metricas
covid
Buscar en
Cirugía Española
Toda la web
Inicio Cirugía Española Modificación de los mediadores inflamatorios en isquemia-reperfusión intestina...
Journal Information
Vol. 71. Issue 6.
Pages 276-286 (June 2002)
Share
Share
Download PDF
More article options
Vol. 71. Issue 6.
Pages 276-286 (June 2002)
Full text access
Modificación de los mediadores inflamatorios en isquemia-reperfusión intestinal en un modelo de diabetes tipo 2
Modification of inflammatory mediators in intestinal ischemia-reperfusion in a model of type II diabetes
Visits
5779
J.C. García1
Corresponding author
jcsurgery@eresmas.com

Correspondencia: Dr. J.C. García Pérez. Rafaela Aparicio, 10 D, 2.º A. 28050 Madrid.
, J. Arias, C. García, E. Vara, J.L. Balibrea
Servicio de Cirugía General y Torácica II. Hospital Clínico Universitario San Carlos. Madrid.
This item has received
Article information
Resumen
Introducción

Se ha demostrado que los polimorfonucleares aislados de pacientes diabéticos presentan un mayor grado de activación que los de los pacientes no diabéticos. Además, la diabetes, tanto de tipo 1 como de tipo 2, se asocia con un incremento de la peroxidación lipídica y valores elevados de moléculas de adhesión circulantes. La administración de estreptozotocina (STZ) en ratas neonatales conduce en las ratas adultas a una ligera deficiencia de insulina, con valores de glucemia normales, y son aceptadas como modelo de diabetes tipo 2.

Objetivo

En este estudio hemos investigado posibles diferencias en plasma y tejidos de algunos mediadores de la inflamación entre ratas normales y ratas con diabetes tipo 2, después de isquemiareperfusión (I-R) intestinal.

Material y métodos

Se utilizaron ratas Wistar a las que se les administró STZ (0 o 30 mg/kg) el día de su nacimiento. Dos meses después, tanto las ratas control como las que tenían diabetes tipo 2 (normoglucémicas) fueron asignadas aleatoriamente a dos grupos. El grupo I fue sometido a un período de 60 min de isquemia intestinal por pinzamiento de la arteria mesentérica superior. Cinco minutos después de la reperfusión, las ratas fueron sacrificadas y se obtuvieron muestras de vena porta (VP), cava infrahepática (CIH), cava suprahepática (CSH), páncreas e intestino. En el grupo control los animales se manipularon de igual forma, pero sin ser sometidos a IR. El óxido nítrico (NO) se midió como NO–2 + NO–3, por la reacción de Griess. Los hidroperóxidos lipídicos (LPO) fueron determinados espectrofotométricamente usando un kit comercial. Los receptores para factor de necrosis tumoral (TNF) de 60 kDa (TNF-R1) y 75 kDa (TNF-R2), y el ICAM-1 se determinaron por el método Elisa.

Resultados

Tras la I-R, las ratas diabéticas evidenciaron un aumento de las concentraciones plasmáticas de LPO, NO, ICAM-1 (0,514 + 0,083 frente a 0,046 + 0,011 CIH; 0,574 + 0,075 frente a 0,037 + 0,009 CSH, y 0,528 + 0,067 frente a 0,033 + 0,009 VP; ng/ml; n = 10; p < 0,01), TNF (42,4 + 5,7 CIH, 248,4 + 28,2 CSH y 33,6 + 4,0 VP, pg/ml, en ratas diabéticas frente a no detectable en ratas control; n = 10), TNF-R1 (0,179 + 0,024 frente a 0,023 + 0,011 CIH; 0,233 + 0,032 frente a 0,033 + 0,005 CSH; 0,206 + 0,034 frente a 0,039 + 0,023 VP; ng/ml; n = 10; p < 0,001; p < 0,05 todas) mientras que no se encontraron diferencias en los valores de TNF-R2 entre ambos grupos. Tras I-R, los valores plasmáticos de TNF y NO fueron más elevados en CSH que en CIH y VP, lo que sugiere que el hígado es una importante fuente de ambos mediadores. Hemos observado que tras I-R en ratas diabéticas en el tejido intestinal se produce un aumento en los valores de TNF-a, interleucina (IL) 1, IL-6 (no significativo) e IL-10, mientras que en el tejido pancreático hay una disminución de TNF-a e IL-10 y un aumento de IL-1 e IL-6.

Conclusión

La diabetes tipo 2 intensifica la respuesta inflamatoria a la I-R intestinal.

Palabras clave:
Diabetes tipo 2
Isquemia-reperfusión intestinal
Background

Granulocytes isolated from diabetic patients have been shown to display a greater degree of activation than those from non-diabetics. In addition, both type I and type II diabetes are associated with increased lipid peroxidation and higher levels of circulating adhesion molecules. Streptozotocin administration in new-born rats leads to mild insulin deficiency with normal blood glucose levels when these rats become adult, and is accepted as a model of type II diabetes. In this study possible plasmatic and tissular differences in some inflammatory mediators after intestinal ischemia-reperfusion between control and type II diabetic rats were investigated.

Methods

Streptozotocin (0 or 30 mg kg-1) was injected into Wistar rats on the day of birth. Twomonth- old control and type II diabetic (normoglycemic) rats were randomly separated into two groups. Group I rats underwent 60-minutes of gut ischaemia by clamping the superior mesenteric artery. Five minutes after reperfusion, the rats were killed and plasma samples were obtained from the portal vein (PV), infrahepatic (IHC) and suprahepatic (SHC) cava, pancreas and intestine. Group II rats underwent sham operation. Nitric oxide was measured as NO2 - and NO3 - by the Griess reaction. Lipid hydroperoxides (LPO) were determined spectrophotometrically using a commercially available kit. Tumor necrosis factor (TNF)-a, 75-kDa receptor (TNF-R2), 60-kDa receptor (TNF-R1) and intercellular adhesion molecule (ICAM)-1 were measured by enzyme-linked immunosorbent assay.

Results

After ischemia-reperfusion, diabetic rats showed increased plasma concentrations of LPO, nitric oxide, ICAM-1 [mean (SD): 0.514 (0.083)] versus 0.046 (0.011) ng/ml-1 (IHC); 0.574 (0.075) versus 0.037 (0.009) ng/ml-1 (SHC), and 0.528 (0.067) versus 0.033 (0.009) ng/ml-1 (PV); n = 10, all p < 0.01], TNF [42.4 (5.7) IHC, 248.4 (28.2) SHC, and 33.6 (4.0) pg/ml-1 PV, in diabetic rats versus undetectable in control rats; n = 10), TNF-R1 (0.179 (0.024) versus 0.023 (0.011) IHC; 0.233 (0.032) versus 0.033 (0.005) SHC; 0.206 (0.034) versus 0.039 (0.023) PV, ng/ml-1; n = 10, all p < 0.001, p < 0.05] whereas no difference between groups was found in TNF-R2. Both TNF-a and nitric oxide plasma levels were higher in SHC than in IHC and PV after ischemia-reperfusion, pointing to the liver as an important source of both mediators. After ischemia-reperfusion, the intestinal tissue of diabetic rats showed an increase in TNF-a, interleukin (IL)-1, IL-6 (nonsignificant) and IL-10 levels, while in pancreatic tissue levels of TNF-a and IL-10 decreased and those of IL-1 and IL-6 increased.

Conclusion

Pre-existing type II diabetes intensifies inflammatory response after intestinal ischemia-reperfusion.

Key words:
Type II diabetes
Intestinal ischemia-reperfusion
Full text is only aviable in PDF
Bibliografía
[1.]
J. Angulo, C.F. Sánchez-Ferrer, C. Peiro, J. Marín, L. Rodríguez-Mañas.
Impairment of endothelium-dependent relaxation by increasing percentages of glycosylated human hemoglobin. Possible mechanisms involved.
Hypertensión, 28 (1996), pp. 583-592
[2.]
D. Anne-Cécile, O. Serri, R. Genevieve.
Normalization of plasma lipid peroxides, monocyte adhesion, and tumor necrosis factor-a production in NIDDM patients after gliclazide treatment.
Diabetes Care, 21 (1998), pp. 487-493
[3.]
R.J. Baigrie, P.M. Lamont, M. Dallman, P.J. Morris.
The release of interleukin- 1ß (IL-1) precedes that of interleukin 6 (IL-6) in patients undergoing major surgery.
Lymphokine Res, 10 (1991), pp. 253-256
[4.]
R.J. Baigrie, P.M. Lamont, D. Kwiatkoeski, M.J. Dallman, P.J. Morris.
Systemic cytokine response after major surgery.
Br J Surg, 79 (1992), pp. 757-760
[5.]
S.M. Baumgartner, L. Wagner, M. Pettermann, A. Gessl, W. Waldhausl.
Modulation by high glucose of adhesion molecule expression in cultured endothelial cells.
Diabetologia, 38 (1995), pp. 1367-1370
[6.]
T.R. Billiar, R.D. Curran, D.J. Stuehr, M.A. West, B.G. Bentz.
An L-arginine- dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro.
J Exp Med, 169 (1989), pp. 1467-1472
[7.]
I.L. Campbell, A. Cutri, A. Wilson, L.C. Harrison.
Evidence for IL-6 production by and effects on the pancreatic beta cell.
J Immunol, 143 (1989), pp. 1188-1191
[8.]
M.G. Cavallo, P. Pozzili, C. Bird, M. Wadwa, A. Meager, N. Visalli, et al.
Cytokines in sera from insulin-dependent diabetic patients at diagnosis.
Clin Exp Immunol, 86 (1991), pp. 256-259
[9.]
J. Conjer, J. Robinette, A. Villar, L. Raij, P. Shultz.
Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats.
J Clin Invest, 96 (1995), pp. 631-638
[10.]
R.D. Curran, T.R. Billiar, D.J. Stuehr, K. Hofmann, R.L. Simmons.
Hepatocytes produce nitrogen oxides fron L-arginine in response to inflammatory products of Kupffer cells.
J Exp Med, 170 (1989), pp. 1769-1774
[11.]
A.H. Ding, C.F. Nathan, D.J. Stuehr.
Release of reactive nitrogen and reactive intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production.
J Immunol, 141 (1988), pp. 2407-2412
[12.]
Y. Fong, L.L. Moldawen, T. Shires, S.F. Lowry.
The biologic characteristics of cytokines and their implication in surgical surgery injury.
Surg Gynecol Obstet, 170 (1990), pp. 363-378
[13.]
S.F. Freedman, D.L. Hatchell.
Enhanced superoxide radical production by stimulated polymorphonuclear leukocytes in a cat model of diabetes.
Exp Eye Res, 55 (1992), pp. 767-773
[14.]
H.P. Friedl, G.O. Till, U.S. Ryan.
Mediator-induced activation of xanthine- oxidase in endothelial cells.
FASEB J, 3 (1989), pp. 25112-25118
[15.]
D. Giugliano, A. Ceriello, G. Paolisso.
Oxidative stress and diabetic vascular complications.
Diabetes Care, 19 (1996), pp. 257-267
[16.]
Y. Goor, G. Peer, A. Iaina, M. Blum, Y. Wollman, T. Chernihovsky, et al.
Nitric oxide in ischemia acute renal failure of streptozotocin diabetic ratas.
Diabetologia, 39 (1996), pp. 1036-1040
[17.]
M.B. Grisham, L.A. Hernández, D.N. Granger.
Xanthine oxidase and neutrophil infiltration in intestinal ischemia.
Am J Physiol, 251 (1986), pp. G567-G574
[18.]
A.E. Holley, K.H. Cheesseman.
Measuring free radical reactions in vivo.
Br Med Bull, 49 (1993), pp. 494-505
[19.]
G.S. Hotamisligil.
The role of TNFa and TNF receptors in obesity and insulin resistance.
J Int Med, 245 (1999), pp. 621-625
[20.]
I. Huk, J. Nanobash, C.H. Neumayer, L. Partyka, T. Malinski.
Bioflavonoid quercentin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury: an experimental study.
Br J Surgery, 85 (1998), pp. 1080-1085
[21.]
M.J. Hussain, M. Peakman, H. Gallati, S.S.S. Lo, M. Hawa, G.C. Viberti, et al.
Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM.
Diabetologia, 39 (1996), pp. 60-69
[22.]
P.E. Jennings, N.A. Scott, A.R. Saniabadi, J.J.F. Belch.
Effects of glicazide on platelet reactivity and free radicals in type II diabetic patients. Clinical assessment.
Metabolism, 41 (1992), pp. 36-39
[23.]
L.W. Kelly, C.A. Barden, J.S. Tiedeman, D.D.L. Hatchell.
Alterations in viscosity and filterability of whole blood and blood cell subpopulation in diabetic cats.
Exp Eye Res, 56 (1993), pp. 341-347
[24.]
H. Kobayashi, T. Nonami, T. Kurokawa, Y. Takeuchi, A. Harada, A. Nakao, et al.
Role of endogenous nitric oxide in ischemia-reperfusión injury in rat liver.
J Surg Res, 59 (1995), pp. 772-779
[25.]
R.J. Korthuis, J.K. Smith, D.L. Carden.
Hypoxic reperfusion attenuates postichemic microvascular injury.
Am J Physiol, 256 (1989), pp. H315-H321
[26.]
S.K. Lo, K. Janakidevi, A.B. Malik.
Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation.
Am J Physiol, 264 (1993), pp. L406-L412
[27.]
I. Marzi, Z. Zhong, F.A. Zimmermann, J.J. Lemaster, R.G. Thurman.
Xanthine and hipoxanthine accumulation during storage injury may contribute to reperfusion injury following liver transplantation in the rat.
Transplant Proc, 21 (1989), pp. 1319-1320
[28.]
G. Matheis, M.P. Sherman, G.D. Buckberg, D.M. Hybron, H.H. Young, L.J. Ignarro.
Role of L-arginine nitric oxide pathway in myocardial reoxygenation injury.
Am J Physiol, 262 (1992), pp. H616-H620
[29.]
R.P. McEver.
GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium.
J Cell Biochem, 45 (1991), pp. 156-161
[30.]
S.M. Megison, J.W. Horton, H. Chao, P. Walker.
A new model for intestinal ischemia in the rat.
J Surg Res, 49 (1990), pp. 168-173
[31.]
P. Nguyen, V. Durlach, M. Leutenegger, M. Guenounou, G. Potron.
Explosion respiratoire des polynucléaires neutrophiles et profil des cytokines chez le diabétique non insulinodépendant.
J Mal Vasc, 20 (1995), pp. 102-105
[32.]
U.A. Nilsson, O. Lundgren, E. Haglind, et al.
ESR-measurement of radical production during in vivo intestinal ischemia and reperfusion in the cat.
Am J Physiol, 257 (1989), pp. G409-G414
[33.]
J. Panés, I. Kurose, M.D. Rodríguez-Vaca, C. Anderson, M. Miyasaka, P. Tso, et al.
Diabetes exacerbates inflammatory responses to ischemia- reperfusion.
Circulation, 93 (1996), pp. 161-167
[34.]
P. Paredi, W. Biernacki, G. Invernizzi, S.A. Kharitonov, P.J. Barnes.
Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease?.
Chest, 116 (1999), pp. 1007-1011
[35.]
D.A. Parks, D.N. Granger.
Contributions of ischemia and reperfusion to mucosal lesion formation.
Am J Phisiol, 250 (1986), pp. G749-G753
[36.]
P. Peraldi, G.S. Hotamisligil, W.A. Buurman, M.F. White, B.M. Speigelman.
Tumor necrosis factor (TNFa) inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase.
J Biol Chem, 271 (1996), pp. 13018-13022
[37.]
G.M. Pieper.
Review of alterations in endothelial nitric oxide production in diabetes. Protective role of arginine on endothelial dysfunction.
Hipertension, 31 (1998), pp. 1047-1060
[38.]
H. Ragnar, P. Alm, P. Ekström, I. Lundquist.
Hemo oxygenase and carbon monoxide: Regulatory roles in islet hormone release.
Diabetes, 48 (1999), pp. 66-76
[39.]
M.J. Rapoport, A. Mor, P. Vardi, Y. Ramot, R. Winker, A. Hindi, et al.
Decreased secretion of Th2 cytokines precedes up-regulated and delayed secretion of Th1 cytokines in activated peripheral blood mononuclear cells from patients with insulin-dependent diabetes mellitus.
J Autoimmun, 11 (1998), pp. 635-642
[40.]
L. Rodríguez-Mañas, J. Angulo, C. Peiro, J.L. Llergo, A. Sánchez-Ferrer, P. López-Doriga, et al.
Endothelial dysfuntion and metabolic control in streptozotocin-induced diabetic rats.
Br J Pharmacol, 123 (1998), pp. 1495-1502
[41.]
R. Rothlein, E.A. Mainolgi, M. Czajkowski, S.D. Marlin.
A form of circulating ICAM-1 in human serum.
J Immunol, 147 (1991), pp. 3788-3793
[42.]
N.B. Ruderman, J.R. Williamson, M. Brownlee.
Glucose and diabetic vascular disease.
FASEB J, 6 (1992), pp. 2905-2914
[43.]
A. Sandra, C. Streamson, C. Renée.
Obesity and diabetes in TNFa receptor-deficient mice.
J Clin Invest Jul, 102 (1998), pp. 402-411
[44.]
S.A. Santini, G. Marra, B. Giardino, P. Cotroneo, A. Mordente, G.E. Martorana, et al.
Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM.
Diabetes, 46 (1997), pp. 1853-1858
[45.]
Y. Sato, N. Hotta, N. Sakamoto, S. Matsuoka, N. Ohishi, K. Yagi.
Lipid peroxide level in plasma of diabetic patients.
Biochem Med, 21 (1979), pp. 104-107
[46.]
G. Schaeffer, T.C. Wascher, G.M. Kostner, W.F. Graier.
Alterations in platelet Ca2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production.
Diabetologia, 42 (1999), pp. 167-176
[47.]
M.H. choenberg, B.B. Fredholm, U. Haglund, H. Jung, D. Sellin, M. Younes, et al.
Studies on the oxygen radical mechanism involved in the small intestinal reperfusion damage.
Acta Physiol Scand, 124 (1985), pp. 581-589
[48.]
K. Schulze-Osthoff, A.C. Bakker, B. Vanhaesebroeck, R. Beyaert, W.A. Jacob, W. Fiers.
Cytotoxicity activity of tumor necrosis factor is mediated by earlt damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation.
J Biol Chem, 267 (1992), pp. 5317-5323
[49.]
K. Sekizuka, Y. Tomino, C. Sei, A. Kurusu, K. Tashiro, Y. Yamaguchi, et al.
Detection of serum IL-6 in patients with diabetic nephropathy.
Nephron, 68 (1994), pp. 284-285
[50.]
R. Simpson, R. Alon, L. Kobzik, R. Valeri, D. Shepro, H.B. Hechtman.
Neutrophil and non-neutrophil-mediated injury in intestinal ischemia- reperfusion.
Ann Surg, 218 (1993), pp. 444-454
[51.]
T. Takano, K. Honma, H. Maeda.
Endogenous carbon monoxide production in alloxanized rats.
Bull Tokyo Med Dent Univ, 24 (1977), pp. 1
[52.]
T. Tatsishi, N. Yoshimine, F. Kuzuya.
Serum lipid peroxide assayed by a new colorimetric method.
Exp Gerontol, 22 (1987), pp. 103-111
[53.]
K. Teoman, M. Sarah, G.S. Hotamisligil.
Functional analysis of tumor necrosis factor (TNF) receptors in TNFa mediated insulin resistance in genetic obesity.
Endocrinology, 139 (1998), pp. 4832-4838
[54.]
B. Tesfamariam.
Free radicals in diabetic endothelial cell dysfunction.
Free Radic Biol Med, 16 (1994), pp. 383-391
[55.]
N. Vaisman, A. Schattner, T. Hahn.
Tumor necrosis factor production during starvation.
Am J Med, 87 (1989), pp. 115
[56.]
E. Vara, J. Arias-Díaz, C. García, J. Hernández, C. García-Carreras, A. Cuadrado, et al.
Production of TNFa, IL-1, IL-6 and nitric oxide by islated human islets.
Transplant Proc, 26 (1995), pp. 3367-3371
[57.]
C.R.B. Welbourn, Y. Young.
Endotoxin, septic shock and acute lung injury: neutrophils, macrophages and inflammatory mediators.
Br J Surg, 79 (1992), pp. 998-1003
[58.]
B. Wierusz-Wysocka, H. Wysochi, H. Siekierba, A. Wykretowicz, A. Sczepanic, R. Klimas.
Evidence of polymorphonuclear neutrophils (PMN) activation in patients with insulin-dependent diabetes mellitus.
J Leukoc Boil, 42 (1987), pp. 519-523
[59.]
D.G. Wolff, W.R. Bidlack.
The formation of carbon monoxide during peroxidation of microsomal lipids.
Biochem Biophys Res Commun, 73 (1976), pp. 850-857
[60.]
K. Yamada, N. Takane, S. Otabe, C. Inada, M. Inoue, K. Nonaka.
Pancreatic ß-cell-selective production of tumor necrosis factor a induced by interleukin-1.
Diabetes, 42 (1993), pp. 1026-1031
[61.]
L. Yu, P.E. Genaro, M. Niederberger, T.J. Burke, R.W. Schrier.
Nitric oxide: a mediator in the rat tubular hypoxia/reoxygenation injury.
Proc Natl Acad Sci USA, 91 (1994), pp. 1691-1695
[62.]
B.J. Zimmerman, J.W. Holt, J.C. Paulson, D.C. Anderson, M. Miyasaka, T. Tamatani, et al.
Molecular determinants of lipid mediator-induced leukocyte adherence and emigration in rat mesenteric venules.
Am J Physiol, 246 (1994), pp. H847-H853
Copyright © 2002. Asociación Española de Cirujanos
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos