metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Sida, antirretrovirales y alteraciones metabólicas complejas
Journal Information
Vol. 18. Issue S1.
Hot topics en arteriosclerosis
Pages 2-9 (June 2006)
Share
Share
Download PDF
More article options
Vol. 18. Issue S1.
Hot topics en arteriosclerosis
Pages 2-9 (June 2006)
Hot topics en arteriosclerosis
Full text access
Sida, antirretrovirales y alteraciones metabólicas complejas
Aids, antiretroviral therapy and complex metabolic alterations
Visits
607
C. Alonso-Villaverde
Corresponding author
cavillaverde@grupsagessa.com

Correspondencia: Dr. C. Alonso-Villaverde. Servei de Medicina Interna. Hospital Sant Joan de Reus. Sant Joan, s/n. 43201 Reus. Tarragona. España.
, L. Masana
Servei de Medicina Interna. Hospital Sant Joan de Reus. Reus. Tarragona. España
This item has received
Article information

El tratamiento antirretroviral combinado y la propia infección por el virus de la inmunodeficiencia humana (VIH) se asocian a varios trastornos metabólicos como la lipodistrofia, la dislipemia, la resistencia a la insulina, la arteriosclerosis subclínica, la hipertensión y las alteraciones del metabolismo óseo. La possible etiopatogenia se relaciona con alteraciones en el ADN mitocondrial, en la diferenciación y función de los adipocitos e inhibición de los transportadores de membrana de glucosa. Las dislipemias son causadas por la inhibición de las lipasas endoteliales, por el incremento de síntesis de la apoproteína B y la disminución de la expresión del receptor de las lipoproteínas de baja densidad. Sin embargo, antirretrovirales como el efavirenz incrementan las concentraciones del colesterol transportado por las lipoproteínas de alta densidad en más de un 30%. Aunque la terapia antirretroviral puede inducir disfunción endotelial, la arteriosclerosis subclínica parece estar más relacionada con el proceso inflamatorio e inmunitario. La hipertensión y el trastorno del metabolismo óseo se asocian al tiempo de exposición acumulado del tratamiento antirretroviral. Las causas de las alteraciones metabólicas en el síndrome de la inmuodeficiencia adquirida (sida) son múltiples y complejas, y todavía no existen soluciones satisfactorias para éstas.

Palabras clave:
VIH
Alteraciones metabólicas
Arteriosclerosis
Terapia antirretroviral

Combination antiretroviral therapy and human immunodeficiency virus (HIV) infection are associated with several metabolic disorders such as lipodystrophy, dyslipidemia, insulin resistance, subclinical arteriosclerosis, hypertension, and bone metabolism alterations. The pathogenesis may be related to alterations in mitochondrial DNA and adipocyte differentiation and function and inhibition of glucose membrane transporters. Dyslipidemia is caused by inhibition of endothelial lipase, increased apolipoprotein B synthesis, and a reduction in low-density lipoprotein receptor expression. Antiretroviral drugs such as efavirenz increase the concentrations of cholesterol transported by high-density lipoprotein by more than 30%. Although antiretroviral therapy can induce endothelial dysfunction, subclinical arteriosclerosis seems to be more closely related to the inflammatory and immune process. Hypertension and bone metabolism disorders are associated with the cumulative time of exposure to antiretroviral therapy. The causes of metabolic alterations in aids are multiple and complex and satisfactory solutions are still lacking.

Key words:
HIV
Metabolic alterations
Arteriosclerosis
Antiretroviral therapy
Full text is only aviable in PDF
Bibliografía
[1.]
UNAIDS/WHO. 2004 report on the global Aids epidemic. Disponible en: http://www.unaids.org
[2.]
US Department of Health and Human Services, 2006. Disponible en: http://www.aidsinfo.nih.gov/Guidelines
[3.]
S. Grinspoon, A. Carr.
Cardiovascular risk and body-fat abnormalities in HIV-infected adults.
N Engl J Med, 352 (2005), pp. 48-62
[4.]
R. Palacios, J. Santos, A. Garcia, E. Castells, M. González, J. Ruiz, et al.
Impact of highly active antiretroviral therapy on blood pressure in HIV-infected patients. A prospective study in a cohort of naive patients.
[5.]
P.Y. Hsue, J.C. Lo, A. Franklin, A.F. Bolger, J.N. Martin, S.G. Deeks, et al.
Progression of atherosclerosis as assessed by carotid intimamedia thickness in patients with HIV infection.
Circulation, 109 (2004), pp. 1603-1608
[6.]
A.M. García Aparicio, S. Muñoz Fernández, J. González, J.R. Arribas, J.M. Pena, J.J. Vázquez, et al.
Abnormalities in the bone mineral metabolism in HIV-infected patients.
Clin Rheumatol, 6 (2005), pp. 1-3
[7.]
D. Chen, A. Misra, A. Garg.
Lipodystrophy in human immunodeficiency virus-infected patients.
J Clin Endocrinol Metab, 87 (2002), pp. 4845-4856
[8.]
P. Bacchetti, B. Gripshover, C. Grunfeld, S. Heymsfield, H. McCreath, D. Osmond, Study of Fat Redistribution and Metabolic Change in HIV Infection (FRAM), et al.
Fat distribution in men with HIV infection.
J Acquir Immune Defic Syndr, 40 (2005), pp. 121-131
[9.]
A. Carr, S. Emery, M. Law, R. Puls, J.D. Lundgren, W.G. Powderly, HIV Lipodystrophy Case Definition Study Group.
An objective case definition of lipodystrophy in HIV-infected adults: a casecontrol study.
Lancet, 361 (2003), pp. 726-735
[10.]
E. Bernasconi, K. Boubaker, C. Junghans, M. Flepp, H.J. Furrer, A. Haensel, et al.
Swiss HIV Cohort Study. Abnormalities of body fat distribution in HIV-infected persons treated with antiretroviral drugs: The Swiss HIV Cohort Study.
J Acquir Immune Defic Syndr, 31 (2002), pp. 50-55
[11.]
J. Miller, A. Carr, S. Emery, M. Law, S. Mallal, D. Baker, et al.
HIV lipodystrophy: prevalence, severity and correlates of risk in Australia.
HIV Med, 4 (2003), pp. 293-301
[12.]
P. Domingo, X. Matias-Guiu, R.M. Pujol, E. Francia, E. Lagarda, M.A. Sambeat, et al.
Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy.
Aids, 13 (1999), pp. 2261-2267
[13.]
T. Tchkonia, Y.D. Tchoukalova, N. Giorgadze, T. Pirtskhalava, I. Karagiannides, R.A. Forse, et al.
Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots.
Am J Physiol Endocrinol Metab, 288 (2005), pp. E267-E277
[14.]
C.M. Shikuma, N. Hu, C. Milne, F. Yost, C. Waslien, S. Shimizu, et al.
Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV-infected individuals with peripheral lipoatrophy.
Aids, 15 (2001), pp. 1801-1809
[15.]
F. Villarroya, P. Domingo, M. Giralt.
Lipodystrophy associated with highly active antiretroviral therapy for HIV infection: the adipocyte as a target of antiretroviral-induced mitochondrial toxicity.
Trends Pharmacol Sci, 26 (2005), pp. 88-93
[16.]
M.W. Rajala, P.E. Scherer.
The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis.
Endocrinology, 144 (2003), pp. 3765-3773
[17.]
J.L. Miner.
The adipocyte as an endocrine cell.
J Anim Sci, 82 (2004), pp. 935-941
[18.]
J.M. Ntambi, K. Young-Cheul.
Adipocyte differentiation and gene expression.
J Nutr, 130 (2000), pp. 3122S-3126S
[19.]
M. Caron, M. Auclair, C. Vigouroux, M. Glorian, C. Forest, J. Capeau.
The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance.
Diabetes, 50 (2001), pp. 1378-1388
[20.]
P. Dowell, M.D. Lane.
C/EBPalpha reverses the anti-adipogenic effects of the HIV protease inhibitor nelfinavir.
Biochem Biophys Res Commun, 327 (2005), pp. 571-574
[21.]
C. Lagathu, M. Kim, M. Maachi, C. Vigouroux, P. Cervera, J. Capeau, et al.
HIV antiretroviral treatment alters adipokine expression and insulin sensitivity of adipose tissue in vitro and in vivo.
[22.]
P.W. Mallon, H. Wand, M. Law, J. Miller, D.A. Cooper, A. Carr, HIV Lipodystrophy Case Definition Study; Australian Lipodystrophy Prevalence Survey Investigators.
Buffalo hump seen in HIV-associated lipodystrophy is associated with hyperinsulinemia but not dyslipidemia.
J Acquir Immune Defic Syndr, 38 (2005), pp. 156-162
[23.]
D. Nolan, C. Pace.
Potential roles for uncoupling proteins in HIV lipodystrophy.
Mitochondrion, 4 (2004), pp. 185-191
[24.]
M. Gerschenson, K. Brinkman.
Mitochondrial dysfunction in Aids and its treatment.
Mitochondrion, 4 (2004), pp. 763-777
[25.]
C.S. Pace, A.M. Martin, E.L. Hammond, C.D. Mamotte, D.A. Nolan, S.A. Mallal.
Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients.
Antivir Ther, 8 (2003), pp. 323-331
[26.]
N. Friis-Moller, R. Weber, P. Reiss, R. Thiebaut, O. Kirk, A. d’Arminio Monforte, DAD study group, et al.
Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. Results from the DAD study.
[27.]
C. Hadigan, J.B. Meigs, C. Corcoran, P. Rietschel, S. Piecuch, N. Basgoz, et al.
Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy.
Clin Infect Dis, 32 (2001), pp. 130-139
[28.]
C. Grunfeld, M. Pang, W. Doerrler, J.K. Shigenaga, P. Jensen, K.R. Feingold.
Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome.
J Clin Endocrinol Metab, 74 (1992), pp. 1045-1052
[29.]
C. Grunfeld, W. Doerrler, M. Pang, P. Jensen, K.H. Weisgraber, K.R. Feingold.
Abnormalities of apolipoprotein E in the acquired immunodeficiency syndrome.
J Clin Endocrinol Metab, 82 (1997), pp. 3 734-3740
[30.]
M.K. Hellerstein, C. Grunfeld, K. Wu, M. Christiansen, S. Kaempfer, C. Kletke, et al.
Increased de novo hepatic lipogenesis in human immunodeficiency virus infection.
J Clin Endocrinol Metab, 76 (1993), pp. 559-565
[31.]
N. Christeff, J.C. Melchior, P. De Truchis, C. Perronne, M.L. Gougeon.
Increased serum interferon alpha in HIV-1 associated lipodystrophy syndrome.
Eur J Clin Invest, 33 (2003), pp. 735-736
[32.]
G.V. Matthews, G.J. Moyle, S. Mandalia, M. Bower, M. Nelson, B.G. Gazzard.
Absence of association between individual thymidine analogues or nonnucleoside analogues and lipid abnormalities in HIV-1-infected persons on initial therapy.
J Acquir Immune Defic Syndr, 24 (2000), pp. 310-315
[33.]
J.E. Gallant, S. Staszewski, A.L. Pozniak, E. DeJesus, J.M. Suleiman, M.D. Miller, 903 Study Group, et al.
Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial.
JAMA, 292 (2004), pp. 191-201
[34.]
J.M. Lenhard, D.K. Croom, J.E. Weiel, D.A. Winegar.
HIV protease inhibitors stimulate hepatic triglyceride synthesis.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 2625-2629
[35.]
R.L. Murphy, I. Sanne, P. Cahn, P. Phanuphak, L. Percival, T. Kelleher, et al.
Dose-ranging, randomized, clinical trial of atazanavir with lamivudine and stavudine in antiretroviral-naive subjects: 48-week results.
[36.]
J.Q. Purnell, A. Zambon, R.H. Knopp, D.J. Pizzuti, R. Achari, J.M. Leonard, et al.
Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects.
Aids, 14 (2000), pp. 51-57
[37.]
D. Periard, A. Telenti, P. Sudre, J.J. Cheseaux, P. Halfon, M.J. Reymond, et al.
Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. The Swiss HIV Cohort Study.
Circulation, 100 (1999), pp. 700-705
[38.]
M. Schmitz, G.M. Michl, R. Walli, J. Bogner, A. Bedynek, D. Seidel, et al.
Alterations of apolipoprotein B metabolism in HIV-infected patients with antiretroviral combination therapy.
J Acquir Immune Defic Syndr, 26 (2001), pp. 225-235
[39.]
J.S. Liang, O. Distler, D.A. Cooper, H. Jamil, R.J. Deckelbaum, H.N. Ginsberg, et al.
HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia.
Nat Med, 7 (2001), pp. 1327-1331
[40.]
H. Tran, S. Robinson, I. Mikhailenko, D.K. Strickland.
Modulation of the LDL receptor and LRP levels by HIV protease inhibitors.
J Lipid Res, 44 (2003), pp. 1859-1869
[41.]
E. Bonnet, J.B. Ruidavets, J. Tuech, J. Ferrieres, X. Collet, J. Fauvel, et al.
Apoprotein C-III and E-containing lipoparticles are markedly increased in HIV-infected patients treated with protease inhibitors: association with the development of lipodystrophy.
J Clin Endocrinol Metab, 86 (2001), pp. 296-302
[42.]
A. Carpentier, B.W. Patterson, K.D. Uffelman, I. Salit, G.F. Lewis.
Mechanism of highly active anti-retroviral therapy-induced hyperlipidemia in HIV-infected individuals.
Atherosclerosis, 178 (2005), pp. 165-172
[43.]
F. Van Leth, P. Phanuphak, E. Stroes, B. Gazzard, P. Cahn, F. Raffi, et al.
Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naive patients infected with HIV-1.
[44.]
E. Zapico-Muñiz, O. Jorba-Castany, R. Bonet-Marqués, J. Ordóñez-Llanos.
A cause of falsely low HDL concentrations in HIV-infected patients: increased polyclonal serum immunoglobulin.
[45.]
H. Rose, I. Woolley, J. Hoy, A. Dart, B. Bryant, A. Mijch, et al.
HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment.
Metabolism, 55 (2006), pp. 90-95
[46.]
W.M. El-Sadr, C.M. Mullin, A. Carr, C. Gibert, C. Rappoport, F. Visnegarwala, et al.
Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort.
[47.]
B.F. Asztalos, E.J. Schaefer, K.V. Horvath, C.E. Cox, S. Skinner, J. Gerrior, et al.
Protease inhibitor-based HAART, HDL, and CHD-risk in HIV-infected patients.
Atherosclerosis, 184 (2006), pp. 72-77
[48.]
M.L. Montes, F. Pulido, C. Barros, E. Condes, R. Rubio, C. Cepeda, et al.
Lipid disorders in antiretroviral-naive patients treated with lopinavir/ ritonavir-based HAART: frequency, characterization and risk factors.
J Antimicrob Chemother, 55 (2005), pp. 800-804
[49.]
E.M. Albuquerque, E.C. de Faria, H.C. Oliveira, D.O. Magro, L.N. Castilho.
High frequency of Fredrickson's phenotypes IV and IIb in Brazilians infected by human immunodeficiency virus.
BMC Infect Dis, 5 (2005), pp. 47
[50.]
E. Negredo, J. Ribalta, R. Ferre, J. Salazar, C. Rey-Joly, G. Sirera, et al.
Efavirenz induces a striking and generalized increase of HDLcholesterol in HIV-infected patients.
Aids, 18 (2004), pp. 819-821
[51.]
C. Alonso-Villaverde, B. Coll, F. Gómez, S. Parra, J. Camps, J. Joven, et al.
The efavirenz-induced increase in HDL-cholesterol is influenced by the multidrug resistance gene 1 C3435T polymorphism.
Aids, 19 (2005), pp. 341-342
[52.]
C. Alonso-Villaverde, T. Segues, B. Coll-Crespo, R. Pérez-Bernalte, A. Rabassa, M. Gomila, et al.
High-density lipoprotein concentrations relate to the clinical course of HIV viral load in patients undergoing antiretroviral therapy.
[53.]
B.O. Taiwo.
Insulin resistance, HIV infection, and anti-HIV therapies.
Aids Read, 15 (2005), pp. 171-176
179-80
[54.]
C. Hadigan, S. Borgonha, J. Rabe, V. Young, S. Grinspoon.
Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy.
Metabolism, 51 (2002), pp. 1143-1147
[55.]
J.P. Bastard, M. Caron, H. Vidal, V. Jan, M. Auclair, C. Vigouroux, et al.
Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance.
Lancet, 359 (2002), pp. 1026-1031
[56.]
H. Murata, P.W. Hruz, M. Mueckler.
The mechanism of insulin resistance caused by HIV protease inhibitor therapy.
J Biol Chem, 275 (2000), pp. 20251-20254
[57.]
R. Thiebaut, W.M. El-Sadr, N. Friis-Moller, M. Rickenbach, P. Reiss, A.D. Monforte, et al.
Data Collection of Adverse events of anti-HIV Drugs Study Group. Predictors of hypertension and changes of blood pressure in HIV-infected patients.
Antivir Ther, 10 (2005), pp. 811-823
[58.]
P.Y. Hsue, D.D. Waters.
What a cardiologist needs to know about patients with human immunodeficiency virus infection?.
Circulation, 112 (2005), pp. 3947-3957
[59.]
P. Maggi, G. Serio, G. Epifani, G. Fiorentino, A. Saracino, C. Fico, et al.
Premature lesions of the carotid vessels in HIV-1-infected patients treated with protease inhibitors.
Aids, 14 (2000), pp. F123-F128
[60.]
M. Depairon, S. Chessex, P. Sudre, N. Rodondi, N. Doser, J.P. Chave, Swiss HIV Cohort Study, et al.
Premature atherosclerosis in HIVinfected individuals—focus on protease inhibitor therapy.
Aids, 15 (2001), pp. 329-334
[61.]
P. Mercie, R. Thiebaut, V. Lavignolle, J.L. Pellegrin, M.C. Yvorra-Vives, P. Morlat, et al.
Evaluation of cardiovascular risk factors in HIV-1 infected patients using carotid intima-media thickness measurement..
Ann Med, 34 (2002), pp. 55-63
[62.]
C. Alonso-Villaverde, B. Coll, S. Parra, M. Montero, N. Calvo, M. Tous, et al.
Atherosclerosis in patients infected with HIV is influenced by a mutant monocyte chemoattractant protein-1 allele.
Circulation, 110 (2004), pp. 2204-2209
[63.]
B. Coll, C. Alonso-Villaverde, S. Parra, M. Montero, M. Tous, J. Joven, et al.
The stromal derived factor-1 mutated allele (SDF1-3’A) is associated with a lower incidence of atherosclerosis in HIV-infected patients.
Aids, 19 (2005), pp. 1877-1883
[64.]
K. De Gaetano Donati, R. Rabagliati, M. Tumbarello, E. Tacconelli, C. Amore, R. Cauda, et al.
Increased soluble markers of endothelial dysfunction in HIV-positive patients under highly active antiretroviral therapy.
[65.]
M. Seigneur, J. Constans, A. Blann, M. Renard, J.L. Pellegrin, J. Amiral, et al.
Soluble adhesion molecules and endothelial cell damage in HIV infected patients.
Thromb Haemost, 77 (1997), pp. 646-649
[66.]
M. Rusnati, M. Presta.
HIV-1 Tat protein and endothelium: from protein/cell interaction to Aids-associated pathologies.
Angiogenesis, 5 (2002), pp. 141-151
[67.]
C. Jericó, H. Knobel, M. Montero, J. Ordóñez-Llanos, A. Guelar, J.L. Gimeno, et al.
Metabolic syndrome among HIV-infected patients: prevalence, characteristics, and related factors.
Diabetes Care, 28 (2005), pp. 132-137
Copyright © 2006. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos