodes in Direct Methanol Fuel Cells are analyzed. To deal with present challenges and overcome limitations different approaches have been implemented, which include catalyst support diversification and functionalization, control of particle size and the introduction of Pt alloying and heat treatment in order to enhance the rate of critical reactions such as CO electroxidation and oxygen reduction reaction and also reduce Pt loading. A catalyst design strategy has been devised which incorporates the mentioned approaches in order to tackle various critical aspects for both electroactivity and stability, considered essential to boost Direct Methanol Fuel Cells technology.
Journal Information
Vol. 28. Issue 2.
Pages 88-98 (July - December 2016)
Vol. 28. Issue 2.
Pages 88-98 (July - December 2016)
Special Issue on New Challenges in Energy Materials
Full text access
Key issues to high electroactivity for methanol oxidation and oxygen reduction of Pt-based supported catalyst in fuel cells relevant environment
Visits
1298
This item has received
Article information
Abstract
Keywords:
Methanol oxidation
Pt-based catalyst
carbon functionalization
oxygen reduction.
Full text is only aviable in PDF
References
[1]
A. Goeppert, M. Czaun, J.P. Jones, G.K.S. Prakash, G.A. Olah.
Chem. Sov. Rev, 43 (2014), pp. 8084
[2]
W. Wang, S. Wang, X. Ma, J. Gong.
Chem. Soc. Rev, 40 (2011), pp. 3703
[3]
J. Kim, C.A. Henao, T.A. Johnson, D.E. Dedrick, J.E. Miller, E.B. Stecheld, C.T. Maravelias.
Energy Environ. Sci, 4 (2011), pp. 3122
[4]
A.S. Aricò, V. Baglio, V. Antonucci.
Electrocatalysis of Direct Methanol Fuel Cells,
[5]
H.R. Corti, E.R. Gonzalez.
Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications,
[6]
S.M. Karamundi, F. Achmad, W.R.W. Daud.
Int. J. Hydrogen Energy, 34 (2009), pp. 6902
[7]
C.K. Dyer.
J. Power Sources, 136 (2004), pp. 386
[8]
P. Kumar, K. Dutta, S. Das, P.P. Kundu.
Int. J. Energy Res, (2014),
[9]
http://www.researchandmarkets.com/research/vvxhcg/direct_methanol, accessed July 2016.
[10]
S. Srinivasan.
Fuel cells: From Fundamentals to Applications.
Springer, (2006),
[11]
H.S. Liu, J.J. Zhang.
Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications.
Wiley-VCH, (2009),
[12]
R.N. Singh, R. Awasthi, C.S. Sharma.
Int. J. Electrochem. Sci, 9 (2014), pp. 5607
[13]
N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon.
Chem. Rev., 114 (2014), pp. 12397
[14]
N. Ramaswamy, S. Mukerjee, Advances in Physical Chemistry (2012), Article ID 491604, 17 pages.
[15]
Y. Nie, L. Li, Z. Wei.
Chem. Soc. Rev., 44 (2015), pp. 2168
[16]
D.C. Higgins, Z. Chen.
Can. J. Eng. Chem., 91 (2013), pp. 1881
[17]
H. Huang, X. Wang.
J. Mater. Chem. A, 2 (2014), pp. 6266
[18]
S. Zhang, Y. Shao, G. Yin, Y. Lin.
J. Mater. Chem. A, 1 (2013), pp. 4631
[19]
S. Sharma, B.G. Pollet.
J. Power Sources, 208 (2012), pp. 96
[20]
M.S. Saha, V. Neburchilov, D. Ghosh, J. Zhang.
WIREs Energy Environ., 2 (2013), pp. 31
[21]
A. Capelo, M.A. Esteves, A.I. de Sá, R.A. Silva, L. Cangueiro, A. Almeida, R. Vilar, C.M. Rangel.
Int. J. Hydrogen Energy, 41 (2016), pp. 12962
[22]
N.W.S. Kam, T.C. Jessop, P.A. Wender, H. Dai.
J. Am. Chem. Soc, 126 (2004), pp. 6850
[23]
J.D. Lu, M.C. Yang.
J. Power Sources, 196 (2011), pp. 7450
[24]
M.S. Saha, A. Kundu.
J. Power Sources, 195 (2010), pp. 6255
[25]
Z. Yang, H. Nie, X. Chen, X.H. Chen, S. Huang.
J. Power Sources, 236 (2013), pp. 238
[26]
X. Wang, B. He, Z. Hu, Z. Zeng, S. Han.
Sci. Technol. Adv. Mater, 15 (2014), pp. 043502
[27]
A.G. Gonçalves, J.L. Figueiredo, J.J.M. Órfão, M.F.R. Pereira.
Carbon, 48 (2010), pp. 4369
[28]
J.C. Calderón, G. García, L. Calvillo, J.L. Rodríguez, M.J. Lázaro, E. Pastor.
App. Catal., B: Environmental, 165 (2015), pp. 676
[29]
C. Alegre, M.E. Gálvez, R. Moliner, M.J. Lázaro.
Catalysts, 5 (2015), pp. 392
[30]
M. Harada, H. Einaga.
J. Colloid Interf. Sci, 308 (2007), pp. 568
[31]
D. Nagao, Y. Shimazaki, S. Saeki, Y. Kobayashi, M. Konno.
Colloid Surf. A, 302 (2007), pp. 623
[32]
Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen.
J. Phys. Chem. C, 115 (2011), pp. 24073
[33]
D. Sébastian, M.J. Lázaro, R. Moliner, I. Suelves, A.S. Aricò, V. Baglio.
Int. J. Hydrogen Energy, 39 (2014), pp. 5414
[34]
W.H. Lizcano-Valbuena, V.A. Paganin, E.R. Gonzalez.
Electrochim. Acta, 47 (2002), pp. 3715
[35]
L. Santos, F. Colmati, E.R. Gonzalez.
J. Power Sources, 159 (2006), pp. 869
[36]
J.C. Calderón, N. Mahata, M.F.R. Pereira, J.L. Figueiredo, V.R. Fernandes, C.M. Rangel, L. Calvillo, M.J. Lazaro, E. Pastor.
Int. J. Hydrogen Energy, 37 (2012), pp. 7200
[37]
X. Wang, I.M. Hsing.
Electrochim. Acta, 47 (2002), pp. 2981
[38]
C. Li, Z. Shao, M. Pang, C.T. Williams, X. Zhang, C. Liang.
Ind. Eng. Chem. Res, 51 (2012), pp. 4934
[39]
S. Yan, G. Sun, J. Tian, L. Jiang, J. Qi, Q. Xin.
Electrochim. Acta, 52 (2006), pp. 1692
[40]
Z. Liu, L. Hong.
J. Appl. Electrochem, 37 (2007), pp. 505
[41]
H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin.
Electrochim. Acta, 52 (2007), pp. 6622
[42]
P. Kanninen, M. Borghei, V. Ruiz, E.I. Kauppinen, T. Kallio, J. Yi.
Int. J. Hydrogen Energy, 37 (2012), pp. 19082
[43]
L. Demarconnay, C. Coutanceau, J.M. Léger.
Electrochim. Acta, 53 (2008), pp. 3232
[44]
S.M. Senthil Kumar, J. Soler Herrero, S. Irusta, K. Scott.
J. Electroanal. Chem, 647 (2010), pp. 211
[45]
K. Kinoshita.
J. Electrochem. Soc, 137 (1990), pp. 845
[46]
H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner.
Appl. Catal. B, 56 (2005), pp. 9
[47]
H. Yano, T. Akiyama, H. Uchida, M. Watanabe.
Energy Environ. Sci, 3 (2010), pp. 1511
[48]
E.F. Holby, W. Sheng, Y. Shao-Horn, D. Morgan.
Energy Environ. Sci, 2 (2009), pp. 865
[49]
R. Van Hardeveld, F. Hartog.
Surf. Sci, 5 (1969), pp. 189
[50]
J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson.
J. Phys. Chem. B, 108 (2004), pp. 17886
[51]
V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic.
Science, 315 (2007), pp. 493
[52]
S. Mukerjee, J. McBreen.
J. Electroanal. Chem, 448 (1998), pp. 163
[53]
S. Park, Y. Xie, M.J. Weaver.
Langmuir, 18 (2002), pp. 5792
[54]
M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, Ph.N. Ross, N.M. Markovic.
J. Am. Chem. Soc, 127 (2005), pp. 6819
[55]
F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinovaand, U. Stimming.
Faraday Discuss, 125 (2004), pp. 357
[56]
S.C.S. Lai, N.P. Lebedeva, T.H.M. Housmans, M.T.M. Koper.
Top. Catal, 46 (2007), pp. 320
[57]
N.M. Markovic, P.N. Ross.
Surf. Sci. Rep, 45 (2002), pp. 117
[58]
J. Solla-Gullon, F.J. Vidal-Iglesias, A. Lopez-Cudero, E. Garnier, J.M. Feliu, A. Aldaza.
Phys. Chem. Chem. Phys, 10 (2008), pp. 3689
[59]
X. Zhao, M. Yin, L. Ma, L. Liang, Ch. Liu, J. Liao, T.G. Luc, W. Xing.
Energy Environ. Sci, 4 (2011), pp. 2736
[60]
J.R. Anderson.
M. Boudart in: Catalysis: Science and Technology.
Spring Verlag, (1982),
[61]
C.A. Lucas, N.M. Markovic, P.N.R. Ross.
Surface Science, 425 (1999), pp. L381
[62]
J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim.
Nano Energy, 2 (2013), pp. 2
[63]
O.A. Petri.
J. Solid State Electrochem, 12 (2008), pp. 609
[64]
M.M. Tusi, N.S.O. Polanco, M. Brandalise, O.V. Correa, J.C. Villalba, F.J. Anaissi, A.O. Neto, E.V. Spinace.
Int. J. Electrochem. Sci, 6 (2011), pp. 484
[65]
X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv, W. Xing.
Electrochim. Acta, 50 (2005), pp. 3470
[66]
L. Meng, D. Cao, W. Liu, Y. Zhang, M. Zhao.
Ionics, 20 (2014), pp. 1127
[67]
A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinac.
J. Power Sources, 166 (2007), pp. 87
[68]
M. Zhu, G. Sun, Q. Xin.
Electrochim. Acta, 54 (2009), pp. 1511
[69]
J. Kang, R. Wang, H. Wang, S. Liao, J. Key, V. Linkov, S. Ji.
Materials, 6 (2013), pp. 2689
[70]
Z. Yin, Y. Zhang, K. Chen, J. Li, W. Li, P. Tang, H. Zhao, Q. Zhu, X. Bao, D. Ma, Scientific Reports, 4 Article number: 4288 (2014) doi: 10.1038:srep04288.
[71]
Y. Liang, H. Zhang, H. Zhong, X. Zhu, Z. Tian, D. Xu, B. Yi.
J. Catalysis, 238 (2006), pp. 468
[72]
C. Roth, A.J. Papworth, I. Hussain, R.J. Nichols, D.J. Schiffrin.
J. Electroanal. Chem, 581 (2005), pp. 79
[73]
F.J. Scott, S. Mukerjee, D.E. Ramaker.
J. Phys. Chem. C, 114 (2010), pp. 442
[74]
C. Roth, N. Benker, R. Theissmann, R.J. Nichols, D.J. Schiffrin.
Langmuir, 24 (2008), pp. 2191
[75]
C.T. Hsieh, Y.S. Chang, K.M. Yin.
J. Phys. Chem. C, 117 (2013), pp. 15478
[76]
R.G. Freitas, E.P. Antunes, E.C. Pereira.
Electrochim. Acta, 54 (2009), pp. 1999
[77]
Y.C. Wei, C.W. Liu, K.W. Wang.
ChemPhys Chem, 10 (2009), pp. 1230
[78]
M.K. Jeon, K.R. Lee, H.J. Jeon, S.I. Woo.
J. Appl. Electrochem, 39 (2009), pp. 1503
[79]
M. Tsypkin, J.L.G. de la Fuente, S.G. Rodríguez, Y. Yu, P. Ochal, F. Seland, O. Safonova, N. Muthuswamy, M. Rønning, D. Chen, S. Sunde.
J. Electroanal. Chem, 704 (2013), pp. 57
[80]
E. Antollini, F. Cardellini.
J. Alloys Comp, 315 (2001), pp. 118
[81]
T.Y. Chen, T.L. Lin, T.J.M. Luo, Y. Choi, J.F. Lee.
ChemPhysChem, 11 (2010), pp. 2383
[82]
P. Ochal, J.L.G. de la Fuente, M. Tsypkin, F. Seland, S. Sunde, N. Muthuswamy, M. Ronning, D. Chen, S. Garcia, S. Alayoglu, B. Eichhorn.
J. Electroanal. Chem, 655 (2011), pp. 140
[83]
N. Muthuswamy, J.L.G. Fuente, D.T. Tran, J. Walmsley, M. Tsypkin, S. Raaen, S. Sunde, M. Rønning, D. Chen.
Int. J. Hydrogen Energy, 38 (2013), pp. 16631
[84]
D. Bokach, J.L.G. de la Fuente, M. Tsypkin, P. Ochal, I.C. Endsjø, R. Tunold, S. Sunde, F. Seland.
Fuel Cells, 11 (2011), pp. 735
[85]
S. Goto, S. Hosoi, R. Arai, S. Tanaka, M. Umeda, M. Yoshimoto, Y. Kudo.
J. Phys. Chem. C, 118 (2014), pp. 2634
[86]
M.A. Esteves, A.I. de Sá, A. Capelo, L. Cangueiro, A. Almeida, R. Vilar, M.J. Lázaro and C.M. Rangel, (submitted) 2016.
[87]
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz.
Chem. Rev, 116 (2016), pp. 3594
[88]
Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh.
Catalysts, 5 (2015), pp. 310
[89]
A.M. Gómez-Marín, R. Rizo, J.M. Feliu.
Beilstein J. Nanotechnol, 4 (2013), pp. 956
[90]
W. Xing, G. Ying, J. Zhang.
Rotating Electrode Methods and Oxygen Reduction Electrocatalysts.
Elsevier Science, (2014),
[91]
Fuel Cell Electrocatalyst and Catalyst Layers,
[92]
P. Strasser, S. Kuhl.
Nano Energy, 29 (2016), pp. 168-177
[93]
K.A. Kuttiyiel, Y. Choi, K. Sasaki, D. Su, S. Hwang, S. Yim, T. Yang, G. Park, R.Ra. Adzic.
Nano Energy, 29 (2016), pp. 261-267
[94]
L. Yang, M.B. Vukmirovic, D. Su, K. Sasaki, J.A. Herron, M. Mavrikakis, S. Liao, R.R. Adzic.
J. Phys. Chem, 117 (2013), pp. 1748
[95]
D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. Di Salvo, H.D. Abruna.
Nature Materials, 12 (2013), pp. 81
[96]
H. Lv, D. Li, D. Strmcnik, A.P. Paulikas, N.M. Markovic, V.R. Stamenkovic.
Nano Energy, 29 (2016), pp. 149
Copyright © 2016. Portuguese Society of Materials (SPM)