metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Avasimibe, un nuevo inhibidor de la ACAT, y atorvastatina actúan sinérgicament...
Journal Information
Vol. 14. Issue 6.
Pages 286-294 (January 2002)
Share
Share
Download PDF
More article options
Vol. 14. Issue 6.
Pages 286-294 (January 2002)
Full text access
Avasimibe, un nuevo inhibidor de la ACAT, y atorvastatina actúan sinérgicamente reduciendo el contenido de ésteres de colesterol en macrófagos humanos THP-1
Avasimibe, a novel ACAT inhibitor, and atorvastatin act sinergistically to reduce cholesteryl ester content in THP-1 human macrophages
Visits
4429
G. Llaverías, M. Jové, G. Hernándeza, J.C. Laguna, M. Alegret
Corresponding author
alegret@farmacia.far.ub.es

Correspondencia: Unidad de Farmacología. Facultad de Farmacia. Diagonal, 643. 08028 Barcelona. España
Unidad de Farmacología. Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona
C. Díaza
a Departamento I+D. Pfizer S.A. Barcelona. España
This item has received
Article information
Fundamento y objetivo

Existen evidencias de que la inhibición conjunta de la acil-CoA:colesterol aciltransferasa (ACAT) y de la hidroximetil glutaril- CoA (HMG-CoA) reductasa produce un efecto antiaterosclerótico directo de forma sinérgica en la pared vascular. El objetivo de este estudio ha sido determinar el efecto de un nuevo inhibidor de la ACAT (avasimibe), solo o en combinación con un inhibidor de la HMG-CoA reductasa (atorvastatina), sobre la acumulación de ésteres de colesterol en un modelo in vitro de macrófagos humanos

Métodos

Los macrófagos THP-1 se incubaron de dos formas: a) simultáneamente con LDL acetiladas y el(los) fármaco(s) en presencia y en ausencia de HDL durante 48 h, o b) en una primera fase con LDL acetiladas, para permitir la carga lipídica, seguido de una incubación con el fármaco en presencia de HDL durante otras 48 h (incubación secuencial). A partir del lisado celular se extrajeron los lípidos y se determinaron los contenidos de colesterol libre y total por cromatografía de gases. El contenido en ésteres de colesterol se calculó por diferencia entre el colesterol total y el libre. La viabilidad celular se determinó por el método de MTT

Resultados

En macrófagos incubados simultáneamente con LDL acetiladas, avasimibe (0,01-0,5 µM) produjo una disminución dependiente de la concentración del contenido de colesterol esterificado, que no fue acompañada de un incremento en el colesterol libre intracelular. La adición de atorvastatina 5 µM potenció alrededor de 2 veces la capacidad de avasimibe 0,5 µM de reducir la masa de colesterol esterificado, efecto que fue revertido por la adición de mevalonato 200 µM o geranil-geraniol 10 µM

Conclusiones

En función de estos datos, se propone que el sinergismo entre inhibidores de la ACAT y de la HMG-CoA reductasa descrito en algunos estudios in vivo se podría explicar por un efecto aditivo directo de los dos fármacos en la reducción del contenido lipídico de los macrófagos presentes en el área de lesión ateromatosa

Palabras clave:
Avasimibe
Atorvastatina
ACAT
HMG-CoA reductasa
Macrófago
Ésteres de colesterol
Background and objective

There are evidences that the inhibition of both acyl-CoA:cholesterol acyltransferase (ACAT) and hydroxymethyl glutaryl-CoA (HMG-CoA) reductase cause a synergistic direct antiatherosclerotic effect on the vessel wall. The aim of this study was to assess the effect of the ACAT inhibitor (avasimibe), alone and in combination with an HMG-CoA reductase inhibitor (atorvastatin), on cholesteryl ester (CE) content in an in vitro model of human macrophages

Methods

THP-1 macrophages were incubated: a) with acetyl-LDL simultaneously with the drug(s) ± HDL, during 48 h, or b) with acetyl-LDL to allow lipid enrichment, followed by a further incubation with the drug(s) under study for 48 h, in the presence of HDL (sequential incubation). Cellular lipids were extracted and both free and total cholesterol mass were quantified by gas chromatography. CE mass was determined from the difference between total and free cholesterol. Cell viability was assessed by the MTT method

Results

In macrophages incubated simultaneously with acetyl-LDL, avasimibe (0,01-0,5 µM) caused a concentration-dependent reduction in cell cholesteryl ester content, that was not accompanied by an increase in intracellular free cholesterol. 5 µM atorvastatin enhanced by approximately 2-fold the ability of 0.5 µM avasimibe to reduce the mass of esterified colesterol. This effect was reversed by coincubation with 200 µM mevalonate or 10 µM geranyl-geraniol

Conclusions

Based on these data, we propose that the synergism between ACAT and HMG-CoA reductase inhibitors found in several in vivo studies could be explained by a direct additive effect of both agents reducing the lipid content of the macrophages present in the atheromatous lesion area

Key words:
Avasimibe
Atorvastatin
ACAT
HMG-CoA reductase
Macrophage
Colesteryl ester
Full text is only aviable in PDF
Bibliografía
[1.]
B.D. Roth.
ACAT-inhibitors: evolution from cholesterol-absorption inhibitors to antiatherosclerotic agents.
Drug Discovery Today, 3 (1998), pp. 19-25
[2.]
J. Kusunoki, D.K. Hansoty, K. Aragane, J.T. Fallon, J.J. Badimon, E.A. Fisher.
Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice.
Circulation, 103 (2001), pp. 2604-2609
[3.]
R. Doshi, J. Wu, R. Fishelevich, A. Rodríguez.
Update on the role of acyl-CoA:cholesterol acyltransferase inhibitors in atherosclerosis.
Expert Opin Ther Patents, 11 (2001), pp. 1655-1662
[4.]
T.Y. Chang, C.C. Chang, D. Cheng.
Acyl-coenzyme A:cholesterol acyltransferase.
Annu Rev Biochem, 66 (1997), pp. 613-638
[5.]
K.F. Buhman, M. Accad, R.V. Farese.
Mammalian acyl-CoA:cholesterol acyltransferases.
Biochim Biophys Acta, 1529 (2000), pp. 142-154
[6.]
A. Miyazaki, N. Sakashita, O. Lee, K. Takahashi, S. Horiuchi, H. Hakamata, et al.
Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 1568-1574
[7.]
I. Ishii, N. Yokoyama, M. Yanagimachi, N. Ashikawa, M. Hata, S. Murakami, et al.
Stimulation of cholesterol release from rabbit foam cells by the action of a new inhibitor for acyl-CoA:cholesterol acyltransferase (ACAT), HL-004.
J Pharmacol Exp Ther, 287 (1998), pp. 115-121
[8.]
N. Ohgami, A. Kuniyasu, K. Furukawa, A. Miyazaki, H. Hakamata, S. Horiuchi, et al.
Glibenclamide acts as an inhibitor of acyl- CoA:cholesterol acyltransferase enzyme.
Biochem Biophys Res Commun, 277 (2000), pp. 417-422
[9.]
D.R. Sliskovic, A.D. White.
Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents.
Trends Pharmacol Sci, 12 (1991), pp. 194-199
[10.]
T.M. Bocan, B.R. Krause, W.S. Rosebury, X. Lu, C. Dagle, S. Bak Mueller, et al.
The combined effect of inhibiting both ACAT and HMG-CoA reductase may directly induce atherosclerotic lesion regression.
Atherosclerosis, 157 (2001), pp. 97-105
[11.]
D.J. Maron, S. Fazio, M.F. Linton.
Current perspectives on statins.
Circulation, 101 (2000), pp. 207-213
[12.]
A. Corsini, F. Bernini, P. Quarato, E. Donetti, S. Bellosta, R. Fumagalli, et al.
Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.
Cardiology, 87 (1996), pp. 458-468
[13.]
J. Davignon, R. Laaksonen.
Low-density lipoprotein-independent effects of statins.
Curr Opin Lipidol, 10 (1999), pp. 543-559
[14.]
T.M. Bocan, S.B. Mueller, E.Q. Brown, P. Lee, M.J. Bocan, T. Rea, et al.
HMG-CoA reductase and ACAT inhibitors act synergistically to lower plasma cholesterol and limit atherosclerotic lesion development in the cholesterol-fed rabbit.
Atherosclerosis, 139 (1998), pp. 21-30
[15.]
D. Junquero, F. Bruniquel, X. N’Guyen, J.M. Autin, J.F. Patoiseau, A.D. Degryse, et al.
F 12511, a novel ACAT inhibitor, and atorvastatin regulate endogenous hypercholesterolemia in a synergistic manner in New Zealand rabbits fed a casein-enriched diet.
Atherosclerosis, 155 (2001), pp. 131-142
[16.]
G.L. Mills, P.A. Lane, P.K. Weech.
The isolation and purification of plasma lipoproteins.
A guidebook to lipoprotein technique, pp. 25-50
[17.]
M.M. Bradford.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding.
Ann Biochem, 72 (1976), pp. 248-254
[18.]
S.K. Basu, J.L. Goldstein, G.W. Anderson, M.S. Brown.
Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
Proc Natl Acad Sci USA, 73 (1976), pp. 3178-3182
[19.]
S. Colli, S. Eligini, M. Lalli, M. Camera, R. Paoletti, E. Tremoli.
Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 265-272
[20.]
J.A. McCrohon, S. Nakhla, W. Jessup, K.K. Stanley, D.S. Celermajer.
Estrogen and progesterone reduce lipid accumulation in human monocyte-derived macrophages: a sex-specific effect.
Circulation, 100 (1999), pp. 2319-2325
[21.]
J. Auwerx.
The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation.
Experientia, 47 (1991), pp. 22-31
[22.]
H. Hakamata, A. Miyazaki, M. Sakai, Y.I. Sakamoto, H. Matsuda, K. Kihara, et al.
Differential effects of an acyl-coenzyme A:cholesterol acyltransferase inhibitor on HDL-induced cholesterol efflux from rat macrophage foam cells.
FEBS Lett, 363 (1995), pp. 29-32
[23.]
T. Mossman.
Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxicity assays.
J Immunol Meth, 65 (1983), pp. 55-63
[24.]
A. Ravandi, A. Kuksis, N.A. Shaikh.
Glycated phosphatidylethanolamine promotes macrophage uptake of low density lipoprotein and accumulation of cholesteryl esters and triacylglycerols.
J Biol Chem, 274 (1999), pp. 16494-16500
[25.]
J.J. Klansek, P. Yancey, R.W. St Clair, R.T. Fischer, W.J. Johnson, J.M. Glick.
Cholesterol quantitation by GLC: artifactual formation of short-chain steryl esters.
J Lipid Res, 36 (1995), pp. 2261-2266
[26.]
F. Guardiola, R. Codony, M. Rafecas, J. Boatella.
Selective gas chromatographic determination of cholesterol in eggs.
J Am Oil Chem Soc, 71 (1994), pp. 867-871
[27.]
H.T. Lee, D.R. Sliskovic, J.A. Picard, B.D. Roth, W. Wierenga, J.L. Hicks, et al.
Inhibitors of acyl-CoA: cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. CI-1011: an acyl sulfamate with unique cholesterol-lowering activity in animals fed noncholesterol- supplemented diets.
J Med Chem, 39 (1996), pp. 5031-5034
[28.]
Y. Azuma, T. Kawasaki, K. Ikemoto, K. Ohno, T. Yamada, M. Yamasaki, et al.
Effects of NTE-122, a novel acyl-CoA:cholesterol acyltransferase inhibitor, on cholesterol esterification and high-density lipoprotein-induced cholesterol efflux in macrophages.
Jpn J Pharmacol, 79 (1999), pp. 159-167
[29.]
T.M. Bocan, S.B. Mueller, P.D. Uhlendorf, R.S. Newton, B.R. Krause.
Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. A biochemical, morphological, and morphometric evaluation.
Arterioscler Thromb, 11 (1991), pp. 1830-1843
[30.]
T.M. Bocan, S.B. Mueller, P.D. Uhlendorf, E.Q. Brown, M.J. Mazur, A.E. Black.
Inhibition of acyl-CoA cholesterol O-acyltransferase reduces the cholesteryl ester enrichment of atherosclerotic lesions in the Yucatan micropig.
Atherosclerosis, 99 (1993), pp. 175-186
[31.]
G.J. Warner, G. Stoudt, M. Bamberger, W.J. Johnson, G.H. Rothblat.
Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol.
J Biol Chem, 270 (1995), pp. 5772-5778
[32.]
G. Kellner-Weibel, Y.J. Geng, G.H. Rothblat.
Cytotoxic cholesterol is generated by the hydrolisis of cytoplasmatic cholesteryl ester and transported to the plasma membrane.
Atherosclerosis, 146 (1999), pp. 309-319
[33.]
A. Rodríguez, P.S. Bachorik, S.B. Wee.
Novel effects of the acyl-coenzyme A:cholesterol acyltransferase inhibitor 58-035 on foam cell development in primary human monocyte-derived macrophages.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 2199-2206
[34.]
G. Kellner-Weibel, W.G. Jerome, D.M. Small, G.J. Warner, J.K. Stoltenborg, M.A. Kearney, et al.
Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 423-431
[35.]
S. Perrey, C. Legendre, A. Matsuura, C. Guffroy, J. Binet, S. Ohbayashi, et al.
Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis.
Atherosclerosis, 155 (2001), pp. 359-370
[36.]
S. Fazio, A.S. Major, L.L. Swift, L.A. Gleaves, M. Accad, M.F. Linton, et al.
Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages.
J Clin Invest, 107 (2001), pp. 163-171
[37.]
W. Insull Jr., M. Koren, J. Davignon, D. Sprecher, H. Schrott, L.M. Keilson, et al.
Efficacy and short-term safety of a new ACAT inhibitor, avasimibe, on lipids, lipoproteins, and apolipoproteins, in patients with combined hyperlipidemia.
Atherosclerosis, 157 (2001), pp. 137-144
[38.]
R. Homan, K.L. Hamelehle.
Influence of membrane partitioning on inhibitors of membrame-bound enzymes.
J Pharm Sci, 90 (2001), pp. 1859-1867
[39.]
B.L. Knight, D.D. Patel, A.K. Soutar.
The regulation of 3-hydroxy-3- methylglutaryl-CoA reductase activity, cholesterol esterification and the expression of low-density lipoprotein receptors in cultured monocyte-derived macrophages.
Biochem J, 15 (1983), pp. 523-532
[40.]
F. Bernini, G. Didoni, G. Bonfadini, S. Bellosta, R. Fumagalli.
Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages.
Atherosclerosis, 104 (1993), pp. 19-26
[41.]
F. Bernini, N. Scurati, G. Bonfadini, R. Fumagalli.
HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 1352-1358
[42.]
A. Cignarella, B. Brennhausen, A. Von Eckardstein, G. Assmann, P. Cullen.
Differential effects of lovastatin on the trafficking of endogenous and lipoprotein-derived cholesterol in human monocytederived macrophages.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 1322-1329
[43.]
M. Alegret, J.C. Verd, C. Díaz, G. Hernández, T. Adzet, R.M. Sánchez, et al.
Effect of hypolipidemic drugs on key enzyme activities related to lipid metabolism in normolipidemic rabbits.
Eur J Pharmacol, 347 (1998), pp. 283-291
[44.]
J.C. Verd, C. Peris, M. Alegret, C. Díaz, G. Hernández, M. Vázquez, et al.
Different effect of simvastatin and atorvastatin on key enzymes involved in VLDL synthesis and catabolism in high fat/cholesterol fed rabbits.
Br J Pharmacol, 127 (1999), pp. 1479-1485
Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos