metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Los fibratos modifican la expresión hepática de colesterol 7-α-hidroxilasa, M...
Journal Information
Vol. 16. Issue 5.
Pages 185-191 (January 2004)
Share
Share
Download PDF
More article options
Vol. 16. Issue 5.
Pages 185-191 (January 2004)
Full text access
Los fibratos modifican la expresión hepática de colesterol 7-α-hidroxilasa, MDR3 y ABCG5 en pacientes con colelitiasis
Fibrates modify the hepatic expression of cholesterol 7-α-hydroxylase, mdr3 and abcg5 in patients with cholelithiasis
Visits
7787
N. Roglansa,
Corresponding author
roglans@ub.edu

Correspondencia: Departamento de Farmacología. Facultad de Farmacia. Universidad de Barcelona. Avda. Diagonal, 643. 08028 Barcelona. España
, F. Novellb, D. Zambónc, E. Rosc, J.C. Lagunaa, R.M. Sáncheza
a Unidad de Farmacología y Farmacognosia. Departamento de Farmacología. Facultad de Farmacia. Universidad de Barcelona. Barcelona
b Departamento de Cirugía. Hospital Clínic i Provincial. Barcelona
c Clínica de Lípidos. Servicio de Nutrición y Dietética. Hospital Clínic i Provincial. Barcelona. España
This item has received
Article information
Introducción

El tratamiento con fibratos provoca cambios tanto en el contenido de lípidos biliares como en la composición de los ácidos biliares, lo que conduce a un incremento de la incidencia de colelitiasis en humanos. Los mecanismos moleculares implicados en estos cambios, observados en pacientes tratados con fibratos durante un largo período, todavía no han sido descritos. El objetivo de este estudio ha sido investigar el efecto del tratamiento con fibratos en los factores clave implicados en la síntesis de ácidos biliares y en la secreción biliar de lípidos en pacientes con colelitiasis.

Pacientes y método

Pacientes con colelitiasis y valores de colesterol unido a lipoproteínas de baja densidad (cLDL) elevados (> 130 mg/dl) fueron aleatorizados y asignados al tratamiento con bezafibrato (400 mg/día), fenofibrato (200 mg/día), gemfibrozilo (900 mg/día) o placebo, durante 8 semanas antes de proceder a la intervención quirúrgica (colecistectomía electiva). La obtención de muestras hepáticas tuvo lugar en el momento de la operación y mediante RT-PCR se determinaron los valores de ARNm de colesterol 7-α-hidroxilasa (CYP7A1), hepatocyte nuclear factor-4 (HNF-4), transportadores ATP-binding cassette: MDR3, ABCG5, ABCG8 y el homólogo humano del receptor scavanger BI (CLA-1).

Resultados

Fenofibrato, bezafibrato y gemfibrozilo redujeron de forma significativa los valores de cLDL y triglicéridos plasmáticos. Los 3 fibratos ensayados redujeron los valores de ARNm de CYP7A1, pero sólo el bezafibrato incrementó significativamente los valores de ABCG5. Ninguno de los fármacos por separado produjo cambios importantes en los valores de ARNm de los restantes genes probados, pero los fibratos como grupo incrementaron el ARNm de MDR-3 y ABCG5.

Conclusiones

Estos resultados muestran por primera vez que la administración de fibratos a humanos, a dosis similares a las farmacológicas, reduce la expresión de la colesterol 7-α-hidroxilasa e incrementan la expresión de MDR-3 y ABCG5.

Palabras clave:
Excreción de lípidos biliares
CYP7A1
HNF-4
MDR3
CLA-1
ABCG5
ABCG8
Introduction

Fibrate therapy induces adverse changes in biliary lipid and bile acid composition, which leads to an increased incidence of cholesterol gallstones. The molecular mechanisms underlying these changes on long-term therapy with fibrates are still unclear. The aim of this study was to investigate the effect of fibrate treatment on key factors involved on bile acid synthesis and biliary lipid secretion in gallstone patients.

Patients and method

Patients with uncomplicated cholelithiasis and a serum LDL cholesterol concentration > 130 mg/dL were randomly assigned to open-label treatment with bezafibrate (400 mg/day), fenofibrate (200 mg/day), gemfibrozil (900 mg/day) or placebo for 8 weeks before elective cholecystectomy. A liver specimen was obtained during surgery, and the mRNA relative levels for cholesterol 7-α-hydroxylase (CYP7A1), hepatocyte nuclear factor-4 (HNF-4), ATP-binding cassette transporters: MDR3, ABCG5, ABCG8, human homologue scavenger receptor BI, were determined by reverse transcriptasepolymerase chain reaction.

Results

Fenofibrate, bezafibrate and gemfibrozil significantly reduced plasma LDL cholesterol and triglycerides. The 3 fibrates tested reduced CYP7A1 mRNA levels, but only bezafibrate significantly increased ABCG5 mRNA. None of the fibrates induced significant changes in the mRNA levels of the remaining genes tested, but fibrates, as a group, increased MDR-3 and ABCG5 mRNA.

Conclusions

These results show for the first time that fibrate administration to humans, at pharmacological doses that induce a hypolipidemic effect, down-regulates CYP7A1 and increases the mRNA levels of MDR3 and ABCG5.

Key words:
Biliary lipid secretion
CYP7A1
HNF-4
MDR3
CLA-1
ABCG5
ABCG8
Full text is only aviable in PDF
Bibliografía
[1.]
O. Barbier, I.P. Torra, Y. Duguay, C. Blanquart, J.C. Fruchart, C. Glineur, et al.
Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 717-726
[2.]
A. Kesäniemi, S.M. Grundy.
Influence of gemfibrozil and clofibrate on metabolism of cholesterol and plasma triglycerides in man.
JAMA, 251 (1984), pp. 2241-2246
[3.]
K. Einarsson, B. Angelin.
Hyperlipoproteinemia, hypolipidemic treatment and gallstone disease.
Atheroscler Rev, 15 (1986), pp. 67-97
[4.]
D. Stahlberg, E. Reihnér, M. Rudling, M. Berglund, K. Einarsson, B. Angelin.
Influence of bezafibrate on hepatic cholesterol metabolism in gallstone patients: reduced activity of cholesterol 7alphahydroxylase.
Hepatology, 21 (1995), pp. 1025-1030
[5.]
S.M. Post, H. Duez, P.P. Gervois, F. Kuipers, H.M.G. Princen.
Fibrates supress bile acid synthesis via peroxisome proliferator-activated receptor-alpha-mediated downregulation of cholesterol 7 alphahydroxylase and sterol 27-hydroxylase expression.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 1840-1845
[6.]
M. Bertolotti, M. Concari, P. Loria, N. Abate, A. Pinetti, M.E. Guicciardi, et al.
Effects of different phenotypes of hypercholesterolemia and of treatment with fibric acid derivatives on the rates of cholesterol 7alpha hydroxylation in humans.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 1064-1069
[7.]
H.M.G. Princen, S.M. Post, J. Twisk.
Regulation of bile acid biosynthesis.
Curr Pharm Des, 3 (1997), pp. 59-84
[8.]
J.Y.L. Chiang.
Regulation of bile acid synthesis.
Front Biosci, 3 (1998), pp. D176-D193
[9.]
R.A. Davis, J.H. Miyake, T.Y. Hui, N.J. Spann.
Regulation of cholesterol- 7alpha-hydroxylase: barely missing a SHP.
J Lipid Res, 43 (2002), pp. 533-543
[10.]
D.W. Russell, K.D. Setchell.
Bile acid byosinthesis.
Biochemistry, 31 (1992), pp. 4737-4749
[11.]
D.P. Wang, M. Stroup, M. Marrapodi, M. Crestani, G. Galli, J.Y.L. Chiang.
Transcriptional regulation of the human cholesterol 7 alpha-hydroxylase gene (CYP7A) in HepG2 cells.
J Lipid Res, 37 (1996), pp. 1831-1841
[12.]
K.A. Tobin, H.H. Steineger, S. Alberti, O. Spydevol, J. Auwerx, J.K. Gustafsson, et al.
Cross-talk between fatty acid and cholesterol metabolism mediated by liver x receptor alpha.
Mol Endocrinol, 14 (2000), pp. 741-752
[13.]
J.Y. Chiang, R. Kimmel, D. Stroup.
Regulation of cholesterol 7alphahydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha.
Gene, 262 (2001), pp. 257-265
[14.]
C. Bocos, M. Castro, G. Quack, E. Herrera.
Studies with etofibrate in the rat, II: a comparison of the effects of prolonged and acute administration on plasma lipids, liver enzymes and adipose tissue lipolysys.
Biochim Biophys Acta, 1168 (1993), pp. 340-347
[15.]
M. Combettes-Souverain, F. Milliat, C. Sérougne, J. Férézou, C. Lutton.
SR-BI et metabolisme du cholesterol.
Medicine/Sciences, 15 (1999), pp. 1252-1258
[16.]
E. Sehayek, J.G. Ono, S. Shefer, L.B. Nguyen, N. Wang, A.K. Batta, et al.
Biliary cholesterol excretion: a novel mechanism that regulates cholesterol absorption.
Proc Natl Acad Sci USA, 95 (1998), pp. 10194-10199
[17.]
M. Fucks, B. Ivandic, O. Müller, C. Schalla, J. Scheibner, P. Bartsch, et al.
Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBI.
Hepatology, 33 (2001), pp. 1451-1459
[18.]
P. Mardones, V. Quiñone, L. Amigo, M. Moreno, J.F. Miquel, M. Schwarz, et al.
Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice.
J Lipid Res, 42 (2001), pp. 170-180
[19.]
G. Schmitz, T. Langmann, S. Heimerl.
Role of ABCG1 and other ABCG family members in lipid metabolism.
J Lipid Res, 42 (2001), pp. 1513-1520
[20.]
P. Borst, N. Zelcer, A. Van Helvoort.
ABC transporters in lipid transport.
Biochem Biophys Acta, 1486 (2000), pp. 128-144
[21.]
G. Chinetti, F.G. Gbaguidi, S. Griglio, Z. Mallat, M. Antonucci, P. Poulain, et al.
CLA-1/SR-BI expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferatoractivated receptors.
Circulation, 101 (2000), pp. 2411-2417
[22.]
J. Chianale, V. Vollrath, A.M. Wielandt, L. Amigo, A. Rigotti, F. Nervi, et al.
Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse.
Biochem J, 314 (1996), pp. 781-786
[23.]
S. Miranda, V. Vollrath, A.M. Wielandt, G. Loyola, M. Bronfman, J. Chianale.
Overexpression of mdr2 gene by peroxisome proliferators in the mouse liver.
J Hepatol, 26 (1997), pp. 1331-1339
[24.]
N. Roglans, A. Bellido, C. Rodríguez, A. Cabrero, F. Novell, E. Ros, et al.
Fibrate treatment does not modify the expression of acyl-coa oxidase in human liver.
Clin Pharmacol Ther, 72 (2002), pp. 692-701
[25.]
N. Roglans, E. Sanguino, C. Peris, M. Alegret, M. Vázquez, T. Adzet, et al.
Atorvastatin treatment induced PPAR alpha expression and decreased plasma non-esterified fatty acids and liver triglyceride in fructose fed rats.
J Pharmacol Exp Ther, 302 (2002), pp. 232-239
[26]
W.C. Gause, J. Adamovicz.
Use of PCR to quantitate relative differences in gene expression, PCR primer.
A laboratory manual,
[27.]
S.K. Cheema, L.B. Agellon.
The murine and human cholesterol 7 alpha hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor alpha.
J Biol Chem, 275 (2000), pp. 12530-12536
[28.]
M. Marrapodi, J.Y.L. Chiang.
Peroxisome proliferator-activated receptor alpha (PPARa) and agonist inhibit cholesterol 7 alpha hydroxylase gene (CYP7A1) transcription.
J Lipid Res, 41 (2000), pp. 514-520
[29.]
D.D. Patel, B.L. Knight, A.K. Soutar, G.F. Gibbons, D.P. Wade.
The effect of peroxisome-proliferator-activated receptor alpha on the activity of the cholesterol 7 alpha hydroxylase gene.
Biochem J, 351 (2000), pp. 747-753
[30.]
D. Stahlberg, E. Reihnér, S. Ewerth, K. Einarsson, B. Angelin.
Effects of bezafibrate on hepatic cholesterol metabolism.
Eur J Clin Pharmacol, 40 (1991), pp. S33-S36
[31.]
M. Müller.
Transcriptional control of hepatocanalicular transporter gene expression.
Sem Liver Dis, 20 (2000), pp. 323-337
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos