metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Esteatosis hepática y resistencia a la insulina: ¿qué ocurre primero?
Journal Information
Vol. 18. Issue S1.
Hot topics en arteriosclerosis
Pages 72-82 (June 2006)
Share
Share
Download PDF
More article options
Vol. 18. Issue S1.
Hot topics en arteriosclerosis
Pages 72-82 (June 2006)
Hot topics en arteriosclerosis
Full text access
Esteatosis hepática y resistencia a la insulina: ¿qué ocurre primero?
Hepatic steatosis and insulin resistance. which comes first?
Visits
11407
E. Esteve-Lafuente
Corresponding author
uden.eesteve@htrueta.scs.es

Correspondencia: Dr. E. Esteve-Lafuente. Unidad de Diabetes, Endocrinología y Nutrición. Hospital Dr. Josep Trueta. Ctra. França, s/n. 17007 Girona. España.
, W. Ricart-Engel
Unidad de Diabetes, Endocrinología y Nutrición. Hospital Josep Trueta. Girona. España
This item has received
Article information

La enfermedad hepática no alcohólica se ha convertido en una afección de gran prevalencia y en una de las principales causas de cirrosis hepática en los países desarrollados. El aumento de la incidencia de esta enfermedad se produce de forma paralela al incremento de las tasas de obesidad y diabetes mellitus tipo 2. En la etiopatogenia de estas 3 enfermedades tienen un papel central la resistencia a la insulina y la inflamación.

La resistencia a la insulina produce el aumento de la lipólisis del tejido adiposo, lo cual libera una gran cantidad de ácidos grasos libres (AGL) que se acumulan en el hígado y generan la esteatosis hepática. El acúmulo de AGL interfiere a su vez en la resistencia hepática a la insulina y genera alteraciones en el metabolismo de la glucosa.

En parte de los sujetos con esteatosis, el exceso de AGL, sumado a un aumento de las citocinas proinflamatorias y un descenso de las antiinflamatorias, genera estrés oxidativo. El resultado del aumento del estrés oxidativo es el incremento del daño tisular que induce a la progresión hacia la esteatohepatitis no alcohólica. A su vez, en un porcentaje de los pacientes, la esteatohepatitis puede evolucionar a cirrosis.

Desde el punto de vista terapéutico, se están evaluando diferentes tratamientos basados en la disminución de la resistencia a la insulina, que ya en estudios controlados han logrado disminuir el grado de infiltración grasa en el hígado y en algunos casos revertir el daño histológico.

Palabras clave:
Esteatohepatitis
Inflamación
Resistencia a la insulina
Ácidos grasos libres

Nonalcoholic liver disease has become highly prevalent and is one of the main causes of liver cirrhosis in developed countries. The increase in the incidence of this disease has been produced in parallel with the increase in the rates of obesity and type 2 diabetes mellitus. Insulin resistance and inflammation play a central role in the etiopathogenesis of these three disorders.

Insulin resistance increases adipose tissue lipolysis, which releases a large quantity of free fatty acids (FFA). These are accumulated in the liver, leading to hepatic steatosis. The accumulation of FFA in turn is involved in insulin resistance in the liver and generates alterations in glucose metabolism.

In some patients with steatosis, the excess FFA, together with an increase in proinflammatory cytokines and a decrease in antiinflammatory cytokines, generate oxidative stress. This increases tissue damage, inducing progression to nonalcoholic steatohepatitis. In some patients, steatohepatitis can progress to cirrhosis.

From the therapeutic point of view, several treatments based on reduction of insulin resistance are being evaluated. In controlled studies these treatments have reduced the degree of fatty infiltration in the liver and in some patients have reversed histological damage.

Key words:
Steatohepatitis
Inflammation
Insulin resistance
Free fatty acids
Full text is only aviable in PDF
Bibliografía
[1.]
S.A. Harrison, A.M. Di Bisceglie.
Advances in the understanding and treatment of nonalcoholic fatty liver disease.
[2.]
J.M. Clark, F.L. Brancati, A.M. Diehl.
Nonalcoholic fatty liver disease.
Gastroenterology, 122 (2002), pp. 1649-1657
[3.]
M. Shimada, E. Hashimoto, M. Taniai, K. Hasegawa, H. Okuda, N. Hayashi, et al.
Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis.
J Hepatol, 37 (2002), pp. 154-160
[4.]
J.P. Ong, Z.M. Younossi.
Is hepatocellular carcinoma part of the natural history of nonalcoholic steatohepatitis?.
Gastroenterology, 123 (2002), pp. 375-378
[5.]
M.R. Teli, O.F. James, A.D. Burt, M.K. Bennet, C.P. Day.
The natural history of nonalcoholic fatty liver: a follow-up study.
Hepatology, 22 (1995), pp. 1714-1719
[6.]
E. Fassio, E. Álvarez, N. Domínguez, G. Landeira, C. Longo.
Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies.
Hepatology, 40 (2004), pp. 820-826
[7.]
S.A. Harrison, S. Torgerson, P.H. Hayashi.
The natural history of nonalcoholic fatty liver disease: a clinical histopathological study.
Am J Gastroenterol, 98 (2003), pp. 2042-2047
[8.]
B.R. Bacon, M.J. Farahvash, C.G. Janney, B.A. Neuswander-Tetri.
Nonalcoholic steatohepatitis: an expanded clinical entity.
Gastroenterology, 107 (1994), pp. 1103-1109
[9.]
V. Ratziu, P. Giral, F. Charlotte, E. Bruckert, V. Thibault, I. Theodorou, et al.
Liver fibrosis in overweight patients.
Gastroenterology, 118 (2000), pp. 1117-1123
[10.]
C.P. Day, O.F. James.
Steatohepatitis: a tale of two “hits”?.
Gastroenterology, 114 (1998), pp. 842-845
[11.]
E.E. Powell, W.G. Cooksley, R. Hanson, J. Searle, J.W. Halliday, L.W. Powell.
The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years.
Hepatology, 11 (1990), pp. 74-80
[12.]
P. Angulo, J.C. Keach, K.P. Batts, K.D. Lindor.
Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis.
Hepatology, 30 (1999), pp. 1356-1362
[13.]
C.A. Matteoni, Z.M. Younossi, T. Gamlich, N. Boparai, Y.C. Liu, A.J. Mc-Cullough.
Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity.
Gastroenterology, 116 (1999), pp. 1413-1419
[14.]
J. Medina, L.I. Fernández-Alazar, L. García-Buey, R. Moreno-Otero.
Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis.
Diabetes Care, 27 (2004), pp. 2057-2066
[15.]
S. Bellentani, C. Tiribelli, G. Saccoccio, M. Sodde, N. Fratti, C. De Martin.
Prevalence of chronic liver disease in the general population of northern Italy: the Dionysos Study.
Hepatology, 20 (1994), pp. 1442-1449
[16.]
H. Nomura, S. Kashiwagi, J. Hayashi, W. Kajiyama, S. Tani, M. Goto.
Prevalence of fatty liver in a general population of Okinawa, Japan.
Jpn J Med, 27 (1988), pp. 142-149
[17.]
I.R. Wanless, J.S. Lentz.
Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors.
Hepatology, 12 (1990), pp. 1106-1110
[18.]
J.D. Browning, L.S. Szczepaniak, R. Dobbins, P. Nuremberg, J.D. Horton, J.C. Cohen, et al.
Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity.
Hepatology, 40 (2004), pp. 1387-1395
[19.]
S. Bellentani, G. Saccocio, F. Masutti, L.S. Croce, G. Brandi, F. Sasso, et al.
Prevalence of and risk factors for hepatic steatosis in Northern Italy.
Ann Intern Med, 132 (2000), pp. 112-117
[20.]
P. Gupte, D. Amarapurkar, S. Agal, R. Baijal, P. Kulshrestha, S. Pramanik, et al.
Non-alcoholic steatohepatitis in type 2 diabetes mellitus.
J Gastroenterol Hepatol, 19 (2004), pp. 854-858
[21.]
S. Jimba, T. Nakagami, M. Takahashi, T. Wakamatsu, Y. Hirota, Y. Iwamoto, et al.
Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults.
Diabet Med, 22 (2005), pp. 1141-1145
[22.]
J.B. Dixon, P. Bhathal, P. O’Brien.
Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese.
Gastroenterology, 121 (2001), pp. 91-100
[23.]
C. García-Monzón, E. Martín-Pérez, O. Iacono, M. Fernández-Bermejo, P. Majano, A. Apolinario, et al.
Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity.
J Hepatol, 33 (2000), pp. 716-724
[24.]
M.A. Banerji, M.C. Buckley, R.L. Chaiken, D. Gordon, H.E. Lebovitz, J.G. Kral.
Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM.
Int J Obes Relat Metab Disord, 19 (1995), pp. 846-850
[25.]
G. Marchesini, M. Brizi, G. Bianchi, S. Tomassetti, E. Bugianesi, M. Lenzi, et al.
Nonalcoholic fatty liver disease: a feature of the metabolic syndrome.
Diabetes, 50 (2001), pp. 1844-1850
[26.]
P. Marceau, S. Biron, F.S. Hould, S. Marceau, S. Simard, S.N. Thung, et al.
Liver pathology and the metabolic syndrome X in severe obesity.
J Clin Endocrinol Metab, 84 (1999), pp. 1513-1517
[27.]
G. Marchesini, M. Brizi, A.M. Morselli-Labate, G. Bianchi, E. Bugianesi, A.J. McCullough, et al.
Association of nonalcoholic fatty liver disease with insulin resistance.
Am J Med, 107 (1999), pp. 450-455
[28.]
G. Marchesini, E. Bugianesi, G. Forlani, F. Cerrelli, M. Lenzi, R. Manini, et al.
Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome.
Hepatology, 37 (2003), pp. 917-923
[29.]
S. Chitturi, S. Abeygunasekera, G.C. Farrell, J. Holmes-Walker, J.M. Hui, C. Fung, et al.
NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome.
Hepatology, 35 (2002), pp. 373-379
[30.]
A. Suzuki, P. Angulo, J. Lymp, J.S. Sauver, A. Muto, T. Okada, et al.
Chronological development of elevated aminotransferases in a nonalcoholic population.
Hepatology, 41 (2005), pp. 64-71
[31.]
M. Hamaguchi, T. Kojima, N. Takeda, T. Nakagawa, H. Taniguchi, K. Fujii, et al.
The metabolic syndrome as a predictor of nonalcoholic fatty liver disease.
Ann Intern Med, 143 (2005), pp. 722-728
[32.]
A.J. Hanley, K. Williams, A. Festa, L.E. Wagenknecht, R.B. D’Agostino, J. Kempf, et al.
Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study.
Diabetes, 53 (2004), pp. 2623-2632
[33.]
N. Sattar, O. Scherbakova, I. Ford, D.S. O’Reilly, A. Stanley, E. Forrest, et al.
Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study.
Diabetes, 53 (2004), pp. 2855-2860
[34.]
B. Comert, M.R. Mas, H. Erdem, A. Dinc, U. Saglamkaya, M. Cigerim, et al.
Insulin resistance in non-alcoholic steatohepatitis.
Dig Liver Dis, 33 (2001), pp. 353-358
[35.]
A.J. Sanyal, C. Campbell-Sargent, F. Mirshahi, W.B. Rizzo, M.J. Contos, R.K. Sterling, et al.
Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities.
Gastroenterology, 120 (2001), pp. 1183-1192
[36.]
S.P. Kim, M. Ellmerer, G.W. Van Citters, R.N. Bergman.
Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog.
Diabetes, 52 (2003), pp. 2453-2460
[37.]
J.K. Kim, J.J. Fillmore, Y. Chen, C. Yu, I.K. Moore, M. Pypaert, et al.
Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance.
Proc Natl Acad Sci USA, 98 (2001), pp. 7522-7527
[38.]
E.W. Kraegen, P.W. Clarck, A.B. Jenkins, E.A. Daley, D.J. Chishol, L.H. Storlien.
Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats.
Diabetes, 40 (1991), pp. 1397-1403
[39.]
E. Bugianesi, A.J. McCullough, G. Marchesini.
Insulin resistance: a metabolic pathway to chronic liver disease.
Hepatology, 42 (2005), pp. 987-1000
[40.]
M. Tiikkainen, A.M. Hakkinen, E. Korsheninnikova, T. Nyman, S. Makimattila, H. Yki-Jarvinen.
Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes.
Diabetes, 53 (2004), pp. 2169-2176
[41.]
G. Pagano, G. Pacini, G. Musso, R. Gambino, F. Mecca, N. Depetris, et al.
Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association.
Hepatology, 35 (2002), pp. 367-372
[42.]
A.R. Saltiel, C.R. Kahn.
Insulin signalling and the regulation of glucose and lipid metabolism.
Nature, 414 (2001), pp. 799-806
[43.]
C. Hug, H.F. Lodish.
Diabetes, obesity, and Acrp30/adiponectin.
Biotechniques, 33 (2002), pp. 654-662
[44.]
D.E. Kelley, T.M. McKolanis, R.A. Hegazi, L.H. Kuller, S.C. Kalhan.
Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance.
Am J Physiol Endocrinol Metab, 285 (2003), pp. E906-E916
[45.]
A. Garg.
Lipodystrophies.
Am J Med, 108 (2000), pp. 143-152
[46.]
W.A. Haque, F. Vuitch, A. Garg.
Post-mortem findings in familial partial lipodystrophy, Dunnigan variety.
Diabet Med, 19 (2002), pp. 1022-1025
[47.]
E. Bugianesis, A. Gastaldelli, E. Vanni, R. Gambino, M. Cassader, S. Baldi, et al.
Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.
Diabetologia, 48 (2005), pp. 634-642
[48.]
K.L. Donnelly, C.I. Smith, S.J. Schwarzenberg, J. Jessurun, M.D. Boldt, E.J. Parks.
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
J Clin Invest, 115 (2005), pp. 1343-1351
[49.]
M.H. Cummings, G.F. Watts, A.M. Umpleby, T.R. Hennessy, J.M. Kelly, N.C. Jackson, et al.
Acute hyperinsulinemia decreases the hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM.
Diabetes, 44 (1995), pp. 1059-1065
[50.]
M. Charlton, R. Sreekumar, D. Rasmussen, K. Lindor, K.S. Nair.
Apolipoprotein synthesis in nonalcoholic steatohepatitis.
Hepatology, 35 (2002), pp. 898-904
[51.]
N.D. Oakes, G.J. Cooney, S. Camilleri, D.J. Chisholm, E.W. Kraegen.
Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.
Diabetes, 46 (1997), pp. 1768-1774
[52.]
A. Seppala-Lindroos, S. Vehkavaara, A.M. Hakkinen, T. Goto, J. Westerbacka, A. Sovijarvi, et al.
Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men.
J Clin Endocrinol Metab, 87 (2002), pp. 3023-3028
[53.]
G.I. Shulman.
Cellular mechanisms of insulin resistance.
J Clin Invest, 106 (2000), pp. 171-176
[54.]
V.T. Samuel, Z.X. Liu, B.D. Elder, S. Bilz, D. Befroy, A.J. Romanelli, et al.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease.
J Biol Chem, 279 (2004), pp. 32345-32353
[55.]
K. Rebrin, G.M. Steil, L. Getty, R.N. Bergman.
Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin.
Diabetes, 44 (1995), pp. 1038-1045
[56.]
T.K. Lam, G. Van de Werve, A. Giacca.
Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites.
Am J Physiol Endocrinol Metab, 284 (2003), pp. E281-E290
[57.]
K.F. Petersen, S. Dufour, D. Befroy, M. Lehrke, R.E. Hendler, G.I. Shulman.
Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes.
Diabetes, 54 (2005), pp. 603-608
[58.]
P.L. Jansen.
Nonalcoholic steatohepatitis.
Neth J Med, 62 (2004), pp. 217-224
[59.]
S. Chitturi, G.C. Farrell.
Etiopathogenesis of nonalcoholic steatohepatitis.
Semin Liver Dis, 21 (2001), pp. 27-41
[60.]
C.P. Oliveira, J. Faintuch, A. Rascovski, C.K. Furuya, S. Bastos, et al.
Lipid peroxidation in bariatric candidates with nonalcoholic fatty liver disease (NAFLD)—preliminary findings.
Obes Surg, 15 (2005), pp. 502-505
[61.]
J.M. Fernández-Real, W. Ricart.
Insulin resistance and chronic cardiovascular inflammatory syndrome.
Endocr Rev, 24 (2003), pp. 278-301
[62.]
M. Kugelmas, D.B. Hill, L. Maesano, C.J. McClain.
Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E.
Hepatology, 38 (2003), pp. 413-419
[63.]
I.H. Bahcecioglu, M. Yalniz, H. Ataseven, N. Ilhan, I.H. Ozercan, D. Seckin, et al.
Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis.
Hepatogastroenterology, 52 (2005), pp. 1549-1553
[64.]
A. López-Bermejo, M. Bosch, M. Recasens, J. Biarnes, E. Esteve, R. Casamitjana, et al.
Potential role of interleukin-18 in liver disease associated with insulin resistance.
Obes Res, 13 (2005), pp. 1925-1931
[65.]
E. Esteve, W. Ricart, J.M. Fernández-Real.
Dyslipidemia and inflammation: an evolutionary conserved mechanism.
Clin Nutr, 24 (2005), pp. 16-31
[66.]
Z. Li, S. Yang, H. Lin, J. Huang, P.A. Watkins, A.B. Moser, et al.
Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease.
Hepatology, 37 (2003), pp. 343-350
[67.]
H. Tilg, A.M. Diehl.
Cytokines in alcoholic and nonalcoholic steatohepatitis.
N Engl J Med, 343 (2000), pp. 1467-1476
[68.]
M. Pérez-Carreras, P. Del Hoyo, M.A. Martín, J.C. Rubio, A. Martín, G. Castellano, et al.
Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis.
Hepatology, 38 (2003), pp. 999-1007
[69.]
R.K. Chawla, W.H. Watson, C.E. Eastin, E.Y. Lee, J. Schmidt, C.J. McClain.
S-adenosylmethionine deficiency and TNF-alpha in lipopolysaccharide-induced hepatic injury.
Am J Physiol, 275 (1998), pp. G125-G129
[70.]
N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nafgaretani, et al.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.
Nat Med, 8 (2002), pp. 731-737
[71.]
S. Kaser, A. Moschen, A. Cayon, J. Crespo, F. Pons-Romero, C.F. Ebenbichler, et al.
Adiponectin and its receptors in non-alcoholic steatohepatitis.
[72.]
G. Targher, L. Bertolini, L. Scala, F. Poli, L. Zenari, G. Falezza.
Decreased plasma adiponectin concentrations are closely associated with nonalcoholic hepatic steatosis in obese individuals.
Clin Endocrinol (Oxf), 61 (2004), pp. 700-703
[73.]
E. Bugianesi, U. Pagotto, R. Manini, E. Vanni, A. Gastaldelli, R. De Iasio, et al.
Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity.
J Clin Endocrinol Metab, 90 (2005), pp. 3498-3504
[74.]
M. Bajaj, R.A. Defronzo.
Metabolic and molecular basis of insulin resistance.
J Nucl Cardiol, 10 (2003), pp. 311-323
[75.]
G. Musso, R. Gambino, G. Biroli, M. Carello, E. Faga, G. Pacini, et al.
Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic Beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis.
Am J Gastroenterol, 100 (2005), pp. 2438-2446
[76.]
A. Xu, Y. Wang, H. Keshaw, L.Y. Xu, K.S. Lam, G.J. Cooper.
The fatderived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.
J Clin Invest, 112 (2003), pp. 91-100
[77.]
J.M. Hui, A. Hodge, G.C. Farrell, J.G. Kench, A. Kriketos, J. George.
Beyond insulin resistance in NASH: TNF-alpha or adiponectin?.
Hepatology, 40 (2004), pp. 46-54
[78.]
M. Ozata, I.C. Ozdemir, J. Licinio.
Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptinmediated defects.
J Clin Endocrinol Metab, 84 (1999), pp. 3686-3695
[79.]
K. Clement, C. Vaisse, N. Lahlou, S. Cabrol, V. Pelloux, D. Cassuto, et al.
A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
Nature, 392 (1998), pp. 398-401
[80.]
C.T. Montague, I.S. Farooqi, J.P. Whitehead, M.A. Soos, H. Rau, N.J. Wareham, et al.
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
Nature, 387 (1997), pp. 903-908
[81.]
A. Uygun, A. Kadaycifci, Z. Yesilova, A. Erdil, H. Yaman, M. Saka, et al.
Serum leptin levels in patients with nonalcoholic steatohepatitis.
Am J Gastroenterol, 95 (2000), pp. 3584-3589
[82.]
K. Tobe, T. Ogura, C. Tsukamoto, A. Imai, K. Matsuura, Y. Iwasaki, et al.
Relationship between serum leptin and fatty liver in Japanese male adolescent university students.
Am J Gastroenterol, 94 (1999), pp. 3328-3335
[83.]
V. Simha, L.S. Szczepaniak, A.J. Wagner, A.M. De Paoli, A. Garg.
Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy.
Diabetes Care, 26 (2003), pp. 30-35
[84.]
K.F. Petersen, E.A. Oral, S. Dufour, D. Befrov, C. Arivan, C. Yu, et al.
Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy.
J Clin Invest, 109 (2002), pp. 1345-1350
[85.]
E.D. Javor, M.G. Ghany, E.K. Cochran, E.A. Oral, A.M. De Paoli, A. Premkumar, et al.
Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy.
Hepatology, 41 (2005), pp. 753-760
[86.]
B.J. Golstein.
Insulin resistance as the core defect in type 2 diabetes mellitus.
Am J Cardiol, 90 (2002), pp. 3G-10G
[87.]
J.P. Felber, A. Golay.
Pathways from obesity to diabetes.
Int J Obes Relat Metab Disord, 26 (2002), pp. S39-S45
[88.]
M.A. Huang, J.K. Greenson, C. Chao, L. Anderson, D. Peterman, J. Jacobson, et al.
One-year intense nutritional counseling results in histological improvement in patients with non-alcoholic steatohepatitis: a pilot study.
Am J Gastroenterol, 100 (2005), pp. 1072-1081
[89.]
M. Palmer, F. Schaffner.
Effect of weight reduction on hepatic abnormalities in overweight patients.
Gastroenterology, 99 (1990), pp. 1408-1413
[90.]
N. Méndez-Sánchez, V. González, N. Chávez-Tapia, M.H. Ramos, M. Uribe.
Weight reduction and ursodeoxycholic acid in subjects with nonalcoholic fatty liver disease. A double-blind, placebocontrolled trial.
Ann Hepatol, 3 (2004), pp. 108-112
[91.]
S. Srivastava, Z.M. Younossi.
Morbid obesity, nonalcoholic fatty liver disease, and weight loss surgery.
Hepatology, 42 (2005), pp. 490-492
[92.]
C.C. Mottin, M. Moretto, A.V. Padoin, C. Kupski, A.M. Swarowsky, L. Glock, et al.
Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery.
Obes Surg, 15 (2005), pp. 788-793
[93.]
C. Stratopoulos, A. Papakonstantinou, I. Terzis, C. Spiliadi, G. Dimitriades, V. Komedidou, et al.
Changes in liver histology accompanying massive weight loss after gastroplasty for morbid obesity.
Obes Surg, 15 (2005), pp. 1154-1160
[94.]
S.A. Harrison, C. Fincke, D. Helinski, S. Torgerson, P. Hayashi.
A pilot study of orlistat treatment in obese, non-alcoholic steatohepatitis patients.
Aliment Pharmacol Ther, 20 (2004), pp. 623-628
[95.]
T. Sabuncu, Y. Nazligul, M. Karaoglanoglu, E. Ucar, F.B. Kilic.
The effects of sibutramine and orlistat on the ultrasonographic findings, insulin resistance and liver enzyme levels in obese patients with non-alcoholic steatohepatitis.
Rom J Gastroenterol, 12 (2003), pp. 189-192
[96.]
S. Nair, A.M. Diehl, M. Wiseman, G.H. Farr, R.P. Perillo.
Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial.
Aliment Pharmacol Ther, 20 (2004), pp. 23-28
[97.]
H.Z. Lin, S.Q. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet, A.M. Diehl.
Metformin reverses fatty liver disease in obese, leptin-deficient mice.
Nat Med, 6 (2000), pp. 998-1003
[98.]
E. Bugianesi, E. Gentilcore, R. Manini, S. Natale, E. Vanni, N. Villanova, et al.
A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease.
Am J Gastroenterol, 100 (2005), pp. 1082-1090
[99.]
P.D. Hockings, K.K. Changani, N. Saeed, D.G. Reid, J. Birmingham, P. O’Brien, et al.
Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats.
Diabetes Obes Metab, 5 (2003), pp. 234-243
[100.]
S. Shadid, M.D. Jensen.
Effect of pioglitazone on biochemical indices of non-alcoholic fatty liver disease in upper body obesity.
Clin Gastroenterol Hepatol, 1 (2003), pp. 384-387
[101.]
B.A. Neuschwander-Tetri, E.M. Brunt, K.R. Wehmeier, D. Oliver, B.R. Bacon.
Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone.
Hepatology, 38 (2003), pp. 1008-1017
[102.]
K. Kawaguchi, I. Sakaida, M. Tsuchiya, K. Omori, T. Takami, K. Okita.
Pioglitazone prevents hepatic steatosis, fibrosis, and enzymealtered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet.
Biochem Biophys Res Commun, 315 (2004), pp. 187-195
[103.]
K. Promrat, G. Lutchman, G.I. Uwaifo, R.J. Freedman, A. Soza, T. Heller, et al.
A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis.
Hepatology, 39 (2004), pp. 188-196
[104.]
A.J. Sanyal, P.S. Mofrad, M.J. Contos, C. Sargeant, V.A. Luketic, R.K. Sterling, et al.
A pilot study of vitamin E versus vitamin E and pioglitazone for the treatment of nonalcoholic steatohepatitis.
Clin Gastroenterol Hepatol, 2 (2004), pp. 1107-1115
[105.]
G. Boden, C. Homko, M. Mozzoli, L.C. Showe, C. Nichols, P. Cheung.
Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients.
Diabetes, 54 (2005), pp. 880-885
[106.]
M. Bajaj, S. Suraamornkul, P. Piper, L.J. Hardies, L. Glass, E. Cersosimo, et al.
Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients.
J Clin Endocrinol Metab, 89 (2004), pp. 200-206
[107.]
J. Sutinen, A.M. Hakkinen, J. Westerbacka, A. Seppala-Lindroos, S. Vehkavaara, J. Halavaara, et al.
Rosiglitazone in the treatment of HAART-associated lipodystrophy—a randomized double-blind placebo-controlled study.
Antivir Ther, 8 (2003), pp. 199-207
[108.]
M. Bajaj, S. Suraamornkul, S. Kashyap, K. Cusi, L. Mandarino, R.A. De-Fronzo.
Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes.
J Clin Endocrinol Metab, 89 (2004), pp. 4649-4655
Copyright © 2006. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos