was read the article
array:23 [ "pii" => "S0214916822000602" "issn" => "02149168" "doi" => "10.1016/j.arteri.2022.05.003" "estado" => "S300" "fechaPublicacion" => "2023-01-01" "aid" => "645" "copyright" => "The Author(s)" "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Clin Invest Arterioscl. 2023;35:1-11" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0214916822000675" "issn" => "02149168" "doi" => "10.1016/j.arteri.2022.06.002" "estado" => "S300" "fechaPublicacion" => "2023-01-01" "aid" => "647" "copyright" => "Sociedad Española de Arteriosclerosis" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clin Invest Arterioscl. 2023;35:12-20" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Valoración del estilo de vida saludable adquirido en adultos españoles de 22 a 72 años de edad" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "12" "paginaFinal" => "20" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Health-related lifestyle assessment among Spanish adults from 22 to 72 years" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Pedro Luis Rodríguez García, Juan José Pérez Soto, Eliseo García Cantó, Marcos Meseguer Zafra, Raúl Salmerón Ríos, Pedro Juan Tárraga López" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Pedro Luis" "apellidos" => "Rodríguez García" ] 1 => array:2 [ "nombre" => "Juan José" "apellidos" => "Pérez Soto" ] 2 => array:2 [ "nombre" => "Eliseo" "apellidos" => "García Cantó" ] 3 => array:2 [ "nombre" => "Marcos" "apellidos" => "Meseguer Zafra" ] 4 => array:2 [ "nombre" => "Raúl" "apellidos" => "Salmerón Ríos" ] 5 => array:2 [ "nombre" => "Pedro Juan" "apellidos" => "Tárraga López" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0214916822000675?idApp=UINPBA00004N" "url" => "/02149168/0000003500000001/v1_202302051537/S0214916822000675/v1_202302051537/es/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Vascular smooth muscle cell phenotype is modulated by ligands of the lymphotoxin β receptor and the tumor necrosis factor receptor" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "1" "paginaFinal" => "11" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Susana Martín-Vañó, Alejandra Miralles-Abella, Pascual Castaño, Gema Hurtado-Genovés, María Aguilar-Ballester, Andrea Herrero-Cervera, Angela Vinué, Sergio Martínez-Hervás, Herminia González-Navarro" "autores" => array:9 [ 0 => array:3 [ "nombre" => "Susana" "apellidos" => "Martín-Vañó" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Alejandra" "apellidos" => "Miralles-Abella" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Pascual" "apellidos" => "Castaño" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Gema" "apellidos" => "Hurtado-Genovés" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "María" "apellidos" => "Aguilar-Ballester" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "Andrea" "apellidos" => "Herrero-Cervera" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "Angela" "apellidos" => "Vinué" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:3 [ "nombre" => "Sergio" "apellidos" => "Martínez-Hervás" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 8 => array:4 [ "nombre" => "Herminia" "apellidos" => "González-Navarro" "email" => array:1 [ 0 => "herminia.gonzalez@uv.es" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Institute of Health Research-INCLIVA, Valencia, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "El fenotipo de las células de músculo liso vascular es modulado por los ligandos del receptor de la linfotoxina β y del receptor del factor de necrosis tumoral" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1201 "Ancho" => 1675 "Tamanyo" => 119578 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Analysis of the LTβR and HVEM protein content in haVSMC. Protein quantification in the western blot analysis displayed as (A) LTβR/β-actin and (B) HVEM/β-actin ratios in haVSMC treated with vehicle or LIGHT 20<span class="elsevierStyleHsp" style=""></span>ng/μl overnight. Representative blots are shown for the western blot analysis. Statistical analysis were performed by the Student's <span class="elsevierStyleItalic">t</span>-test.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Cardiovascular disease (CVD) is a clinical manifestation of the atherosclerotic process, currently considered both a metabolic and a chronic inflammatory disease with an active participation of the innate and adaptive immune system.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">1</span></a> Atherosclerosis lesion represents a profound vascular vessel wall remodeling. The lesion initiates with an endothelial dysfunction which progressively leads to the formation of fibroatheromas with an inflammatory core<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">2</span></a> containing lipid-loaded macrophages and different T helper (Th) and regulatory T (Treg) cells.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">3</span></a> During the progression of the disease, vascular smooth muscle cells (VSMCs) become migratory and proliferative and undergo a phenotypic-switching process by acquiring characteristics of different cell-types such as myofibroblasts, mesenchymatic cells, macrophages, lymphoid organ organizer cells or osteochondrogenic cells.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">4</span></a> Studies have shown an important role of the cross-talk between the plaque-stress factors and the functional plasticity of VSMC in atheroma instability and acute coronary syndromes.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">5</span></a> Therefore, it is of relevance to understand potential inflammatory mediators that might affect VSMC lesional heterogeneity.</p><p id="par0010" class="elsevierStylePara elsevierViewall">The lymphotoxins (LT) and the tumor necrosis factor superfamily 14 (TNFSF14), also called LIGHT, belong to the TNFSF and constitute with their receptors an important interconnected network signaling in immune homeostasis.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">6,7</span></a> LIGHT is mainly produced by immune cells and mediates its effects through two receptors, the LTβR and the herpes virus entry mediator (HVEM) while its activity is inhibited by the Decoy receptor 3 (DcR3). LIGHT-signaling through LTβR, a receptor mostly expressed in stromal and epithelial cells, activates both canonical and non-canonical nuclear factor kappa B (NFkB) pathways, exerting important functions in immune response and lymphorganogenesis.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">6,7</span></a> Through HVEM signaling, a receptor characteristic of T and B cells, LIGHT promotes non-canonical NFKB and c-Jun N-terminal Kinase (JNK) pathways increasing cytokine production, cell survival, and proliferation.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">8</span></a> The LIGHT/LTβR-HVEM axis becomes more complex due to interactions with the other LT. Thus, LTα exerts cytotoxic effects and forms the homotrimer LTα<span class="elsevierStyleInf">3</span> that binds to TNF receptor 1 (TNFR1) and TNFR2. The homotrimer LTα<span class="elsevierStyleInf">3</span> can also bind, with low affinity, to HVEM.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">6</span></a> In addition, LTα and LTβ form the LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> heterotrimer which is produced by lymphocytic cells, and is essential, through the LTβR/NFKB non-canonical pathway, in lymphoid tissue organogenesis during development.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">7</span></a> In adulthood, the LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span>/LTβR/NFKB interaction is important in immune responses against pathogenic insults. Hence LIGHT, LTα<span class="elsevierStyleInf">3</span> and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> compete for the same receptors and therefore their actions will depend on their relative abundance in the circulation and within tissues.</p><p id="par0015" class="elsevierStylePara elsevierViewall">It is not therefore surprising that the study of LIGHT and LT signaling through the LTβR/HVEM-dependent pathways in metabolic diseases have yielded discrepant results. Thus, hepatic T cell production of LIGHT in mouse models induces hypercholesterolemia by modulating hepatic enzymes<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">9</span></a> and <span class="elsevierStyleItalic">Light</span> gene inactivation alleviates insulin resistance, steatosis and hepatic inflammation.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">10</span></a> On the other hand, T60N variant of <span class="elsevierStyleItalic">LYMPHOTOXIN ALPHA</span> gene has been associated with type 2 diabetes and other features of the metabolic syndrome.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">11</span></a> However, its deficiency does not affect obesity or insulin resistance in mouse models.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">12</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">In CVD, discrepant results have been reported as well. LIGHT levels are elevated in coronary disease,<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">13</span></a> clinical heart failure<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">14</span></a> and unstable angina,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">15</span></a> while a soluble form of LTβR has been observed in human atherosclerosis.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">16</span></a> In the atherosclerotic <span class="elsevierStyleItalic">Apolipoprotein e</span>-deficient (<span class="elsevierStyleItalic">Apoe</span>-/-) mice, macrophage specific deletion of <span class="elsevierStyleItalic">Lt</span>β<span class="elsevierStyleItalic">r</span> reduced atherosclerosis by augmenting the proresolving Ly6C<span class="elsevierStyleSup">low</span> monocytes.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">17</span></a> Consistently, soluble LIGHT acute treatment enhanced proliferant Ly6C<span class="elsevierStyleSup">hi</span>-monocytes and aggravated atherosclerosis.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">18</span></a> Notwithstanding, in another study, <span class="elsevierStyleItalic">Lt</span>β<span class="elsevierStyleItalic">r</span> specific deletion in VSMCs in <span class="elsevierStyleItalic">Apoe-/-</span> mice accelerated atherosclerosis indicating atheroprotection in a LTβR-dependent manner which was attributed to T-cell homeostasis induced by a proper functionality of the artery lymphoid organs.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">19</span></a> Therefore, these studies unveiled a complex role of the TNFSF ligands in atherosclerosis. Notably, genetic inactivation of <span class="elsevierStyleItalic">Light</span> aggravated abdominal aneurysm vascular lesions.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">20</span></a> Specifically, <span class="elsevierStyleItalic">in vivo</span> and <span class="elsevierStyleItalic">in vitro</span> data indicated that LIGHT/LTβR-signaling disruption provoked dysregulated <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">OPN</span> and <span class="elsevierStyleItalic">BMP2</span> gene expression compatible with an osteochondrogenic phenotype which has been previously associated with vascular dysfunction.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">21</span></a> These results suggest a protective function of LIGHT/LTβR-signaling in vascular injury through the prevention of osteochondrogenic phenotype acquisition.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Given the multiple interactions and connections between the TNFSF ligands and their receptors, in the present investigation we sought to investigate the potential role of the LTα, LIGHT and the LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> heterotrimer in the VSMC phenotype.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Human aortic VSMC cell culture experiments</span><p id="par0030" class="elsevierStylePara elsevierViewall">Human aortic (ha)VSMCs were commercially obtained (Invitrogen, C-007-5C, Thermofisher Scientific, Madrid, Spain) and cultured in 231 medium, 20% FBS, 5% of smooth muscle growth factor (Invitrogen, S00725 Thermofisher Scientific) and 2% P/S/A (Lonza, Basel, Switzerland) as described.<a class="elsevierStyleCrossRefs" href="#bib0235"><span class="elsevierStyleSup">20,22</span></a> HaVSMCs were kept on a humidified 5% CO<span class="elsevierStyleInf">2</span> atmosphere until treatments and were used until passage 6–7. For expression experiments haVSMC were grown in 20% FBS/DMEM-P/S/A medium on 6-well plates up to 70–80% of confluency and then treated for 72<span class="elsevierStyleHsp" style=""></span>h in 0.5% FBS/DMEM-P/S/A medium with vehicle, human soluble LIGHT (20<span class="elsevierStyleHsp" style=""></span>ng/ml, Preprotech, Germany, Hamburg), LTα (at 5 and 10<span class="elsevierStyleHsp" style=""></span>ng/ml Preprotech, Germany, Hamburg) or with LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (at 20 and 100<span class="elsevierStyleHsp" style=""></span>ng/ml, R&D systems Biotechne, Minneapolis, Minnesota, USA). For protein analysis of the receptors cells were grown as before until confluency and then treated for 24<span class="elsevierStyleHsp" style=""></span>h in 0.5% FBS/DMEM-P/S/A medium with vehicle or human soluble LIGHT (50<span class="elsevierStyleHsp" style=""></span>ng/ml). After treatments, cells were rinsed with PBS 1×, collected by centrifugation (500<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>, 10<span class="elsevierStyleHsp" style=""></span>min) snap-frozen with liquid N<span class="elsevierStyleInf">2</span> and stored for gene expression analysis by qPCR.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Gene expression analysis by quantitative real-time PCR (qPCR)</span><p id="par0035" class="elsevierStylePara elsevierViewall">Total RNA was obtained from cultured haVSMCs treated as indicated above using TRIzol reagent following manufacturer recomendations (Invitrogen, Carlsbad, CA, USA). A total of 500<span class="elsevierStyleHsp" style=""></span>ng of RNA were reverse transcribed with the Maxima First-Strand kit (Fermentas, Waltham, MA, USA). The genes of interest were amplified with Luminaris Color HiGreen High ROX qPCR Master Mix (Fermentas, Waltham, MA, USA) on a 7900 FastSystem thermal cycler and results were analyzed with the formula 2<span class="elsevierStyleSup">−ΔΔCt</span>. mRNA levels were normalized to the GAPDH mRNA levels and relativized to vehicle-treated cells. The primer sequences were obtained from the PrimerBank data base (Massachusetts General Hospital, Harvard University) and are listed in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Western Blot analysis</span><p id="par0040" class="elsevierStylePara elsevierViewall">Protein extracts were obtained by homogenization of haVSMCs in the presence of ice-cold lysis TNG buffer (Tris–HCl 50<span class="elsevierStyleHsp" style=""></span>mM, pH 7.5, NaCl 200<span class="elsevierStyleHsp" style=""></span>mM, Tween-20 1% vol/vol, NP-40 0.2% vol/vol) supplemented with Complete Mini cocktail, PhosSTOP (Roche, Mannheim, Germany), beta-glycerophosphate 50<span class="elsevierStyleHsp" style=""></span>mM (Sigma), 2<span class="elsevierStyleHsp" style=""></span>mM phenylmethylsulfonyl fluoride (PMSF, Roche) and 200<span class="elsevierStyleHsp" style=""></span>μM Na<span class="elsevierStyleInf">3</span>VO<span class="elsevierStyleInf">4</span> (Sigma). For protein analysis, protein extracts (25–50<span class="elsevierStyleHsp" style=""></span>μg) were prepared with Laemmli buffer (5<span class="elsevierStyleHsp" style=""></span>min 95<span class="elsevierStyleHsp" style=""></span>°C) and subjected to 12% w/v polyacrylamide gel electrophoresis and western blot as described.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">10</span></a> The following primary (1/200) and secondary (1/2000) antibodies were used to detect the proteins: HVEM (PA5-20237, ThermoFisher), LTβR (ab70063, Abcam) and β-actin (Sigma), anti-mouse IgG-HRP (P0447, Dako) and goat anti-rabbit IgG-HRP (P0448, Dako). The immunocomplexes were detected with an ECL Plus detection kit (ThermoFisher). All antibodies for western blot were acquired and used after checking that validation was performed by the manufacturer company.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Statistical analysis</span><p id="par0045" class="elsevierStylePara elsevierViewall">Quantitative data are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>the standard error of the mean (SEM) and with the single data points. All samples were randomly treated and analyzed by observers blinded to treatments. Treatments and collection of data were obtained at the same time and order to avoid confounding effects. The exclusion criteria were applied when data was out of range of the standard curve in each experiment, when samples were lost during the experimentation and when the (non-iterative) Grubbs test identified outliers. Statistical tests were applied after the determination of normal distribution (Shapiro–Wilk and D’Agostino–Pearson normality tests) and equality of variances (<span class="elsevierStyleItalic">F</span> test). Differences were evaluated with unpaired Student's t test, Mann–Whitney <span class="elsevierStyleItalic">U</span> test (for nonparametric distribution) and one-way ANOVA followed by Bonferroni multiple comparison test (more than two groups). All statistical tests were run in GraphPad Prism 9.0.0 (GraphPad Prism Software, La Jolla, CA, USA). Differences were considered statistically significant when <span class="elsevierStyleItalic">p</span>-values were below 0.05: *, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05; **, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01; ***, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.001; ****, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.0001.</p></span></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Results</span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Aortic human vascular smooth muscle cells express LTβR and HVEM</span><p id="par0050" class="elsevierStylePara elsevierViewall">LTβR is expressed mainly in stromal and epithelial cells while HVEM is mainly found in immune cells. However, the expression of LTβR and HVEM in liver and adipose tissue<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">10</span></a> and the expression of <span class="elsevierStyleItalic">LTBR</span> gene in haVSMC<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">20</span></a> has been previously described. To assess whether the TNFSF ligands can signal in haVSMCs protein analysis was performed. Analysis of both LTβR and HVEM receptors in vehicle- and LIGHT-treated haVSMC indicated the presence of both receptors in these cells with similar levels regardless of the treatment (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>A, B).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">LTα and LIGHT but not LTα1β2 decrease myofibroblast markers in aortic human vascular smooth muscle cells</span><p id="par0055" class="elsevierStylePara elsevierViewall">The potential effect of the LTs and LIGHT in haVSMC phenotype switching was explored by using the expression of different markers for myofibroblast-like cell. Analysis of myofibroblast-like cell genes showed reduced expression of <span class="elsevierStyleItalic">COL1A1</span> and <span class="elsevierStyleItalic">TGFB1</span> mRNA levels in haVSMCs treated with LTα at 10<span class="elsevierStyleHsp" style=""></span>ng/ml compared with vehicle-treated cells (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>B, C). HaVSMCs treated with LTα at a lower dose of 5<span class="elsevierStyleHsp" style=""></span>ng/ml also displayed reduced mRNA levels of <span class="elsevierStyleItalic">TGFB1</span> and enhanced expression of <span class="elsevierStyleItalic">MMP9</span> compared with vehicle-treated haVSMCs (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>C, E). No changes were observed in the expression of <span class="elsevierStyleItalic">ACTA2</span> or in <span class="elsevierStyleItalic">MMP2</span> genes (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>A, D). Likewise, haVSMCs treated with LIGHT displayed diminished <span class="elsevierStyleItalic">COL1A1</span> and <span class="elsevierStyleItalic">TGFB1</span> mRNA gene expression (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>B, C) with no changes in <span class="elsevierStyleItalic">ACTA2</span>, <span class="elsevierStyleItalic">MMP2</span> or <span class="elsevierStyleItalic">MMP9</span> (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>A, D, E). Treatment of haVSMCs with the trimer LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> did not affect <span class="elsevierStyleItalic">ACTA2</span>, <span class="elsevierStyleItalic">COL1A1</span>, <span class="elsevierStyleItalic">TGFB1</span> and <span class="elsevierStyleItalic">MMP9</span> mRNA levels at any of the two doses tested (20 or 100<span class="elsevierStyleHsp" style=""></span>ng/ml) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>A–D).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Aortic human vascular smooth muscle cells treated with LTα and LIGHT but not display decreased expression of CKIT and KLF4 genes</span><p id="par0060" class="elsevierStylePara elsevierViewall">Next, we evaluated a possible effect of LIGHT and LT signaling in genes related with pluripotency and osteochondrogenic phenotypes. Treatment of haVSMCs with LTα at 10<span class="elsevierStyleHsp" style=""></span>ng/ml, but not with LIGHT, significantly decreased the expression of <span class="elsevierStyleItalic">SOX9</span> (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>A). Reduced mRNA levels of <span class="elsevierStyleItalic">CKIT</span> and <span class="elsevierStyleItalic">KLF4</span> (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>B, C) were also observed in haVSMC treated with LIGHT and with LTα at the both 5 and 10<span class="elsevierStyleHsp" style=""></span>ng/ml doses. Neither LIGHT or LTα affected the gene expression of <span class="elsevierStyleItalic">OCT4</span> or <span class="elsevierStyleItalic">KLF10</span> (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>D, E). Similarly, compared with vehicle-treated controls, haVSMCs treated with LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> did not display altered mRNA levels of <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">CKIT</span>, <span class="elsevierStyleItalic">OCT4</span>, <span class="elsevierStyleItalic">KLF4</span> or <span class="elsevierStyleItalic">KLF10</span> (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>F–J).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0065" class="elsevierStylePara elsevierViewall">Aortic human vascular smooth muscle cells treated with LTα, LIGHT and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> modulate the expression of lymphorganogenic cytokines</p><p id="par0070" class="elsevierStylePara elsevierViewall">One of the described effects of LTβR-dependent signaling in VSMCs is the induction of a cellular phenotype secretor of lymphorganogenic cytokines, hence the production of these were studied. The analysis of haVSMC treated with LTα revealed an increase in the gene expression of <span class="elsevierStyleItalic">CCL20</span> and <span class="elsevierStyleItalic">CXCL16</span> at the 10<span class="elsevierStyleHsp" style=""></span>ng/ml dose (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>A, D) and of <span class="elsevierStyleItalic">CCL20</span> at 5<span class="elsevierStyleHsp" style=""></span>ng/ml dose (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>A) compared with vehicle-treated VSMCs while the mRNA levels of <span class="elsevierStyleItalic">CCL21</span> were unaffected by LTα (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>C). Unlike LTα, LIGHT did not modify the gene expression of <span class="elsevierStyleItalic">CCL20</span> and <span class="elsevierStyleItalic">CXCL16</span> (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>A, D) and surprisingly diminished <span class="elsevierStyleItalic">CCL21</span> mRNA levels (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>B). The mRNA levels of <span class="elsevierStyleItalic">CXCL13</span> were unaffected by either LTα or LIGHT treatment (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>C). Interestingly, the treatment of haVSMCs with the trimer LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span>, at both 20 and 100<span class="elsevierStyleHsp" style=""></span>ng/ml doses, decreased the expression of the <span class="elsevierStyleItalic">CXCL13</span> gene (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>G) while no changes were observed in the other cytokines (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>E, F, H).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">LTα and LIGHT dependent signaling does not affect the expression of macrophage markers in aortic human vascular smooth muscle cells</span><p id="par0075" class="elsevierStylePara elsevierViewall">Previous studies have shown a modulation of macrophage-like cell phenotype through upregulation of <span class="elsevierStyleItalic">KLF4.</span><a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">23</span></a> Given the lower <span class="elsevierStyleItalic">KLF4</span> mRNA levels observed in haVSMCs treated with LIGHT and with LTα, the expression of macrophage gene markers were also investigated. Although the treatments with both LIGHT and LTα slightly increased the gene expression of the surface membrane markers of macrophage subtypes including <span class="elsevierStyleItalic">CD14</span>, <span class="elsevierStyleItalic">CD80</span>, <span class="elsevierStyleItalic">CD206</span> and <span class="elsevierStyleItalic">CD183</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>A–D) and of phagocytic activity, <span class="elsevierStyleItalic">CD68</span> (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>E) these were no significantly altered. Likewise, no differences were observed in the expression of proinflammatory cytokine genes typically expressed by macrophages, such as <span class="elsevierStyleItalic">MCP1</span>, <span class="elsevierStyleItalic">IL6</span> and <span class="elsevierStyleItalic">IFNG,</span> between vehicle- and LTα- or LIGHT-treated haVSMCs (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>F–H).</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Discussion</span><p id="par0080" class="elsevierStylePara elsevierViewall">Atheroma plaque instability is strongly affected by VSMC functional transdifferentiation<a class="elsevierStyleCrossRefs" href="#bib0160"><span class="elsevierStyleSup">5,22</span></a> in which different risk factors and secreted plaque mediators have been importantly implicated.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">24</span></a> In the present investigation, the potential effect of TNFSF ligands in the modulation of VSMC gene expression associated with functional heterogeneity was explored. Consistent with a preservation of VSMC identity, the treatment of VSMCs with LTα or LIGHT diminished <span class="elsevierStyleItalic">COL1A1</span> and <span class="elsevierStyleItalic">TGFB1</span> mRNA levels, LTα incubation augmented the expression of <span class="elsevierStyleItalic">MMP9</span>, without changing <span class="elsevierStyleItalic">ACTA2</span> mRNA levels. Likewise, genes associated with osteochondrogenesis, pluripotency and transdifferentiation such as <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">CKIT</span>, and <span class="elsevierStyleItalic">KLF4</span> were also repressed by LTα and LIGHT treatments. Notably, all the above genes were not affected by the treatment with the LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> trimer. VSMC treatment with all three ligands, LTα, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> and LIGHT, altered the expression of well-reported lymphorganogenic cytokines<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">6,25</span></a> which included augmented <span class="elsevierStyleItalic">CCL20</span> and <span class="elsevierStyleItalic">CCL21</span> gene expression by LTα as well as diminished <span class="elsevierStyleItalic">CCL21</span> and <span class="elsevierStyleItalic">CXCL13</span> by LIGHT and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span>, respectively. Altogether, indicates a role of the TNFSF ligands through their interconnected network of signaling, in the preservation of VSMC identity against the acquisition of a genetic expression signature compatible with a functional transdifferentiation process.</p><p id="par0085" class="elsevierStylePara elsevierViewall">Studies have shown an important role of the cross-talk between the plaque-stress factors and the functional plasticity of VSMC. Thus, VSMC functionality loss consisting in an acquisition of an inflammatory and apoptotic phenotype promotes plaque instability in insulin resistance states through a CX3CL1-dependet manner.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">22</span></a> More recent investigations using cellular lineage tracing and single-cell RNAseq in plaque have further extended our knowledge about VSMC plasticity during plaque progression.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">23,26</span></a> Specifically, <span class="elsevierStyleItalic">in vivo</span> VSMC specific deficiency in <span class="elsevierStyleItalic">Oct4</span> or <span class="elsevierStyleItalic">Klf4</span> in mouse models resulted in two divergent genomic signatures associated with different VSMC fates and function such as osteochondrocyte-like and macrophage-like gene signatures.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">23,27</span></a> Notably, protective ACTA2+ myofibroblast-like cells forming the fibrous caps were discovered to originate from endothelial-to-mesenchymal transition and macrophage-to-mesenchymal transition, a process dependent of <span class="elsevierStyleItalic">Pdgfrb</span> gene.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">27</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">Our present investigation indicates a gene repression by LTα and LIGHT of <span class="elsevierStyleItalic">COL1A1</span> and <span class="elsevierStyleItalic">TGFB1</span>, <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">CKIT</span>, and <span class="elsevierStyleItalic">KLF4</span> genes, results that are consistent with the above studies indicating important roles of some of these genes in plaque instability through VSMC phenotype switching. On the other hand, LIGHT/LTβR-dependent signaling has as well been linked to atherosclerosis with discrepant conclusions<a class="elsevierStyleCrossRefs" href="#bib0195"><span class="elsevierStyleSup">12,13,15–19</span></a> which we believe might be attributed to the intrincated network signaling of the TFNSF ligands. The present investigation is also in agreement with a study describing a protective function of LIGHT in aneurysm lesion<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">20</span></a> and a prevention by LIGHT of <span class="elsevierStyleItalic">SOX9</span> gene expression which is associated with an osteochondrogenic and proatherogenic phenotype. Consequently, <span class="elsevierStyleItalic">in vivo</span> analysis showed diminished ACTA2+ lesion area and vascular <span class="elsevierStyleItalic">Col1a1</span> gene expression,<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">20</span></a> suggesting a protective role for LIGHT by preventing VSMC de-differentiation and plasticity <span class="elsevierStyleItalic">in vivo</span> during vascular injury. Of note, as in the present investigation, LIGHT did not affect the <span class="elsevierStyleItalic">in vitro</span> gene expression of the <span class="elsevierStyleItalic">ACTA2</span> contractile marker in haVSMCs which could be due to a high prevalence of ACTA2+ myofibroblast-like cells<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">26</span></a> which could difficult the detection of other non-contractile cells originated during the transdifferentiation process. Hence, changes in gene expression were performed in the cell culture probably containing a mixed pool of cells with different cell-type phenotypes which could mask gene expression changes belonging to a less prevalent cell-type.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Therefore, a limitation of our results is that our study is based on gene expression techniques and hence future studies would require the detection of active proteins as well as the performance of functional assays to better characterize each cell-type. To avoid the above limitations, future studies should include experimental approaches such as single-cell RNAseq or flow-cytometry analysis using several markers to identify, fractionate and quantify the different cell-types induced by LTα, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> and LIGHT.</p><p id="par0100" class="elsevierStylePara elsevierViewall">In addition, a modulation by the TNFSF ligands of lymphorganogenic cytokines, including enhanced <span class="elsevierStyleItalic">CCL20</span> and <span class="elsevierStyleItalic">CCL21</span> gene expression and diminished <span class="elsevierStyleItalic">CCL21</span> and <span class="elsevierStyleItalic">CXCL13</span>, has been also observed in the present investigation which suggest a coordinated role of these ligands in cytokine-mediated lymphorganogenesis. In the line of these results, VSMC <span class="elsevierStyleItalic">Ltbr</span>-specific deficiency in mice prevented this cell type to acquire a protective lymphorganogenic PDGFRB+ phenotype,<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">19</span></a> and aggravated lesion size, suggesting a role in lymphorganogenesis associated with plaque stability.</p><p id="par0105" class="elsevierStylePara elsevierViewall">Altogether, the present investigation indicates a role of the TNFSF ligands in VSMC gene expression of genes relevant for cellular plasticity and reprogramming events during plaque lesion development and stability. Therefore, these data suggest a possible role of these ligands in cellular plasticity during atheroma development.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Conclusions</span><p id="par0110" class="elsevierStylePara elsevierViewall">The TNFSF ligands through its interconnected network signaling modulate haVSMC gene expression signature associated with cellular plasticity. These results suggest a possible role of the TNFSF ligands in plaque stability.</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Funding</span><p id="par0115" class="elsevierStylePara elsevierViewall">This research was funded by grants from the <span class="elsevierStyleGrantSponsor" id="gs1">ISCIII</span> (PI19/00169 to H.G.-N. and S.M.-H. and CIBERDEM CB07/08/0043, CB07/08/0018), the <span class="elsevierStyleGrantSponsor" id="gs2">European Regional Development Fund</span> (FEDER), <span class="elsevierStyleGrantSponsor" id="gs3">GenT Investigator</span> (CDEI-04-20-B, GVA) and by the <span class="elsevierStyleGrantSponsor" id="gs4">Spanish Arteriosclerosis Society</span> (BIB 07-20). MAB received support from a fellowship of ISCIII and the European Regional Development Fund (FEDER) (FI20/00017) and GHG from the <span class="elsevierStyleGrantSponsor" id="gs5">Ministerio de Universidades</span> (FPU20/04916).</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conflict of interests</span><p id="par0120" class="elsevierStylePara elsevierViewall">The authors have no conflict of interests to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:13 [ 0 => array:3 [ "identificador" => "xres1842439" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1605421" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xpalclavsec1605422" "titulo" => "Abbreviations" ] 3 => array:3 [ "identificador" => "xres1842440" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 4 => array:2 [ "identificador" => "xpalclavsec1605423" "titulo" => "Palabras clave" ] 5 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 6 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Human aortic VSMC cell culture experiments" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Gene expression analysis by quantitative real-time PCR (qPCR)" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Western Blot analysis" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Statistical analysis" ] ] ] 7 => array:3 [ "identificador" => "sec0035" "titulo" => "Results" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0040" "titulo" => "Aortic human vascular smooth muscle cells express LTβR and HVEM" ] 1 => array:2 [ "identificador" => "sec0045" "titulo" => "LTα and LIGHT but not LTα1β2 decrease myofibroblast markers in aortic human vascular smooth muscle cells" ] 2 => array:2 [ "identificador" => "sec0050" "titulo" => "Aortic human vascular smooth muscle cells treated with LTα and LIGHT but not display decreased expression of CKIT and KLF4 genes" ] 3 => array:2 [ "identificador" => "sec0055" "titulo" => "LTα and LIGHT dependent signaling does not affect the expression of macrophage markers in aortic human vascular smooth muscle cells" ] ] ] 8 => array:2 [ "identificador" => "sec0060" "titulo" => "Discussion" ] 9 => array:2 [ "identificador" => "sec0065" "titulo" => "Conclusions" ] 10 => array:2 [ "identificador" => "sec0070" "titulo" => "Funding" ] 11 => array:2 [ "identificador" => "sec0075" "titulo" => "Conflict of interests" ] 12 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-04-06" "fechaAceptado" => "2022-05-22" "PalabrasClave" => array:2 [ "en" => array:2 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1605421" "palabras" => array:4 [ 0 => "Vascular smooth muscle cells" 1 => "Inflammation" 2 => "Lymphotoxin" 3 => "Cellular plasticity" ] ] 1 => array:4 [ "clase" => "abr" "titulo" => "Abbreviations" "identificador" => "xpalclavsec1605422" "palabras" => array:10 [ 0 => "DcR" 1 => "HVEM" 2 => "JNK" 3 => "LT" 4 => "LTβR" 5 => "NFkB" 6 => "Th" 7 => "TNFR" 8 => "TNFSF" 9 => "VSMC" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1605423" "palabras" => array:4 [ 0 => "Células musculares lisas vasculares" 1 => "Inflamación" 2 => "Linfotoxina" 3 => "Plasticidad celular" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Objective</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Vascular smooth muscle cells (VSMCs) undergo a phenotypic-switching process during the generation of unstable atheroma plaques. In this investigation, the potential implication of the tumor necrosis factor superfamily (TNFSF) ligands, in the gene expression signature associated with VSMC plasticity was studied.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Material and methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Human aortic (ha)VSMCs were obtained commercially and treated with the cytokine TNFSF14, also called LIGHT, the lymphotoxin alpha (LTα), the heterotrimer LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> or with vehicle for 72<span class="elsevierStyleHsp" style=""></span>h. The effect of the different treatments on gene expression was analyzed by quantitative PCR and included the study of genes associated with myofibroblast-like cell function, osteochondrogenesis, pluripotency, lymphorganogenesis and macrophage-like cell function.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">HaVSMCs displayed a change in myofibroblast-like cell genes which consisted in reduced <span class="elsevierStyleItalic">COL1A1</span> and <span class="elsevierStyleItalic">TGFB1</span> mRNA levels when treated with LTα or LIGHT and with augmented <span class="elsevierStyleItalic">MMP9</span> expression levels when treated with LTα. LTα and LIGHT treatments also diminished the expression of genes associated with osteochondrogenesis and pluripotency <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">CKIT</span>, and <span class="elsevierStyleItalic">KLF4.</span> By contrary, all the above genes were no affected by the treatment with the trimer LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span>. In addition, haVSMC treatment with LTα, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> and LIGHT altered lymphorganogenic cytokine gene expression which consisted of augmented <span class="elsevierStyleItalic">CCL20</span> and <span class="elsevierStyleItalic">CCL21</span> mRNA levels by LTα and a reduction in the gene expression of <span class="elsevierStyleItalic">CCL21</span> and <span class="elsevierStyleItalic">CXCL13</span> by LIGHT and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> respectively. Neither, LTα or LIGHT or LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> treatments affected the expression of macrophage-like cell markers in haVSMC.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Altogether, indicates that the TNFSF ligands through their interconnected network of signaling, are important in the preservation of VSMC identity against the acquisition of a genetic expression signature compatible with functional cellular plasticity.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objetivo</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">La transición de placa de ateroma estable a placa inestable implica, entre otros procesos, un cambio fenotípico de las células del músculo liso vascular (CMLVs). En esta investigación, se estudió el posible papel de los ligandos de la superfamilia del factor de necrosis tumoral (TNFSF), en los cambios de expresión génica asociada a la plasticidad de las CMLVs.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materiales y métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Las CMLVs de aorta humana (CMLVah) se obtuvieron comercialmente y se trataron con la citoquina TNFSF14, también llamada LIGHT, la linfotoxina alfa (LTα), el heterotrímero LTα1β2 o con vehículo durante 72 horas. El efecto de los diferentes tratamientos se analizó mediante el estudio de la expresión génica por PCR cuantitativa e incluyó genes asociados con fenotipo miofibroblástico, osteocondrogénico, genes de pluripotencia, genes de linforganogénesis y genes característicos de macrófagos.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">El estudio de genes asociados a fenotipo miofibroblástico en las CMLVah reveló una reducción de la expresión génica de <span class="elsevierStyleItalic">COL1A1</span> y <span class="elsevierStyleItalic">TGFB1</span> tras el tratamiento con LTα o LIGHT mientras que el tratamiento con LTα aumentó los niveles de mRNA de <span class="elsevierStyleItalic">MMP9</span>. LTα y LIGHT también disminuyeron la expresión de genes de osteocondrogénesis y pluripotencia como <span class="elsevierStyleItalic">SOX9</span>, <span class="elsevierStyleItalic">CKIT</span> y <span class="elsevierStyleItalic">KLF4</span>. Por el contrario, la expresión de los genes anteriores no se vio afectada por el tratamiento con el trímero LTα1β2. El tratamiento de las CMLVah con LTα, LTα1β2 y LIGHT alteró la expresión génica de citoquinas linforganogénicas con una expresión aumentada de los genes <span class="elsevierStyleItalic">CCL20</span> y <span class="elsevierStyleItalic">CCL21</span> por LTα y una reducción de los niveles de mRNA de <span class="elsevierStyleItalic">CCL21</span> y <span class="elsevierStyleItalic">CXCL13</span> por LIGHT y LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span>, respectivamente. Ninguno de los tres tratamientos alteró la expresión de genes típicos de macrófagos en las CMLVah.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">La presente investigación indica que los ligandos de la familia de los TNFSF a través de su red de señalización, son importantes en la preservación de la identidad de las CMLVs frente a la adquisición de una expresión génica compatible con una mayor plasticidad celular funcional.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1201 "Ancho" => 1675 "Tamanyo" => 119578 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Analysis of the LTβR and HVEM protein content in haVSMC. Protein quantification in the western blot analysis displayed as (A) LTβR/β-actin and (B) HVEM/β-actin ratios in haVSMC treated with vehicle or LIGHT 20<span class="elsevierStyleHsp" style=""></span>ng/μl overnight. Representative blots are shown for the western blot analysis. Statistical analysis were performed by the Student's <span class="elsevierStyleItalic">t</span>-test.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1977 "Ancho" => 3175 "Tamanyo" => 326809 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Expression analysis of genes related to the acquisition of haVSMC contractile and secretory phenotype. Relative expression levels of (A) <span class="elsevierStyleItalic">ACTA2</span>, (B) <span class="elsevierStyleItalic">COL1A1</span>, (C) <span class="elsevierStyleItalic">TGFB1</span>, (D) <span class="elsevierStyleItalic">MMP2</span> and (E) <span class="elsevierStyleItalic">MMP9</span> in ahVSMC treated with vehicle, LTα (5<span class="elsevierStyleHsp" style=""></span>ng/ml), LTα (10<span class="elsevierStyleHsp" style=""></span>ng/ml) and LIGHT (50<span class="elsevierStyleHsp" style=""></span>ng/ml). mRNA levels were normalized with the endogenous gene levels and relativized to the vehicle-treated VSMC mRNA levels. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test. *<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05; **<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01; ***<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.001; ****<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.0001.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1914 "Ancho" => 2175 "Tamanyo" => 194556 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Expression analysis in haVSMC of genes associated to the acquisition of contractile and secretory phenotype. Relative expression levels of (A) <span class="elsevierStyleItalic">ACTA2</span>, (B) <span class="elsevierStyleItalic">COL1A1</span>, (C) <span class="elsevierStyleItalic">TGFB1</span> and (D) <span class="elsevierStyleItalic">MMP2</span> in haVSMC treated with vehicle, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (20<span class="elsevierStyleHsp" style=""></span>ng/ml) and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (100<span class="elsevierStyleHsp" style=""></span>ng/ml). mRNA levels were normalized with the levels of the endogenous gene and relativized to the vehicle-treated VSMC mRNA levels. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3748 "Ancho" => 3175 "Tamanyo" => 589627 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Expression analysis of genes of pluripotency and osteochondrogenesis in haVSMC. Relative expression mRNA levels of (A, F) <span class="elsevierStyleItalic">SOX9</span>, (B, G) <span class="elsevierStyleItalic">CKIT</span>, (C, H <span class="elsevierStyleItalic">OCT4</span>, (D, I) <span class="elsevierStyleItalic">KLF4</span> and (E, J) <span class="elsevierStyleItalic">KLF10</span> in haVSMC treated with vehicle, LTα (5<span class="elsevierStyleHsp" style=""></span>ng/ml), LTα (10<span class="elsevierStyleHsp" style=""></span>ng/ml) and LIGHT (50<span class="elsevierStyleHsp" style=""></span>ng/ml) (A–) and with vehicle, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (20<span class="elsevierStyleHsp" style=""></span>ng/ml) and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (100<span class="elsevierStyleHsp" style=""></span>ng/ml) (F–J). mRNA levels were normalized with the levels of the endogenous gene and relativized to the vehicle-treated VSMC mRNA levels. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test. *<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05; **<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01;****<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.0001.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 4175 "Ancho" => 2261 "Tamanyo" => 498288 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Gene expression analysis of lymphorganogenic cytokines in haVSMC. Relative expression levels of (A, E) <span class="elsevierStyleItalic">CCL20</span>, (B, F) <span class="elsevierStyleItalic">CCL21</span>, (C, G) <span class="elsevierStyleItalic">CXCL13</span> and (D, H) <span class="elsevierStyleItalic">CXCL16</span> in ahVSMC treated with vehicle, LTα (5<span class="elsevierStyleHsp" style=""></span>ng/ml), LTα (10<span class="elsevierStyleHsp" style=""></span>ng/ml) and LIGHT (50<span class="elsevierStyleHsp" style=""></span>ng/ml) (A–D) and with vehicle, LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (20<span class="elsevierStyleHsp" style=""></span>ng/ml) and LTα<span class="elsevierStyleInf">1</span>β<span class="elsevierStyleInf">2</span> (100<span class="elsevierStyleHsp" style=""></span>ng/ml) (E–H). mRNA levels were normalized with the endogenous gene levels and relativized to the vehicle-treated VSMC mRNA levels. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test. *<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05; **<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01; ***<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.001;****<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.0001.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1488 "Ancho" => 2508 "Tamanyo" => 319073 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Expression analysis of genes related to macrophage-like cell haVSMC. Relative expression levels of (A) <span class="elsevierStyleItalic">CD14</span>, (B) <span class="elsevierStyleItalic">CD80</span>, (C) <span class="elsevierStyleItalic">CD206</span>, (D) <span class="elsevierStyleItalic">CD163</span>, (E) <span class="elsevierStyleItalic">CD68</span>, (F) <span class="elsevierStyleItalic">MCP1</span>, (G) <span class="elsevierStyleItalic">IL6</span> and (H) <span class="elsevierStyleItalic">IFNG</span> in haVSMC treated with vehicle, LTα (5<span class="elsevierStyleHsp" style=""></span>ng/ml), LTα (10<span class="elsevierStyleHsp" style=""></span>ng/ml) and LIGHT (50<span class="elsevierStyleHsp" style=""></span>ng/ml). mRNA levels were normalized with the endogenous gene levels and relativized to the vehicle-treated VSMC mRNA levels. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gen \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Forward primer \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Reverse primer \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ACTA2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AAAAGACAGCTACGTGGGTGA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GCCATGTTCTATCGGGTACTTC \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCL20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGCTGTACCAAGAGTTTGCTC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CGCACACAGACAACTTTTTCTTT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCL21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GTTGCCTCAAGTACAGCCAAA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AGAACAGGATAGCTGGGATGG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CD14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CGCTCCGACATGCATGTG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AGCCCAGCGAACGACAGA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CD68 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGAAATGCCACGGTTCATCCA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGGGGTTCAGTACAGAGATGC \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CD80 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AGGGAACATCACCATCCAAG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGCCAGTAGATGCGACTTTG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CD163 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GCTGCATGAATTGCACAGATAT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CGGGATGAGCGACCTGTT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CD206 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CGCTACTAGGCAATGCCAATG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TCGTGCAATCTGCGTACCA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">COL1A1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GAGGGCCAAGACGAAGACATC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CAGATCACGTCATCGCACAAC \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CXCL13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GCTTGAGGTGTAGATGTGTCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCACGGGGCAAGATTTGAA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CXCL16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCGCCATCGGTTCAGTTC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCCGAGTAAGCATGTCCAC \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GAPDH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGTGGGCATCAATGGATTTGG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ACACCATGTATTCCGGGTCAAT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">IFNG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCAACGCAAGCAATACATGA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TTTTCGCTTCCCTGTTTTAGCT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">IL6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCAGGAGCCCAGCTATGAAC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCAGGGAGAAGGCAACTG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">KIT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CGTTCTGCTCCTACTGCTTCG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCACGCGGACTATTAAGTCT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">KLF4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCCACATGAAGCGACTTCCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CAGGTCCAGGAGATCGTTGAA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">KLF10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GCAACAAGTGTGATTCGTCATAC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CAGCCTCAACATTTAGGTGGG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MCP1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CTCGCCTCCAGCATGAAAG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGGAATGAGGGTGGCTGCTA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MMP9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGTACCGCTATGGTTACACTCG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGCAGGGACAGTTGCTTCT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MMP2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TACAGGATCATTGGCTACACACC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGTCACATCGCTCCAGACT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">OCT4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CTGGGTTGATCCTCGGACCT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCATCGGAGTTGCTCTCCA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SOX9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AGCGAACGCACATCAAGAC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CTGTAGGCGATCTGTTGGGG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TGFB1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGCCAGATCCTGTCCAAGC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GTGGGTTTCCACCATTAGCAC \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Sequences of primers used for qPCR expression studies.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:27 [ 0 => array:3 [ "identificador" => "bib0140" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Immune cell profiling in atherosclerosis: role in research and precision medicine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.M. Fernandez" 1 => "C. Giannarelli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41569-021-00589-2" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Cardiol" "fecha" => "2021" "volumen" => "19" "paginaInicial" => "43" "paginaFinal" => "58" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34267377" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0145" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "T cell subsets and functions in atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Saigusa" 1 => "H. Winkels" 2 => "K. Ley" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41569-020-0352-5" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Cardiol" "fecha" => "2020" "volumen" => "17" "paginaInicial" => "387" "paginaFinal" => "401" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32203286" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0150" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.A. van Dijk" 1 => "A.J.F. Duinisveld" 2 => "A.F. Schaapherder" 3 => "A. Mulder-Stapel" 4 => "J.F. Hamming" 5 => "J. Kuiper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/JAHA.114.001403" "Revista" => array:3 [ "tituloSerie" => "J Am Heart Assoc" "fecha" => "2015" "volumen" => "4" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0155" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Smooth muscle cell phenotypic switching in atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Gomez" 1 => "G.K. Owens" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/cvr/cvs115" "Revista" => array:4 [ "tituloSerie" => "Cardiovasc Res" "fecha" => "2012" "paginaInicial" => "156" "paginaFinal" => "164" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0160" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.O.J. Grootaert" 1 => "M. Moulis" 2 => "L. Roth" 3 => "W. Martinet" 4 => "C. Vindis" 5 => "M.R. Bennett" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/CVR/CVY007" "Revista" => array:6 [ "tituloSerie" => "Cardiovasc Res" "fecha" => "2018" "volumen" => "114" "paginaInicial" => "622" "paginaFinal" => "634" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29360955" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0165" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lymphotoxin signalling in immune homeostasis and the control of microorganisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "V. Upadhyay" 1 => "Y.X. Fu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nri3406" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Immunol" "fecha" => "2013" "volumen" => "13" "paginaInicial" => "270" "paginaFinal" => "279" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23524463" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0170" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Original ligand for LTβR is LIGHT: insight into evolution of the LT/LTβR system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Maeda" 1 => "H. Suetake" 2 => "T. Odaka" 3 => "T. Miyadai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4049/jimmunol.1700900" "Revista" => array:6 [ "tituloSerie" => "J Immunol" "fecha" => "2018" "volumen" => "201" "paginaInicial" => "202" "paginaFinal" => "214" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29769272" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0175" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.W. Steinberg" 1 => "T.C. Cheung" 2 => "C.F. Ware" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-065X. 2011.01064.x" "Revista" => array:6 [ "tituloSerie" => "Immunol Rev" "fecha" => "2011" "volumen" => "244" "paginaInicial" => "169" "paginaFinal" => "187" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22017438" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0180" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lymphotoxin beta receptor-dependent control of lipid homeostasis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.C. Lo" 1 => "Y. Wang" 2 => "A.V. Tumanov" 3 => "M. Bamji" 4 => "Z. Yao" 5 => "C.A. Reardon" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1137221" "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "2007" "volumen" => "316" "paginaInicial" => "285" "paginaFinal" => "288" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17431181" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0185" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic inactivation of the LIGHT (TNFSF14) cytokine in mice restores glucose homeostasis and diminishes hepatic steatosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Herrero-Cervera" 1 => "Á. Vinué" 2 => "D.J. Burks" 3 => "H. González-Navarro" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00125-019-4962-6" "Revista" => array:6 [ "tituloSerie" => "Diabetologia" "fecha" => "2019" "volumen" => "62" "paginaInicial" => "2143" "paginaFinal" => "2157" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31388695" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0190" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The common T60N polymorphism of the lymphotoxin-alpha gene is associated with type 2 diabetes and other phenotypes of the metabolic syndrome" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y.H. Hamid" 1 => "S.A. Urhammer" 2 => "C. Glümer" 3 => "K. Borch-Johnsen" 4 => "T. Jørgensen" 5 => "T. Hansen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/S00125-004-1659-1" "Revista" => array:6 [ "tituloSerie" => "Diabetologia" "fecha" => "2005" "volumen" => "48" "paginaInicial" => "445" "paginaFinal" => "451" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15729581" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0195" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deficiency of lymphotoxin-does not exacerbate high-fat diet-induced obesity but does enhance inflammation in mice. Deficiency of lymphotoxin-does not exacerbate high-fat diet-in-duced obesity but does enhance inflammation in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N. Pamir" 1 => "T.S. McMillen" 2 => "K.A. Edgel" 3 => "F. Kim" 4 => "R.C. LeBoeuf" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajpendo.00447.2011-Lymphotoxin-(LT)" "Revista" => array:5 [ "tituloSerie" => "Am J Physiol Endocrinol Metab" "fecha" => "2012" "volumen" => "302" "paginaInicial" => "961" "paginaFinal" => "971" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0200" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LIGHT is increased in patients with coronary disease and regulates inflammatory response and lipid metabolism in oxLDL-induced THP-1 macrophages" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "X. Yuan" 1 => "Y. Gu" 2 => "X. Lai" 3 => "Q. Gu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2017.06.110" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2017" "volumen" => "490" "paginaInicial" => "732" "paginaFinal" => "738" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28642135" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0205" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased expression of LIGHT/TNFSF14 and its receptors in experimental and clinical heart failure" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.P. Dahl" 1 => "L. Gullestad" 2 => "B. Fevang" 3 => "A.M. Holm" 4 => "L. Landrø" 5 => "L.E. Vinge" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejheart.2008.02.010" "Revista" => array:6 [ "tituloSerie" => "Eur J Heart Fail" "fecha" => "2008" "volumen" => "10" "paginaInicial" => "352" "paginaFinal" => "359" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18353719" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0210" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enhanced plasma levels of LIGHT in unstable angina" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Scholz" 1 => "W. Sandberg" 2 => "J.K. Damas" 3 => "C. Smith" 4 => "A.K. Andreassen" 5 => "L. Gullestad" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCULATIONAHA.105.544676" "Revista" => array:6 [ "tituloSerie" => "Circulation" "fecha" => "2005" "volumen" => "112" "paginaInicial" => "2121" "paginaFinal" => "2129" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16186421" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0215" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Circulating lymphotoxin β receptor and atherosclerosis: observations from the Dallas Heart Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A.W. Owens" 1 => "S. Matulevicius" 2 => "A. Rohatgi" 3 => "C.R. Ayers" 4 => "S.R. Das" 5 => "A. Khera" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.atherosclerosis.2010.06.003" "Revista" => array:6 [ "tituloSerie" => "Atherosclerosis" "fecha" => "2010" "volumen" => "212" "paginaInicial" => "601" "paginaFinal" => "606" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20599198" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0220" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Grandoch" 1 => "K. Feldmann" 2 => "J.R. Göthert" 3 => "L.S. Dick" 4 => "S. Homann" 5 => "C. Klatt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCRESAHA.116.305723" "Revista" => array:6 [ "tituloSerie" => "Circ Res" "fecha" => "2015" "volumen" => "116" "paginaInicial" => "e57" "paginaFinal" => "e68" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25740843" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0225" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatic lipase inactivation decreases atherosclerosis in insulin resistance by reducing LIGHT/lymphotoxin β-receptor pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "I. Andrés-Blasco" 1 => "A. Vinué" 2 => "A. Herrero-Cervera" 3 => "S. Martinez-Hervás" 4 => "L. Nuñez" 5 => "L. Piqueras" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1160/TH15-10-0773/BIB" "Revista" => array:6 [ "tituloSerie" => "Thromb Haemost" "fecha" => "2016" "volumen" => "116" "paginaInicial" => "379" "paginaFinal" => "393" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27172975" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0230" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Hu" 1 => "S.K. Mohanta" 2 => "C. Yin" 3 => "L. Peng" 4 => "Z. Ma" 5 => "P. Srikakulapu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.immuni.2015.05.015" "Revista" => array:6 [ "tituloSerie" => "Immunity" "fecha" => "2015" "volumen" => "42" "paginaInicial" => "1100" "paginaFinal" => "1115" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26084025" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0235" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dissecting abdominal aortic aneurysm is aggravated by genetic inactivation of light (Tnfsf14)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Herrero-Cervera" 1 => "C. Espinós-Estévez" 2 => "S. Martín-Vañó" 3 => "A. Taberner-Cortés" 4 => "M. Aguilar-Ballester" 5 => "Á. Vinué" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/BIOMEDICINES9111518" "Revista" => array:3 [ "tituloSerie" => "Biomedicines" "fecha" => "2021" "volumen" => "9" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0240" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sox9 is increased in arterial plaque and stenosis, associated with synthetic phenotype of vascular smooth muscle cells and causes alterations in extracellular matrix and calcification" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Augstein" 1 => "J. Mierke" 2 => "D.M. Poitz" 3 => "R.H. Strasser" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbadis.2018.05.009" "Revista" => array:6 [ "tituloSerie" => "Biochim Biophys Acta - Mol Basis Dis" "fecha" => "2018" "volumen" => "1864" "paginaInicial" => "2526" "paginaFinal" => "2537" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29777903" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0245" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin resistance aggravates atherosclerosis by reducing vascular smoothmuscle cell survival and increasing CX3CL1/CX3CR1 axis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Martínez-Hervás" 1 => "Á. Vinué" 2 => "L. Núñez" 3 => "I. Andrés-Blasco" 4 => "L. Piqueras" 5 => "J. TomásReal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/cvr/cvu115" "Revista" => array:6 [ "tituloSerie" => "Cardiovasc Res" "fecha" => "2014" "volumen" => "103" "paginaInicial" => "324" "paginaFinal" => "336" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24788416" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0250" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G.F. Alencar" 1 => "K.M. Owsiany" 2 => "S. Karnewar" 3 => "K. Sukhavasi" 4 => "G. Mocci" 5 => "A.T. Nguyen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCULATIONAHA.120.046672" "Revista" => array:6 [ "tituloSerie" => "Circulation" "fecha" => "2020" "volumen" => "142" "paginaInicial" => "2045" "paginaFinal" => "2059" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32674599" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0255" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vascular smooth muscle cells in atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G.L. Basatemur" 1 => "H.F. Jørgensen" 2 => "M.C.H. Clarke" 3 => "M.R. Bennett" 4 => "Z. Mallat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41569-019-0227-9" "Revista" => array:4 [ "tituloSerie" => "Nat Rev Cardiol" "fecha" => "2019" "paginaInicial" => "727" "paginaFinal" => "744" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0260" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.G. Kazanietz" 1 => "M. Durando" 2 => "M. Cooke" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fendo.2019.00471" "Revista" => array:7 [ "tituloSerie" => "Front Endocrinol (Lausanne)" "fecha" => "2019" "volumen" => "10" "numero" => "July" "paginaInicial" => "1" "paginaFinal" => "15" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30723457" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0265" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L.S. Shankman" 1 => "D. Gomez" 2 => "O.A. Cherepanova" 3 => "M. Salmon" 4 => "G.F. Alencar" 5 => "R.M. Haskins" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nm.3866" "Revista" => array:6 [ "tituloSerie" => "Nat Med" "fecha" => "2015" "volumen" => "21" "paginaInicial" => "628" "paginaFinal" => "637" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25985364" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0270" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A.A.C. Newman" 1 => "V. Serbulea" 2 => "R.A. Baylis" 3 => "L.S. Shankman" 4 => "X. Bradley" 5 => "G.F. Alencar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s42255-020-00338-8" "Revista" => array:6 [ "tituloSerie" => "Nat Metab" "fecha" => "2021" "volumen" => "3" "paginaInicial" => "166" "paginaFinal" => "181" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33619382" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/02149168/0000003500000001/v1_202302051537/S0214916822000602/v1_202302051537/en/main.assets" "Apartado" => array:4 [ "identificador" => "7456" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Originales" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/02149168/0000003500000001/v1_202302051537/S0214916822000602/v1_202302051537/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0214916822000602?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 6 | 0 | 6 |
2024 October | 42 | 3 | 45 |
2024 September | 37 | 10 | 47 |
2024 August | 32 | 17 | 49 |
2024 July | 33 | 6 | 39 |
2024 June | 29 | 4 | 33 |
2024 May | 33 | 9 | 42 |
2024 April | 31 | 6 | 37 |
2024 March | 50 | 4 | 54 |
2024 February | 28 | 6 | 34 |
2024 January | 54 | 5 | 59 |
2023 December | 27 | 5 | 32 |
2023 November | 27 | 6 | 33 |
2023 October | 62 | 5 | 67 |
2023 September | 32 | 4 | 36 |
2023 August | 37 | 0 | 37 |
2023 July | 25 | 4 | 29 |
2023 June | 17 | 2 | 19 |
2023 May | 70 | 8 | 78 |
2023 April | 49 | 2 | 51 |
2023 March | 37 | 13 | 50 |
2023 February | 70 | 19 | 89 |
2023 January | 0 | 7 | 7 |
2022 December | 0 | 5 | 5 |
2022 November | 0 | 5 | 5 |
2022 October | 0 | 2 | 2 |
2022 September | 0 | 30 | 30 |
2022 August | 0 | 16 | 16 |
2022 July | 0 | 3 | 3 |
2022 June | 0 | 6 | 6 |