Taking the joint advantages of the thermal insulation capacity of polyurethane foams (PU) and the thermal energy storage capacity of phase change materials (PCMs), it is possible to produce PU composite foams that can be incorporated as a functional layer into buildings components, designed as latent heat thermal energy storage systems (LHTES), that improve the thermal comfort and the energy consumption of buildings. In this work, PU composite foams containing microencapsulated PCMs (mPCMs) were produced by polyol synthesis. The major aim of the present study was to improve the thermal characteristics of PU foams, by incorporating PCMs, taking advantage of their thermal energy storage capacity. The thermal and energy storage properties were evaluated for three different PU composite foams (hard foam without and with melamine and expandable graphite) with the addition of different percentage of mPCMs. The comparative characterization of the energy storage properties of the PU composite foam formulations is measured using a dynamic scan calorimeter and the thermal conductivity using the transient plane heat source method. The addition of flame retardants to the PU foam slightly influenced the latent heat storage capacity of the PU foam with mPCMs and the addition of mPCMs increases the final thermal conductivity.
Journal Information
Vol. 29. Issue 2.
Pages 1-7 (May - August 2017)
Vol. 29. Issue 2.
Pages 1-7 (May - August 2017)
Full text access
Thermal characterization of polyurethane foams with phase change material
Visits
2606
a Civil Engineering Department, University of Aveiro/RISCO, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
b Fraunhofer – Institute for Chemical Technology, Environmental Engineering, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal, Germany
c Mechanical Engineering Department, University of Aveiro/TEMA, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
d Aveiro Institute of Materials, Civil Engineering Department, University of Aveiro/CICECO, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
This item has received
Article information
Abstract
Keywords:
latent heat storage
phase change material
polyurethane foam
thermal conductivity
Full text is only aviable in PDF
References
[1]
N. Soares, J.J. Costa, A.R. Gaspar, P. Santos.
Energ. Buildings, 59 (2013), pp. 82
[2]
L. Pérez-Lombard, J. Ortiz, C. Pout.
Energ. Buildings, 40 (2008), pp. 394
[3]
K. Pielichowska, K. Pielichowski.
Prog. Mater. Sci., 65 (2014), pp. 67
[4]
S.A. Memon.
Renewable Sustainable Energy Rev., 31 (2014), pp. 870
[5]
E. Asadi, M.G. da Silva, C.H. Antunes, L. Dias.
Energ. Buildings, 44 (2012), pp. 81
[6]
I. Dincer.
Energ. Buildings, 34 (2002), pp. 377
[7]
D. Zhou, C.Y. Zhao, Y. Tian.
Appl. Energy, 92 (2012), pp. 593
[8]
N. Zhu, Z. Ma, S. Wang.
Energy Convers. Manage, 50 (2009), pp. 3169
[9]
I. Dinçer, M. Rosen.
Thermal energy storage: systems and applications.
Wiley, (2011),
[10]
R. Baetens, B.P. Jelle, A. Gustavsen.
Energ. Buildings, 42 (2010), pp. 1361
[11]
V.V. Tyagi, D. Buddhi.
Renewable Sustainable Energy Rev., 11 (2007), pp. 1146
[12]
A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi.
Renewable Sustainable Energy Rev., 13 (2009), pp. 318
[13]
T. Silva, R. Vicente, F. Rodrigues.
Renewable Sustainable Energy Rev., 53 (2016), pp. 515
[14]
F. Kuznik, D. David, K. Johannes, J.-J. Roux.
Renewable Sustainable Energy Rev., 15 (2011), pp. 379
[15]
P. Arce Maldonado, L.F. Cabeza, M. Medrano.
Application of passive thermal energy storage in buildings using PCM and awnings.
Departament d’Informàtica i Enginyeria Industrial, Universitat de Lleida, (2011),
[16]
W. Xiao, X. Wang, Y. Zhang.
Appl. Energy, 86 (2009), pp. 2013
[17]
M.N.A. Hawlader, M.S. Uddin, M.M. Khin.
Appl. Energy, 74 (2003), pp. 195
[18]
M. Rady.
Appl. Energy, 86 (2009), pp. 2704
[19]
M. Farid.
Energy Convers. Manage, 45 (2004), pp. 1597
[20]
Y.G. Bryant, D.P. Colvin, Moldable foam insole with reversible enhanced thermal storage properties, in, Google Patents, 1996.
[21]
M.L. Nuckols.
Ocean Eng, 26 (1999), pp. 547
[22]
M. You, X.-x. Zhang, X.-c. Wang, L. Zhang, W. Wen.
Thermochim. Acta, 500 (2010), pp. 69
[23]
C. Yang, L. Fischer, S. Maranda, J. Worlitschek.
Energ. Buildings, 87 (2015), pp. 25
[24]
M. Pomianowski, P. Heiselberg, Y. Zhang.
Energ. Buildings, 67 (2013), pp. 56
[25]
L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández.
Renewable Sustainable Energy Rev., 15 (2011), pp. 1675
[26]
E. Osterman, V.V. Tyagi, V. Butala, N.A. Rahim, U. Stritih.
Energ. Buildings, 49 (2012), pp. 37
[27]
N. Sarier, E. Onder.
Thermochim. Acta, 454 (2007), pp. 90
[28]
A. Demharter.
Cryogenics, 38 (1998), pp. 113
[29]
Y. Liu, L. Gao, A. Luo, R. Ruan, C. Liu.
Acta Polym. Sin., 1 (2008), pp. 544
[30]
M. You, X.X. Zhang, W. Li, X.C. Wang.
Thermochim.
Acta, 472 (2008), pp. 20
[31]
A. Borreguero, J. Valverde, T. Peijs, J. Rodríguez, M. Carmona.
J. Mater. Sci., 45 (2010), pp. 4462
[32]
A.M. Borreguero, J.F. Rodríguez, J.L. Valverde, T. Peijs, M. Carmona.
J. Appl. Polym. Sci., 128 (2013), pp. 582
Copyright © 2017. Portuguese Society of Materials (SPM)