was read the article
array:23 [ "pii" => "S2529912318000165" "issn" => "25299123" "doi" => "10.1016/j.artere.2017.10.003" "estado" => "S300" "fechaPublicacion" => "2018-03-01" "aid" => "423" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clin Investig Arterioscler. 2018;30:64-71" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1 "HTML" => 1 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0214916817301298" "issn" => "02149168" "doi" => "10.1016/j.arteri.2017.10.003" "estado" => "S300" "fechaPublicacion" => "2018-03-01" "aid" => "423" "copyright" => "Sociedad Española de Arteriosclerosis" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clin Invest Arterioscl. 2018;30:64-71" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 202 "formatos" => array:3 [ "EPUB" => 1 "HTML" => 130 "PDF" => 71 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Valoración del colesterol no HDL como predictor de episodios cardiovasculares no mortales en una cohorte prospectiva de origen poblacional" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "64" "paginaFinal" => "71" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Evaluation of non-HDL cholesterol as a predictor of non-fatal cardiovascular events in a prospective population cohort" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2856 "Ancho" => 1739 "Tamanyo" => 245395 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Probabilidades de supervivencia acumulada al valorar la aparición de primeros episodios cardiovasculares no mortales según la clasificación del colesterol no-HDL en terciles (A) o el colesterol de las LDL (B). Se ha utilizado el método de Kaplan-Meier, y la diferencia entre los grupos se ha calculado con el test de rangos logarítmicos.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Julio A. Carbayo Herencia, Marta Simarro Rueda, Antonio Palazón Bru, Francisca Molina Escribano, Isabel Ponce García, Luis Miguel Artigao Ródenas, David Caldevilla Bernardo, Juan A. Divisón Garrote, Vicente Francisco Gil Guillén" "autores" => array:10 [ 0 => array:2 [ "nombre" => "Julio A." "apellidos" => "Carbayo Herencia" ] 1 => array:2 [ "nombre" => "Marta" "apellidos" => "Simarro Rueda" ] 2 => array:2 [ "nombre" => "Antonio" "apellidos" => "Palazón Bru" ] 3 => array:2 [ "nombre" => "Francisca" "apellidos" => "Molina Escribano" ] 4 => array:2 [ "nombre" => "Isabel" "apellidos" => "Ponce García" ] 5 => array:2 [ "nombre" => "Luis Miguel" "apellidos" => "Artigao Ródenas" ] 6 => array:2 [ "nombre" => "David" "apellidos" => "Caldevilla Bernardo" ] 7 => array:2 [ "nombre" => "Juan A." "apellidos" => "Divisón Garrote" ] 8 => array:2 [ "nombre" => "Vicente Francisco" "apellidos" => "Gil Guillén" ] 9 => array:1 [ "colaborador" => "Todos en nombre del Grupo de Enfermedades Vasculares de Albacete (GEVA)" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2529912318000165" "doi" => "10.1016/j.artere.2017.10.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529912318000165?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0214916817301298?idApp=UINPBA00004N" "url" => "/02149168/0000003000000002/v1_201803210410/S0214916817301298/v1_201803210410/es/main.assets" ] ] "itemSiguiente" => array:18 [ "pii" => "S2529912318000190" "issn" => "25299123" "doi" => "10.1016/j.artere.2018.03.003" "estado" => "S300" "fechaPublicacion" => "2018-03-01" "aid" => "436" "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Clin Investig Arterioscler. 2018;30:72-3" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>" "titulo" => "No-HDL-cholesterol as risk marker and therapeutic goal" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "72" "paginaFinal" => "73" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Colesterol no-HDL como marcador de riesgo y objetivo terapéutico" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Jesús Millán Núnez-Cortés" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Jesús Millán" "apellidos" => "Núnez-Cortés" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0214916818300238" "doi" => "10.1016/j.arteri.2018.02.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0214916818300238?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529912318000190?idApp=UINPBA00004N" "url" => "/25299123/0000003000000002/v1_201804090408/S2529912318000190/v1_201804090408/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2529912318000153" "issn" => "25299123" "doi" => "10.1016/j.artere.2018.03.002" "estado" => "S300" "fechaPublicacion" => "2018-03-01" "aid" => "419" "copyright" => "Sociedad Española de Arteriosclerosis" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clin Investig Arterioscler. 2018;30:56-63" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1 "HTML" => 1 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Assessment of anticoagulation treatments in non-valvular atrial fibrillation patients diagnosed in a basic health area" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "56" "paginaFinal" => "63" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Valoración del tratamiento anticoagulante en pacientes diagnosticados de fibrilación auricular no valvular en una zona básica de salud" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1113 "Ancho" => 2428 "Tamanyo" => 142774 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">INR range and adherence to INR testing in patients being treated with vitamin K antagonists.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Beatriz M. Aguilera Alcaraz, José Abellán Huerta, Julio Antonio Carbayo Herencia, Consuelo Ariza Copado, Fernando Hernández Menárguez, José Abellán Alemán" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Beatriz M." "apellidos" => "Aguilera Alcaraz" ] 1 => array:2 [ "nombre" => "José" "apellidos" => "Abellán Huerta" ] 2 => array:2 [ "nombre" => "Julio Antonio" "apellidos" => "Carbayo Herencia" ] 3 => array:2 [ "nombre" => "Consuelo" "apellidos" => "Ariza Copado" ] 4 => array:2 [ "nombre" => "Fernando" "apellidos" => "Hernández Menárguez" ] 5 => array:2 [ "nombre" => "José" "apellidos" => "Abellán Alemán" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0214916817301109" "doi" => "10.1016/j.arteri.2017.08.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0214916817301109?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529912318000153?idApp=UINPBA00004N" "url" => "/25299123/0000003000000002/v1_201804090408/S2529912318000153/v1_201804090408/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Evaluation of non-HDL cholesterol as a predictor of non-fatal cardiovascular events in a prospective population cohort" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "64" "paginaFinal" => "71" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Julio A. Carbayo Herencia, Marta Simarro Rueda, Antonio Palazón Bru, Francisca Molina Escribano, Isabel Ponce García, Luis Miguel Artigao Ródenas, David Caldevilla Bernardo, Juan A. Divisón Garrote, Vicente Francisco Gil Guillén" "autores" => array:10 [ 0 => array:4 [ "nombre" => "Julio A." "apellidos" => "Carbayo Herencia" "email" => array:1 [ 0 => "julio.carbayo.herencia@gmail.com" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Marta" "apellidos" => "Simarro Rueda" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 2 => array:3 [ "nombre" => "Antonio" "apellidos" => "Palazón Bru" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Francisca" "apellidos" => "Molina Escribano" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] ] ] 4 => array:3 [ "nombre" => "Isabel" "apellidos" => "Ponce García" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">f</span>" "identificador" => "aff0030" ] ] ] 5 => array:3 [ "nombre" => "Luis Miguel" "apellidos" => "Artigao Ródenas" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">g</span>" "identificador" => "aff0035" ] ] ] 6 => array:3 [ "nombre" => "David" "apellidos" => "Caldevilla Bernardo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">h</span>" "identificador" => "aff0040" ] ] ] 7 => array:3 [ "nombre" => "Juan A." "apellidos" => "Divisón Garrote" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">i</span>" "identificador" => "aff0045" ] ] ] 8 => array:3 [ "nombre" => "Vicente Francisco" "apellidos" => "Gil Guillén" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 9 => array:2 [ "colaborador" => "all on behalf of the Grupo de Enfermedades Vasculares de Albacete Vascular Disease Group of Albacete GEVA" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] ] "afiliaciones" => array:9 [ 0 => array:3 [ "entidad" => "Unidad de Lípidos, Hospital Quirónsalud, Albacete, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Cátedra de Riesgo Cardiovacular, Universidad Católica de San Antonio (UCAM), Murcia, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Medicina Familiar y Comunitaria, Centro de Salud «Zona IV», Albacete, Spain" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Medicina Familiar y Comunitaria, Centro de Salud Casas Ibáñez, Casas Ibáñez, Albacete, Spain" "etiqueta" => "e" "identificador" => "aff0025" ] 5 => array:3 [ "entidad" => "Medicina Familiar y Comunitaria, Centro de Salud Ayna, Ayna, Albacete, Spain" "etiqueta" => "f" "identificador" => "aff0030" ] 6 => array:3 [ "entidad" => "Medicina Familiar y Comunitaria, Centro de Salud de Villacerrada, Villacerrada, Albacete, Spain" "etiqueta" => "g" "identificador" => "aff0035" ] 7 => array:3 [ "entidad" => "Servicio de Radiodiagnóstico, Hospital General de Almansa, Almansa, Albacete, Spain" "etiqueta" => "h" "identificador" => "aff0040" ] 8 => array:3 [ "entidad" => "Cátedra de Medicina Familiar y Comunitaria, Grado de Medicina, UCAM, Murcia, Spain" "etiqueta" => "i" "identificador" => "aff0045" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Valoración del colesterol no HDL como predictor de episodios cardiovasculares no mortales en una cohorte prospectiva de origen poblacional" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2588 "Ancho" => 1573 "Tamanyo" => 204436 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Cumulative survival probabilities on assessing the onset of initial non-fatal cardiovascular events according to the classification of non-HDL cholesterol in tertiles (A) or LDL cholesterol (B). The Kaplan–Meier method was used and the difference between the groups was calculated using the log-rank test.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">It is now more than 100 years since 1910 when Adolf Windaus<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">1</span></a> first observed that caseous plaques from human aortas contained 25-fold more cholesterol than normal aortas, and the Miller brothers<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">2</span></a> later observed the protective effect of high-density lipoprotein cholesterol (HDL-C) against coronary heart disease. Since that time, the concept of cardiovascular disease risk factors (CVRF), a generalised term coined in the Framingham cohort study,<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">3</span></a> has been consolidated to include total cholesterol (TC) and decreased HDL-C levels.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Numerous prospective cohort studies, clinical trials and meta-analyses have provided sufficient evidence of the impact of such factors on the onset of cardiovascular morbidity and mortality, and have therefore been used as the basis for successive guidelines in order to prevent cardiovascular diseases (CVD) due to atherosclerosis, which continues to be of paramount importance.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">4</span></a> Recently, the latest two guidelines published on CVD prevention<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">5</span></a> and the diagnosis and management of dyslipidaemias<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">6</span></a> both consider low-density lipoprotein cholesterol (LDL-C) to be the primary target of therapy. This does not tend to be calculated by direct measurement but rather indirectly using the Friedewald formula (FF),<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">7</span></a> which in turn depends on fasting triglyceride (TG) levels, and can only be estimated if TG<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>400<span class="elsevierStyleHsp" style=""></span>mg/dl. Nevertheless, other authors consider that lower TG figures (between 200 and 400<span class="elsevierStyleHsp" style=""></span>mg/dl) may still distort the actual LDL-C value and should be used with caution in certain pathologies, such as diabetes mellitus (DM), kidney failure and liver disease.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">8</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">However, in addition to LDL-C, non-HDL cholesterol (non-HDL-C), calculated by subtracting HDL-C from total cholesterol, represents the cholesterol content present in atherogenic lipoproteins (<span class="elsevierStyleItalic">i.e.</span> apolipoprotein B (apoB)-containing lipoproteins: very low-density lipoproteins (VLDL), VLDL remnants, intermediate-density lipoproteins (IDL) and lipoprotein(a)) and could therefore be an alternative to LDL-C as the treatment target since, in addition to avoiding fasting and problems with applying the FF in the aforementioned pathologies, it has been observed to possibly be a better or at least a similar predictor of CVD than LDL-C, although this aspect has not yet been clarified.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">6</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">Therefore, the main objective of this study was to assess the predictive capacity of both non-HDL-C and LDL-C, when the FF (TG<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>400<span class="elsevierStyleHsp" style=""></span>mg/dl)<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">6</span></a> is applicable to its calculation, in the onset of new non-fatal cardiovascular events in a prospective Spanish population-based cohort.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Material and methods</span><p id="par0025" class="elsevierStylePara elsevierViewall">The cohort study involved two examinations: the first in 1992–1994 and the second in 2004–2006. The study sample was taken from the general population aged 18 years or above and was obtained by two-stage, stratified, random sampling with stages proportional to the size of the population from which participants were selected. A description of the population included at the first examination cycle has already been given in other publications.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">9,10</span></a> At the second examination cycle, 10–14 years after the first examination, data on non-fatal cardiovascular events, individuals with no such events at the end of the study and losses to follow-up were collected, along with the date of each event that occurred. This information was obtained through face-to-face interviews and confirmation from the patient's medical records.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Non-fatal CVDs recorded during follow-up included: any kind of clinically documented angina; myocardial infarction with a clinical report including enzyme activity, ultrasound and/or angiography, or definitive determination with baseline ECG; stroke in the event of permanent and objectified neurological deficit, or when neurological symptoms and/or signs were observed and resolved <span class="elsevierStyleItalic">ad integrum</span> and which attending physicians attributed to a transient ischaemic attack and peripheral artery disease, documented in the clinical report. Data on events were collected on a single occasion and for the first time.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Participants and variables included in the study</span><p id="par0035" class="elsevierStylePara elsevierViewall">Participants from the cohort who had not suffered any CVD were included in this study. The variables included in the analysis were the main CVRFs and those variables included in the adjusted multivariable analysis, which were similar to those assessed by the SCORE system<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">6</span></a>: age, gender, hypertension (HTN), DM, smoker status and non-HDL-C in one model, and the same variables in the other model but with LDL-C instead of non-HDL-C, for the population with TG<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>400<span class="elsevierStyleHsp" style=""></span>mg/dl in order to be able to calculate this parameter using the FF (LDL-C<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>TC<span class="elsevierStyleHsp" style=""></span>−<span class="elsevierStyleHsp" style=""></span>[HDL-C<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>TG/5]).<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">7</span></a> A patient was considered to have hypertension when systolic blood pressure (SBP) or diastolic blood pressure (DBP) was greater than or equal to 140 and 90<span class="elsevierStyleHsp" style=""></span>mmHg, respectively, or the patient was receiving drug treatment,<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">11</span></a> and to have DM when fasting plasma glucose levels were ≥126<span class="elsevierStyleHsp" style=""></span>mg/dl (checked on two occasions) or the patient was being treated with oral antidiabetic drugs or insulin.<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">12</span></a> Any participant who smoked on a daily basis was considered a smoker, regardless of the quantity smoked.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">13</span></a> Body mass index (BMI) was calculated by dividing the weight in kilograms by the square of the height in metres (kg/m<span class="elsevierStyleSup">2</span>) and obesity was divided into 3 categories according to BMI values: healthy weight between 18.5 and 24.9; overweight between 25 and 29.9, and obese<span class="elsevierStyleHsp" style=""></span>≥<span class="elsevierStyleHsp" style=""></span>30.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">14</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Statistical analysis</span><p id="par0040" class="elsevierStylePara elsevierViewall">Data were analysed using the software SPSS 15.0 (SPSS for Windows, 15.0, SPSS Inc., Chicago, IL). Qualitative variables are expressed as an exact value and percentage, while quantitative variables are expressed as the mean and standard deviation (SD). The association between qualitative variables was examined using the chi-square test or the Mantel–Haenszel test to test for a linear trend across groups. Means were compared using the Student's <span class="elsevierStyleItalic">t</span>-test for independent groups or the Mann–Whitney <span class="elsevierStyleItalic">U</span> test if the conditions of normality (using the Kolmogorov–Smirnoff or Shapiro–Wilk tests) were not met. When comparing more than two means, a one-way analysis of variance with Bonferroni <span class="elsevierStyleItalic">a posteriori</span> contrast was used. Both non-HDL-C and LDL-C were categorised based on tertile distribution of the sample. The probability of survival in these three groups was calculated by means of the Kaplan–Meier method, using the log-rank test to compare groups. The survival analysis takes into consideration both the time until the outcome of interest occurs and the time to end of follow-up due to other causes, such as not having any event at the end of the study or losses to follow-up for any reason, with participants in this situation known as censored individuals (and the time known as censored time), <span class="elsevierStyleItalic">i.e.</span> when follow-up ends in these individuals for a reason other than the event studied. The Cox regression model was used to identify variables with prognostic significance, checking the proportional hazards assumption using the Schoenfeld residual analysis.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">15</span></a> In this model, the relationship between non-HDL-C and LDL-C and the onset of new cardiovascular events was adjusted for age, gender, HTN, DM and smoker status. In hypothesis tests, the maximum error rate, alpha, was set at equal to or less than 5%.</p></span></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Results</span><p id="par0045" class="elsevierStylePara elsevierViewall">A total of 1322 individuals over the age of 18 from the census population of the province of Albacete participated in the first examination. After excluding 80 patients due to prior CVD and 56 due to a lack of laboratory results, 1186 participants were left in the non-HDL-C group. After then excluding 9 patients due to having TG<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>400<span class="elsevierStyleHsp" style=""></span>mg/dl, the sample left to assess the prognostic value of LDL-C included 1177 individuals. <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> shows the main CVRFs in the non-HDL-C and LDL-C groups distributed by gender. Given that most cholesterol is transported in LDL, the results in both groups follow the same trend, with the table showing that CVRFs are more common in men (except for obesity) than women, and there are no significant differences in age, DM and HTN. <a class="elsevierStyleCrossRefs" href="#tbl0010">Tables 2 and 3</a> show the relationship between these variables split into tertiles and the main CVRFs. These tables show that patients included in the third tertile, for both non-HDL-C and LDL-C, have significantly higher age, HTN, DM, BMI and obesity and a more unfavourable lipid profile, with this group therefore having a higher cardiovascular risk (CVR).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0050" class="elsevierStylePara elsevierViewall">The mean follow-up is the same in both groups: 10.7 years (SD<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.2). <a class="elsevierStyleCrossRef" href="#tbl0020">Table 4</a> shows the first non-fatal events that occurred during this period, affecting 6.2% of the total follow-up sample in the non-HDL-C group (56 events) and 6.0% in the LDL-C group (54 events). <a class="elsevierStyleCrossRef" href="#tbl0025">Table 5</a> shows the hazard ratios (HR) of the variables that were independent predictors after adjusting for gender, age, DM, HTN, smoker status and non-HDL-C in one model and for LDL-C in the second model. For each 30<span class="elsevierStyleHsp" style=""></span>mg/dl increase in non-HDL-C, the hazard ratio was 31% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.31; 95% CI: 1.06–1.61; <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.018) and for each 30<span class="elsevierStyleHsp" style=""></span>mg/dl increase in LDL-C, the hazard ratio was 27% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.27; 95% CI: 0.97–1.61; <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.068), which in this case did not reach statistical significance.</p><elsevierMultimedia ident="tbl0020"></elsevierMultimedia><elsevierMultimedia ident="tbl0025"></elsevierMultimedia><p id="par0055" class="elsevierStylePara elsevierViewall">Finally, <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows significant differences between the tertiles of each group, non-HDL-C and LDL-C, in the onset of new non-fatal CVD events (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.001 in both groups).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Discussion</span><p id="par0060" class="elsevierStylePara elsevierViewall">This study has shown that non-HDL-C is a predictor of non-fatal CVD, but LDL-C is not. In other words, when all apoB-containing lipoprotein particles included in non-HDL-C are taken into account, non-fatal CVD prediction rates are higher. This finding is in line with the high prevalence of metabolic syndrome in Spain<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">16</span></a> and changes in our study when no patients with high triglyceride levels are included in the sample, indicating the weight of the atherogenic nature of this type of particle.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">17</span></a> These results are also consistent with a meta-analysis conducted in patients treated with statins, which shows a stronger association between the risk of future major cardiovascular events and non-HDL-C than LDL-C and apoB.<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">18</span></a> There is no doubt that controlling LDL-C to prevent CVD is a primary objective,<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">19</span></a> as is the reduction of non-HDL-C.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">20</span></a> However, as plasma triglyceride levels rise, as tends to occur with metabolic syndrome, insulin resistance, type 2 diabetes and obesity, apoB-containing lipoprotein cholesterol increases as LDL particles are transformed in these conditions into smaller and denser particles, with LDL-C remaining stable.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">21</span></a> This indicates that LDL-C values underestimate the risk of elevated apoB-containing atherogenic lipoproteins. Underestimated LDL-C values have also been observed in patients with a very high or high cardiovascular risk with LDL-C target of less than 70<span class="elsevierStyleHsp" style=""></span>mg/dl, less than 100<span class="elsevierStyleHsp" style=""></span>mg/dl and TG value ≥150<span class="elsevierStyleHsp" style=""></span>mg/dl, just when more accurate CVR calculations are required.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">22</span></a> Therefore, non-HDL-C is profiled as an outstanding therapeutic target for the prevention of CVD, especially in patients with atherogenic dyslipidaemia and in high and very high risk patients, with the advantage that it is a robust test that can be calculated in all lipid profiles and requires no fasting.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">23</span></a> The importance of apoB-containing particles in the onset of initial non-fatal cardiovascular events is reflected in this study since, by excluding patients with TG<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>400<span class="elsevierStyleHsp" style=""></span>mg/dl, LDL-C no longer has a predictive capacity and the HR of non-HDL-C is instead significant.</p><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Strengths and limitations</span><p id="par0065" class="elsevierStylePara elsevierViewall">The main strength of this study is the fact that results are for a random sample drawn from the general population. It therefore presents solid rates of external validity and results can be extrapolated at least to the population from which the sample was taken. The main limitation is that the sample size is not very large and very few non-fatal cardiovascular events have been recorded. This may explain why LDL-C has not shown significant HRs, although the difference between the two HRs is small, indicating that, when the sample is taken from the general population, there are very few absolute differences in prognostic importance between LDL-C and non-HDL-C in non-fatal CVD.</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Conclusions</span><p id="par0070" class="elsevierStylePara elsevierViewall">In the general population, the results of our study show that, even when a population with high TG levels are included in the prediction, as occurs in metabolic syndrome (shown especially by abdominal obesity, prediabetes and diabetes), non-HDL-C gives the best prediction, even giving more accurate information regarding CVR. Like Ascaso and Carmena,<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">24</span></a> we believe that, in this group of patients, the therapeutic target should be non-HDL-C or apoB and not LDL-C.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Conflicts of interest</span><p id="par0075" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres1013549" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec972460" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1013550" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec972461" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Material and methods" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Participants and variables included in the study" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Statistical analysis" ] ] ] 6 => array:2 [ "identificador" => "sec0025" "titulo" => "Results" ] 7 => array:3 [ "identificador" => "sec0030" "titulo" => "Discussion" "secciones" => array:1 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Strengths and limitations" ] ] ] 8 => array:2 [ "identificador" => "sec0040" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "sec0045" "titulo" => "Conflicts of interest" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-08-01" "fechaAceptado" => "2017-10-09" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec972460" "palabras" => array:5 [ 0 => "Cardiovascular diseases" 1 => "Morbidity" 2 => "Atherosclerosis" 3 => "Risk factors" 4 => "Cohort studies" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec972461" "palabras" => array:5 [ 0 => "Enfermedad cardiovascular" 1 => "Morbilidad" 2 => "Aterosclerosis" 3 => "Factores de riesgo" 4 => "Estudio de cohortes" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Non-HDL cholesterol (non-HDL-C) is becoming relevant both in its participation in cardiovascular risk assessment and as a therapeutic target. The objective of the present study was to assess the independent predictive capacity of both non-HDL-C and LDL-C (the main priority in dyslipidemias to reduce cardiovascular risk), in cardiovascular morbidity in a population-based sample.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">A prospective cohort study involving 1186 individuals in the non-HDL-C group and 1177 in the LDL-C group, followed for 10.7<span class="elsevierStyleHsp" style=""></span>years (SD<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.2), who had not had any previous cardiovascular event. The predictor variables included in the adjustment were: gender, age, arterial hypertension, diabetes mellitus, smoker status and non-HDL-C in one group. In the other group, consisting of patients presenting TG levels of 400<span class="elsevierStyleHsp" style=""></span>mg/dl, non-HDL-C was replaced by LDL-C. Survival curves (Kaplan–Meier) were calculated and two Cox regression models were applied, one for each group.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Non-HDL-C group presented 6.2% of non-fatal cardiovascular episodes during follow-up and the LDL-C group 6.0%. After adjustment, for each 30<span class="elsevierStyleHsp" style=""></span>mg/dl increase in non-HDL-C, the incidence of new non-fatal cardiovascular events increased by 31% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.31, 95% CI: 1.06–1.61; <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.018) and in the LDL-C group by 27% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.27, 95% CI: 0.97–1.61, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.068).</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">After a follow-up of 10.7<span class="elsevierStyleHsp" style=""></span>years, non-HDL-C has been shown in our population as a prognostic factor of non-fatal cardiovascular disease, but not LDL-C, although its HR is close to statistical significance.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">El colesterol no transportado por las lipoproteínas de alta densidad (c-no-HDL) está adquiriendo relevancia en su participación en la valoración del riesgo cardiovascular y como diana terapéutica. El objetivo del presente estudio ha sido valorar la capacidad predictiva independiente, tanto del c-no-HDL como del colesterol de las lipoproteínas de baja densidad (cLDL), principal prioridad en las dislipidemias para reducir el riesgo cardiovascular (RCV), en la morbilidad de causa cardiovascular, en una muestra de origen poblacional.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">El diseño del estudio corresponde a una cohorte prospectiva en la que han participado 1.186 individuos en el grupo c-no-HDL y 1.177 en el grupo cLDL, seguidos durante 10,7<span class="elsevierStyleHsp" style=""></span>años (DE<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2,2), los cuales no habían padecido ningún episodio cardiovascular (CV) previo. Las variables predictoras incluidas en el ajuste han sido: género, edad, hipertensión arterial, diabetes mellitus, estado de fumador y c-no-HDL en un grupo. En el otro grupo, formado por pacientes que presentaban niveles de triglicéridos ≤400<span class="elsevierStyleHsp" style=""></span>mg/dl, se sustituyó el c-no-HDL por el cLDL. Se calcularon curvas de supervivencia (Kaplan-Meier) y se aplicaron dos modelos de regresión de Cox, uno por cada grupo.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">El grupo c-no-HDL presentó un 6,2% de episodios CV no mortales durante el seguimiento, y el grupo cLDL, un 6,0%. Después del ajuste, por cada aumento de 30<span class="elsevierStyleHsp" style=""></span>mg/dl de c-no-HDL, la incidencia de nuevos episodios CV no mortales aumentó un 31% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1,31; IC 95%: 1,06-1,61; p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,018) y en el grupo del cLDL un 27% (HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1,27; IC 95%: 0,97-1,61; p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,068).</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Tras un seguimiento de 10,7<span class="elsevierStyleHsp" style=""></span>años, el c-no-HDL se ha mostrado en nuestra población como un factor pronóstico de enfermedad CV no mortal, pero no el cLDL, aunque su HR se encuentra próxima a la significación estadística.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:3 [ 0 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="npar0070">Members of the <span class="elsevierStyleItalic">Grupo de Enfermedades Vasculares de Albacete</span> (GEVA) are listed in <a class="elsevierStyleCrossRef" href="#sec0050">Appendix</a>.</p>" "identificador" => "fn0005" ] 1 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0060">Please cite this article as: Carbayo Herencia JA, Simarro Rueda M, Palazón Bru A, Molina Escribano F, Ponce García I, Artigao Ródenas LM, et al. Valoración del colesterol no HDL como predictor de episodios cardiovasculares no mortales en una cohorte prospectiva de origen poblacional. Clin Investig Arterioscler. 2018;30:64–71.</p>" ] 2 => array:2 [ "etiqueta" => "☆☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0065">A presentation relating to this study, entitled “Non-HDL cholesterol as a predictor of non-fatal cardiovascular events in a prospective population cohort”, was given at the <span class="elsevierStyleSmallCaps">30th</span> National Congress of the <span class="elsevierStyleItalic">Sociedad Española de Arteriosclerosis</span> (Spanish Atherosclerosis Society) (Cádiz, 2017) and awarded a 2017 Special Mention Award.</p>" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0080" class="elsevierStylePara elsevierViewall">In addition to the authors of the article, the following are members of the group and have assisted with the article:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><p id="par0085" class="elsevierStylePara elsevierViewall">Carlos Sanchis Domènech, MD.</p></li><li class="elsevierStyleListItem" id="lsti0010"><p id="par0090" class="elsevierStylePara elsevierViewall">Lucinio Carrión Valero, MD.</p></li><li class="elsevierStyleListItem" id="lsti0015"><p id="par0095" class="elsevierStylePara elsevierViewall">Javier Massó Orozco, MD.</p></li><li class="elsevierStyleListItem" id="lsti0020"><p id="par0100" class="elsevierStylePara elsevierViewall">Enrique López de Coca and Fernández-Valencia, MD.</p></li><li class="elsevierStyleListItem" id="lsti0025"><p id="par0105" class="elsevierStylePara elsevierViewall">Juan López-Abril, MD.</p></li><li class="elsevierStyleListItem" id="lsti0030"><p id="par0110" class="elsevierStylePara elsevierViewall">Francisco García Gosálvez, MD.</p></li><li class="elsevierStyleListItem" id="lsti0035"><p id="par0115" class="elsevierStylePara elsevierViewall">Beatriz Rodríguez-Paños, MD.</p></li><li class="elsevierStyleListItem" id="lsti0040"><p id="par0120" class="elsevierStylePara elsevierViewall">Esperanza Martínez Navarro, MD.</p></li><li class="elsevierStyleListItem" id="lsti0045"><p id="par0125" class="elsevierStylePara elsevierViewall">Rosalina Martínez López, MD.</p></li><li class="elsevierStyleListItem" id="lsti0050"><p id="par0130" class="elsevierStylePara elsevierViewall">Pilar Torres Moreno, MD.</p></li><li class="elsevierStyleListItem" id="lsti0055"><p id="par0135" class="elsevierStylePara elsevierViewall">Josefina Monedero Laorden, MD.</p></li><li class="elsevierStyleListItem" id="lsti0060"><p id="par0140" class="elsevierStylePara elsevierViewall">Beatriz González Lozano, MD.</p></li><li class="elsevierStyleListItem" id="lsti0065"><p id="par0145" class="elsevierStylePara elsevierViewall">Lourdes Navarro Sánchez, MD.</p></li><li class="elsevierStyleListItem" id="lsti0070"><p id="par0150" class="elsevierStylePara elsevierViewall">Miriam Martínez Ramírez, MD.</p></li><li class="elsevierStyleListItem" id="lsti0075"><p id="par0155" class="elsevierStylePara elsevierViewall">Eva Argandoña Palacios, Registered Nurse.</p></li><li class="elsevierStyleListItem" id="lsti0080"><p id="par0160" class="elsevierStylePara elsevierViewall">Alfonso Campayo Serrano, IT technician.</p></li></ul></p>" "etiqueta" => "Appendix" "titulo" => "Members of the Grupo de Enfermedades Vasculares de Albacete (GEVA)" "identificador" => "sec0050" ] ] ] ] "multimedia" => array:6 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2588 "Ancho" => 1573 "Tamanyo" => 204436 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Cumulative survival probabilities on assessing the onset of initial non-fatal cardiovascular events according to the classification of non-HDL cholesterol in tertiles (A) or LDL cholesterol (B). The Kaplan–Meier method was used and the difference between the groups was calculated using the log-rank test.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">BMI: body mass index; HDL: high-density lipoproteins; HDL-C: cholesterol bound to HDL; HTN: hypertension; LDL-C: cholesterol bound to low-density lipoproteins; n: number of participants; non-HDL-C: non-HDL cholesterol; TC: total cholesterol; TG: triglycerides.</p><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Quantitative variables are expressed as mean and standard deviation (SD); qualitative variables are expressed as exact value and percentage. The association between qualitative variables was examined using the chi-square test and means were compared using the Student's <span class="elsevierStyleItalic">t</span>-test for independent groups.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Non-HDL cholesterol group (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1186)</th><th class="td" title="table-head " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LDL cholesterol group (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1177)</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Female (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>666) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Male (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>520) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Female (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>664) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Male (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>513) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Age, years (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">47.8 (18.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">46.6 (16.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.261 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">47.8 (18.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">46.6 (16.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.283 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HTN, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">282 (42.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">220 (42.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.990 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">281 (42.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">218 (42.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.952 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Diabetes, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">68 (10.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">44 (8.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.307 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">67 (10.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">43 (8.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.318 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Smoker, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">148 (22.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">237 (45.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">148 (22.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">235 (45.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">BMI, kg/m</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleItalic">(SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">27.6 (5.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">27.2 (4.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.162 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">27.6 (5.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">27.1 (4.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.116 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="7" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="7" align="left" valign="top"><span class="elsevierStyleItalic">Obesity, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Normal weight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">239 (35.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">160 (30.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">238 (35.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">160 (31.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Overweight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">226 (33.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">246 (47.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">225 (33.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">243 (47.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Obese \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">201 (30.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">114 (21.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">201 (30.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">110 (21.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="7" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Plasma glucose level, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">99.5 (30.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">100.9 (24.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.370 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">99.2 (30.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">100.5 (23.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.403 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">TC, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">196.8 (38.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">202.3 (39.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">196.6 (38.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">202.1 (39.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.017 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">TG, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">90.0 (59.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">118.3 (80.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">88.1 (46.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">112.9 (62.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">49.9 (12.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">43.2 (10.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">50.0 (12.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">43.4 (10.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Non-HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">146.8 (38.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">159.1 (39.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">146.7 (38.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">158.7 (39.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">LDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">129.1 (34.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">136.2 (35.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1716267.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Cardiovascular risk factors associated with non-HDL and LDL cholesterol, distributed by gender.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:3 [ "leyenda" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">BMI: body mass index; HDL: high-density lipoproteins; HDL-C: cholesterol bound to HDL; HTN: hypertension; n: number of participants; non-HDL-C: non-HDL cholesterol.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">1st tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>396) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">2nd tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>395) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">3rd tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>395) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleItalic">Gender, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Female \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">253 (63.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">223 (56.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">190 (48.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Male \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">143 (36.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">172 (43.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">205 (51.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Age, years (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">39.1 (17.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">49.3 (16.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">53.4 (15.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HTN, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">103 (26.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">185 (46.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">214 (54.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Diabetes, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">26 (6.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">34 (8.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">52 (13.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.002<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Smoker, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">145 (36.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">117 (29.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">123 (31.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.087<a class="elsevierStyleCrossRef" href="#tblfn0015"><span class="elsevierStyleSup">c</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">BMI, kg/m</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">2</span></span><span class="elsevierStyleItalic">(SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">25.4 (4.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">28.2 (4.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">28.7 (4.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0020"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleItalic">Obesity, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Normal weight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">206 (52.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">101 (25.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">92 (23.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Overweight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">129 (32.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">180 (45.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">163 (41.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Obese \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">61 (15.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">114 (28.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">140 (35.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Plasma glucose level, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">96.4 (27.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">98.9 (23.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">105.0 (33.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0025"><span class="elsevierStyleSup">e</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Total cholesterol, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">159.6 (20.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">197.4 (15.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">240.7 (25.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Triglycerides, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">71.7 (59.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">98.6 (52.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">137.0 (80.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">50.0 (12.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">46.5 (11.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">44.5 (11.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Non-HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">109.6 (17.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">150.9 (9.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">196.2 (24.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1716269.png" ] ] ] "notaPie" => array:5 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Significant for the Mantel–Haenszel test.</p>" ] 1 => array:3 [ "identificador" => "tblfn0010" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Significant differences between the three groups.</p>" ] 2 => array:3 [ "identificador" => "tblfn0015" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0015">Value after applying the chi-square test.</p>" ] 3 => array:3 [ "identificador" => "tblfn0020" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara" id="npar0020">Significant differences between the 1st tertile and the 2nd tertile and between the 1st tertile and the 3rd tertile, but not between the 2nd and 3rd tertiles.</p>" ] 4 => array:3 [ "identificador" => "tblfn0025" "etiqueta" => "e" "nota" => "<p class="elsevierStyleNotepara" id="npar0025">Significant differences between the 1st tertile and the 3rd tertile and between the 2nd tertile and the 3rd tertile, but not between the 1st and 2nd tertiles.</p> <p class="elsevierStyleNotepara" id="npar0030">Quantitative variables are expressed as mean and standard deviation (SD); qualitative variables are expressed as exact value and percentage. The association between qualitative variables was examined using the chi-square test or the Mantel–Haenszel test and means were compared using a one-way analysis of variance with Bonferroni <span class="elsevierStyleItalic">a posteriori</span> contrast.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Cardiovascular risk factors associated with non-HDL cholesterol, split into tertiles.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:3 [ "leyenda" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">BMI: body mass index; HDL-C: cholesterol bound to high-density lipoproteins; HTN: hypertension; LDL-C: cholesterol transported by low-density lipoproteins; n: number of participants.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">1st tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>392) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">2nd tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>392) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">3rd tertile (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>393) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleItalic">Gender, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Female \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">242 (61.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">230 (58.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">192 (48.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Male \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">150 (38.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">162 (41.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">201 (51.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Age, years (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">39.3 (17.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">48.5 (16.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">54.0 (15.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HTN, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">107 (27.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">179 (45.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">213 (54.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Diabetes, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">26 (6.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">37 (9.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">47 (12.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.01<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Smoker, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">152 (38.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">117 (29.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">114 (29.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.004<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">BMI, kg/m</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">2</span></span><span class="elsevierStyleItalic">(SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">25.6 (4.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">28.2 (4.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">28.3 (4.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0040"><span class="elsevierStyleSup">c</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleItalic">Obesity, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Normal weight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">193 (49.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">104 (26.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">101 (25.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Overweight \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">131 (33.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">172 (43.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">165 (42.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Obese \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">68 (17.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">116 (29.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">127 (32.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="5" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Plasma glucose level, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">97.4 (28.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">99.1 (24.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">102.8 (28.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.017<a class="elsevierStyleCrossRef" href="#tblfn0045"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Total cholesterol, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">159.3 (20.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">197.9 (15.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">239.8 (25.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Triglycerides, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">80.7 (50.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">101.2 (56.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">114.9 (54.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">48.3 (12.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">46.8 (11.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">46.1 (11.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.025<a class="elsevierStyleCrossRef" href="#tblfn0045"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Non-HDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">110.9 (19.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">151.1 (14.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">193.7 (25.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">LDL-C, mg/dl (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">94.8 (15.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">130.8 (8.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">170.7 (20.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><0.001<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1716270.png" ] ] ] "notaPie" => array:4 [ 0 => array:3 [ "identificador" => "tblfn0030" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0035">Significant for the Mantel–Haenszel test.</p>" ] 1 => array:3 [ "identificador" => "tblfn0035" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0040">Significant differences between the three groups.</p>" ] 2 => array:3 [ "identificador" => "tblfn0040" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0045">Significant differences between the 1st tertile and the 2nd tertile and between the 1st tertile and the 3rd tertile, but not between the 2nd and 3rd tertiles.</p>" ] 3 => array:3 [ "identificador" => "tblfn0045" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara" id="npar0050">Significant differences between only the 1st and the 3rd tertiles.</p> <p class="elsevierStyleNotepara" id="npar0055">Quantitative variables are expressed as mean and standard deviation (SD); qualitative variables are expressed as exact value and percentage. The association between qualitative variables was examined using the chi-square test or the Mantel–Haenszel test and means were compared using a one-way analysis of variance with Bonferroni <span class="elsevierStyleItalic">a posteriori</span> contrast.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Cardiovascular risk factors associated with low-density lipoprotein cholesterol, split into tertiles.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0020" "etiqueta" => "Table 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at4" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0100" class="elsevierStyleSimplePara elsevierViewall">AMI: acute myocardial infarction; LDL-C: low-density lipoprotein cholesterol; n: frequency of events during follow-up; non-HDL-C: cholesterol not included in high-density lipoprotein cholesterol; PAD: peripheral artery disease.</p><p id="spar0105" class="elsevierStyleSimplePara elsevierViewall">Results are expressed as exact value and percentage.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Non-HDL-C group (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>56) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">LDL-C group (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>54) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">AMI \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">11 (19.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">10 (18.5) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Angina \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">19 (33.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">18 (33.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Stroke \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">19 (33.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">19 (35.1) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">PAD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">5 (8.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">5 (9.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Angina and/or PAD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (1.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (1.9) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Stroke and/or PAD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (1.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (1.9) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1716268.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0095" class="elsevierStyleSimplePara elsevierViewall">Non-fatal cardiovascular events observed during follow-up.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0025" "etiqueta" => "Table 5" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at5" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0115" class="elsevierStyleSimplePara elsevierViewall">CI: confidence interval; DM: diabetes mellitus; HDL: high-density lipoproteins; HR: hazard ratio; HTN: hypertension; LDL-C: low-density lipoprotein cholesterol; non-HDL-C: non-HDL cholesterol.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="2" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Non-HDL-C group</th><th class="td" title="table-head " colspan="2" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">LDL-C group</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">HR (95% CI) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">HR (95% CI) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Male \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.06 (1.20–3.52) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2.13 (1.24–3.67) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.006 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Age (every 5 years) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.38 (1.25–1.52) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.38 (1.25–1.53) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">DM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.32 (0.67–2.57) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.424 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.12 (0.54–2.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.756 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">HTN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.38 (0.76–2.52) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.297 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.33 (0.72–2.44) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.365 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.64 (0.83–3.27) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.156 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.77 (0.88–3.55) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.109 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Non-HDL-C (every 30<span class="elsevierStyleHsp" style=""></span>mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.31 (1.06–1.61) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.018 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">LDL-C (every 30<span class="elsevierStyleHsp" style=""></span>mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.27 (0.97–1.61) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.068 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1716271.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0110" class="elsevierStyleSimplePara elsevierViewall">Incidence of adjusted risk factors, predictors of cardiovascular morbidity, in models including non-HDL and LDL cholesterol.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:24 [ 0 => array:3 [ "identificador" => "bib0125" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A century of cholesterol and coronaries: from plaques to genes to statins" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.L. Goldstein" 1 => "M.S. Brown" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2015.01.036" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2015" "volumen" => "161" "paginaInicial" => "161" "paginaFinal" => "172" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25815993" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0130" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasma high density lipoprotein concentration and development of ischaemic heart disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.J. Miller" 1 => "N.E. Miller" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Lancet" "fecha" => "1975" "volumen" => "375" "paginaInicial" => "16" "paginaFinal" => "19" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0135" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Factores de riesgo cardiovascular. Perspectivas derivadas del Framingham Heart Study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.J. O’Donnell" 1 => "R. Elosua" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Esp Cardiol" "fecha" => "2008" "volumen" => "61" "paginaInicial" => "299" "paginaFinal" => "310" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18361904" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0140" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The global burden of disease, 1990–2020" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.D. López" 1 => "C.J.L. Murray" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/3218" "Revista" => array:6 [ "tituloSerie" => "Nat Med" "fecha" => "1998" "volumen" => "4" "paginaInicial" => "1241" "paginaFinal" => "1243" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9809543" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0145" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "European Guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.F. Piepoli" 1 => "A.W. Hoes" 2 => "S. Agewall" 3 => "C. Albus" 4 => "C. Brotons" 5 => "A.L. Catapano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/eurheartj/ehw106" "Revista" => array:6 [ "tituloSerie" => "Eur Heart J" "fecha" => "2016" "volumen" => "37" "paginaInicial" => "2315" "paginaFinal" => "2381" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27222591" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0150" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ESC/EAS Guidelines for the Management of Dyslipidaemias. The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A.L. Catapano" 1 => "I. Graham" 2 => "G. de Backer" 3 => "O. Wiklund" 4 => "M.J. Chapman" 5 => "H. Drexel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/eurheartj/ehw272" "Revista" => array:3 [ "tituloSerie" => "Eur Heart J" "fecha" => "2016" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27141094" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0155" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "W.T. Friedewald" 1 => "R.I. Levy" 2 => "D.S. Fredrickson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Clin Chem" "fecha" => "1972" "volumen" => "18" "paginaInicial" => "499" "paginaFinal" => "502" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/4337382" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0160" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analytical and clinical evaluation of two homogeneus assays for LDL-cholesterol in hyperlipidemic patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Esteban-Salán" 1 => "A. Guimón-Bardesi" 2 => "J.M. de la Viuda-Unzueta" 3 => "M.N. Azcárate-Ania" 4 => "P. Pascual-Usandizaga" 5 => "E. Amoroto-del Rio" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Clin Chem" "fecha" => "2000" "volumen" => "46" "paginaInicial" => "1121" "paginaFinal" => "1131" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10926892" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0165" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Construction and validation of a 14-year cardiovascular risk score for use in the general population: the Puras-GEVA Chart" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L.M. Artigao-Ródenas" 1 => "J.A. Carbayo-Herencia" 2 => "A. Palazón-Bru" 3 => "J.A. Divisón-Garrote" 4 => "C. Sanchis-Doménech" 5 => "I. Vigo-Aguiar" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Medicine (Baltimore)" "fecha" => "2015" "volumen" => "94" "paginaInicial" => "e1980" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0170" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Using ankle-brachial index to detect peripheral arterial disease: prevalence and associated risk factors in a random population sample" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.A. Carbayo" 1 => "J.A. Divisón" 2 => "J. Escribano" 3 => "J. López-Abril" 4 => "E. López de Coca" 5 => "L.M. Artigao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.numecd.2005.08.009" "Revista" => array:6 [ "tituloSerie" => "Nutr Metab Cardiovasc Dis" "fecha" => "2007" "volumen" => "17" "paginaInicial" => "41" "paginaFinal" => "49" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17174225" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0175" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "The sixth report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure" ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Arch Intern Med" "fecha" => "1997" "volumen" => "157" "paginaInicial" => "2413" "paginaFinal" => "2446" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9385294" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0180" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "Report of the expert committee on the diagnosis and classification of diabetes mellitus" ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Care" "fecha" => "1997" "volumen" => "20" "paginaInicial" => "1183" "paginaFinal" => "1197" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9203460" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0185" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prevalencia y actitudes sobre tabaquismo en población mayor de 40 años" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.A. Jiménez Ruiz" 1 => "J. Fernando Masa" 2 => "V. Sobradillo" 3 => "R. Gabriel" 4 => "M. Miratvilles" 5 => "L. Fernández-Fau" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Arch Bronconeumol" "fecha" => "2000" "volumen" => "36" "paginaInicial" => "241" "paginaFinal" => "244" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10916663" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0190" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "SEEDO’2000 consensus for the evaluation of overweight and obesity and the stablishment of criteria for therapeutic intervention" ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Med Clin (Barc)" "fecha" => "2000" "volumen" => "115" "paginaInicial" => "587" "paginaFinal" => "597" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0195" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "Evaluating the proportional hazards assumption" ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Survival analysis" "paginaInicial" => "131" "paginaFinal" => "172" "edicion" => "2nd ed." "serieFecha" => "2005" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0200" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Abdominal obesity, insulin resistance, and metabolic syndrome in a southern European population" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J.F. Ascaso" 1 => "P. Romero" 2 => "J.T. Real" 3 => "R.I. Lorente" 4 => "J. Martínez-Valls" 5 => "R. Carmena" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0953-6205(03)00022-0" "Revista" => array:6 [ "tituloSerie" => "Eur J Intern Med" "fecha" => "2003" "volumen" => "14" "paginaInicial" => "101" "paginaFinal" => "106" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12719027" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0205" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La auténtica dimensión del colesterol-no-HDL: colesterol aterogénico" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Millán" 1 => "A. Hernández-Mijares" 2 => "J.F. Ascaso" 3 => "M. Blasco" 4 => "A. Brea" 5 => "A. Díaz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.arteri.2016.05.002" "Revista" => array:6 [ "tituloSerie" => "Clin Investig Arterioscler" "fecha" => "2016" "volumen" => "28" "paginaInicial" => "265" "paginaFinal" => "270" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27633523" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0210" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of LDL cholesterol non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins. A meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.M. Boekholdt" 1 => "B.J. Arsenault" 2 => "S. Mora" 3 => "T.R. Pedersen" 4 => "J.C. LaRosa" 5 => "P.J. Nestel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jama.2012.366" "Revista" => array:6 [ "tituloSerie" => "JAMA" "fecha" => "2012" "volumen" => "307" "paginaInicial" => "1302" "paginaFinal" => "1309" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22453571" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0215" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "Cholesterol Treatment Trialists’ (CTT) Collaborators" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(12)60367-5" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2012" "volumen" => "380" "paginaInicial" => "581" "paginaFinal" => "590" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22607822" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0220" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.G. Robinson" 1 => "S. Wang" 2 => "T.A. Jacobson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.amjcard.2012.07.007" "Revista" => array:6 [ "tituloSerie" => "Am J Cardiol" "fecha" => "2012" "volumen" => "110" "paginaInicial" => "1468" "paginaFinal" => "1476" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22906895" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0225" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.J. Chapman" 1 => "H.N. Ginsberg" 2 => "P. Amarenco" 3 => "F. Andreotti" 4 => "J. Borén" 5 => "A.L. Catapano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/eurheartj/ehr112" "Revista" => array:6 [ "tituloSerie" => "Eur Heart J" "fecha" => "2011" "volumen" => "32" "paginaInicial" => "1345" "paginaFinal" => "1361" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21531743" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0230" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Friedewald-estimated versus directly measured low-density lipoprotein cholesterol and treatment implications" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.S. Martin" 1 => "M.J. Blaha" 2 => "M.B. Elshazly" 3 => "E.A. Brinton" 4 => "P.P. Toth" 5 => "J.W. McEvoy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jacc.2013.01.079" "Revista" => array:6 [ "tituloSerie" => "JACC" "fecha" => "2013" "volumen" => "62" "paginaInicial" => "732" "paginaFinal" => "739" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23524048" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0235" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.G. Robinson" 1 => "S. Wang" 2 => "B.J. Smith" 3 => "T.A. Jacobson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jacc.2008.10.024" "Revista" => array:6 [ "tituloSerie" => "JACC" "fecha" => "2009" "volumen" => "53" "paginaInicial" => "316" "paginaFinal" => "322" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19161879" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0240" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Importancia de la dislipidemia en la enfermedad cardiovascular: un punto de vista" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.F. Ascaso" 1 => "R. Carmena" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.arteri.2015.07.002" "Revista" => array:6 [ "tituloSerie" => "Clin Investig Arterioscler" "fecha" => "2015" "volumen" => "27" "paginaInicial" => "301" "paginaFinal" => "308" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26363575" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/25299123/0000003000000002/v1_201804090408/S2529912318000165/v1_201804090408/en/main.assets" "Apartado" => array:4 [ "identificador" => "64744" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Originals" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/25299123/0000003000000002/v1_201804090408/S2529912318000165/v1_201804090408/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529912318000165?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 0 | 2 |
2024 October | 37 | 10 | 47 |
2024 September | 46 | 12 | 58 |
2024 August | 32 | 16 | 48 |
2024 July | 22 | 9 | 31 |
2024 June | 23 | 8 | 31 |
2024 May | 20 | 3 | 23 |
2024 April | 31 | 6 | 37 |
2024 March | 40 | 7 | 47 |
2024 February | 29 | 8 | 37 |
2024 January | 33 | 5 | 38 |
2023 December | 27 | 10 | 37 |
2023 November | 27 | 12 | 39 |
2023 October | 23 | 6 | 29 |
2023 September | 13 | 1 | 14 |
2023 August | 23 | 3 | 26 |
2023 July | 42 | 1 | 43 |
2023 June | 22 | 1 | 23 |
2023 May | 64 | 8 | 72 |
2023 April | 43 | 3 | 46 |
2023 March | 45 | 10 | 55 |
2023 February | 24 | 11 | 35 |
2023 January | 26 | 9 | 35 |
2022 December | 17 | 5 | 22 |
2022 November | 13 | 7 | 20 |
2022 October | 13 | 9 | 22 |
2022 September | 13 | 8 | 21 |
2022 August | 8 | 10 | 18 |
2022 July | 9 | 10 | 19 |
2022 June | 6 | 5 | 11 |
2022 May | 10 | 4 | 14 |
2022 April | 7 | 6 | 13 |
2022 March | 7 | 5 | 12 |
2022 February | 13 | 0 | 13 |
2018 May | 1 | 0 | 1 |