metricas
covid
Buscar en
Clínica e Investigación en Ginecología y Obstetricia
Toda la web
Inicio Clínica e Investigación en Ginecología y Obstetricia Angiogénesis en los tumores epiteliales ováricos
Journal Information
Vol. 28. Issue 5.
Pages 183-196 (January 2001)
Share
Share
Download PDF
More article options
Vol. 28. Issue 5.
Pages 183-196 (January 2001)
Full text access
Angiogénesis en los tumores epiteliales ováricos
Visits
4180
A. Celorioa, A. Armas*
a Departamento de Obstetricia y Ginecología. Universidad Autónoma. Madrid. Servicio de Ginecología Oncológica. Hospital Universitario La Paz. Madrid. España.
* Hospital Universitario La Paz. Madrid. España.
This item has received
Article information
Resumen

Existen diferentes metodologías para el estudio de la angiogénesis tumoral, destacando el cálculo de la densidad de microvasos (MVD), técnicas inmunohistoquímicas o moleculares de expresión del factor de crecimiento del endotelio vascular (VEGF) en células tumorales y medición de valores de VEGF enlíquidos tumorales, séricos y ascitis. Aparecen diferencias significativas de MVD, inmunoexpresión VEGF y expresión ARNm-VEGF entre tumores epiteliales ováricos benignos y malignos. En los carcinomas ováricos, se encuentran elevados valores séricos y en ascitis (pg/ml) de VEGF, así como de otros factores angiogénicos, respecto a los controles.

Los valores de MVD, expresión VEGF o concentraciones séricas de VEGF no se correlacionan con los estadios (FIGO) y subtipos histológicos de tumores epiteliales ováricos malignos, interesante circunstancia clínica, al ser el estadio de la enfermedad un clásico factor pronóstico. No existe relación significativa entre MVD y grados histológicos, sin embargo, los tumores G3presentan mayores porcentajes de expresión VEGF y valores séricos de VEGF, comparados con tumores G1-G2.

La mayoría de las publicaciones analizadas realizan variables dicotomizaciones de la MVD que dificultan la comparación de resultados, aunque los tumores ováricos con alta densidad de microvasos aportan peores tasas de supervivencias globales. Si aparece fuerte expresión inmunohistológica VEGF tumoral o aumento de niveles séricos de VEGF, se muestran como variables significativas en la mayoría de los análisis de multivariables, tanto para tasas de supervivencias globales como para supervivencias libres de enfermedad en mujeres portadoras de tumores epiteliales ováricos malignos.

La incipiente terapia antiangiogénica se dirige, en tumores ováricos con alta actividad angiogénica, hacia pequeños focos de células en emigración y proliferación capilar para que éstas sean más vulnerables a la acción de las terapéuticas adyuvantes, pero hasta la fecha, es incierta su eficacia clínica.

Summary

There are several methodologies for the study of tumoral angiogenesis, specially the microvessel density count (MVD), inmunhistochemical analysis of VEGF, VEGF molecular expression on tumours cells and measurement of VEGF levels in tumours fluids and serum levels. There are significatives differences on MVD, VEGF immunostaining and VEGF mRNA expression between benign and malignant epithelial ovarian neoplasms. In ovarian carcinoma, there can be found high VEGF serum and ascites levels (pg/ml), as well as several others angiogenic factors, comparing to controls.

MDV, VEGF expression or VEGF serum levels, are not correlatet with FIGO stages and histological subtypes of epithelial ovarian neoplasms. There is not a significant relation between MVD and histological grades, but tumours have higher percentages ofG VEGF expression and VEGF serum levels compared to G tumours.

Most analyzed publications make several differentMVD and comparate them, which make the comparison of results very difficult. High MVD sometimes make for a worse disease-free and overall survival probability, specially if there is high VEGF expression or high VEGF serum levels because of them being prognostic factors in Cox regression multivariate analysis.

Today’s antiangiogenic therapy is directed, in high angiogenic activity ovarian tumours, towards small cells in emigration and proliferation, so that they become more vulnerables to adjuvant therapies, although their clinical efficiency is still uncertain.

Full text is only aviable in PDF
BibliografÍA
[1.]
JA. Del Regato.
Pathways of metastatic spread of malignant tumors.
Semin Oncol, 4 (1977), pp. 33-38
[2.]
IJ Fidler, DM Gerstein, IR. Hart.
The biology of cancer invasion and metastasis.
Adv Cancer Res, 28 (1978), pp. 149-250
[3.]
V Mahadevan, IR. Hart.
Metastasis and angiogenesis.
Acta Oncol, 29 (1990), pp. 97-103
[4.]
J Folkman, Y. Shing.
Angiogenesis.
J Biol Chem, 267 (1992), pp. 1031-1034
[5.]
N. Weidner.
Intratumor microvessel density as a prognostic factor in cancer.
Am J Pathol, 147 (1995), pp. 9-19
[6.]
A. Celorio.
Angiogénesis en el cáncer del cérvix uterino.
Clin Invest Gin Obst, 27 (2000), pp. 343-355
[7.]
O Abulafia, DM. Sherer.
Angiogenesis of the ovary.
Am J Obstet Gynecol, 182 (2000), pp. 240-246
[8.]
DT Connolly, DM Heuvelman, R Nelson, R Monsell, N Siegel, BL Haymore, et al.
Tumor vascular permeability factors stimulates endothelial cell growth and angiogenesis.
J Clin Invest, 84 (1989), pp. 1470-1478
[9.]
J Rak, J Filmus, RS. Kerbel.
Reciprocal paracrine interactions between tumor cells and endothelial cells «the angiogenesis progression» hypothesis.
Eur J Cancer, 32A (1996), pp. 2438-2450
[10.]
J Folkman, M. Klagsbrun.
Angiogenic factors.
Science, 235 (1987), pp. 442-447
[11.]
B Berse, LF Brown, Water L Van de, HF Dvorak, DR. Senger.
Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues macrophages, and tumors.
Mol Biol Cell, 3 (1992), pp. 211-220
[12.]
N Ferrara, K Houck, L Jakeman, DW. Leung.
Molecular and biological properties of the vascular endothelial growth factor family of proteins.
Endocrinol Rev, 13 (1992), pp. 18-32
[13.]
TA Olson, D Mohanraj, LF Carson, S. Ramakrishnan.
Vascular permeability factor gene expression in normal and neoplastic human ovaries.
Cancer Res, 54 (1994), pp. 276-280
[14.]
J Lee, A Gray, J Yuan, S-M Luoh, H Avraham, WI. Wood.
Vascular endothelial growth factor-related protein: a ligand an specific activator of the thyrosine kinase receptor Flt-4.
Proc Natl Acad Sci USA, 93 (1996), pp. 1988-1992
[15.]
T Veikkola, M Karkkainen, L Claesson-Welsh, K. Alitalo.
Regulation of angiogenesis via vascular endothelial growth factor receptors.
Cancer Res, (2000), pp. 203-212
[16.]
DR Senger, Water L Van de, LF Brown, JA Nagy, K-T Yeo, T-K Yeo, et al.
Vascular permeability factor (VPF/ VEGF) in tumor biology.
Cancer Metastasis Rev, 12 (1993), pp. 303-324
[17.]
HF Dvorak, LF Brown, M Detmar, AM. Dvorak.
Vascular permeability factor/vascular endothelial growth factor, microvascular hypermeability, and angiogenesis.
Am J Pathol, 146 (1995), pp. 1029-1039
[18.]
M Shibuya, JC Luo, M Toyoda, S. Yamaguchi.
Involvement of VEGF and its receptors in ascitis formation.
Cancer Chemother Pharmacol, 43 (1999), pp. S72-S77
[19.]
ER. Levin.
Endothelins.
N Engl J Med, 333 (1995), pp. 356-363
[20.]
A Bagnato, D Salani, Castro V Di, JR Wu-Wong, R Tecce, MR Nicotra, et al.
Expression of endothelin-1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role tumor growth.
Cancer Res, 59 (1999), pp. 1-8
[21.]
DB Rifkin, D. Moscatelli.
Recent developments in the cell biology of basic fibroblast growth factor.
J Cell Biol, 106 (1989), pp. 1-6
[22.]
K Crickard, JL Gross, U Crickard, M Yoonessi, S Lele, WF Herblin, et al.
Basic fibroblast growth factor and receptor expression in human ovarian cancer.
Gynecol Oncol, 55 (1994), pp. 277-284
[23.]
Blasio AM Di, L Cremonesi, P Viganó, M Ferrari, D Gospodarowicz, M Vignali, et al.
Basic fibroblast growth factor and its receptor messenger ribonucleic acids are expressed in human ovarian epithelial neoplasms.
Am J Obstet Gynecol, 169 (1993), pp. 1517-1523
[24.]
M araguchi, K Miyadera, K Uemura, T Furukawa, K Yamada, et al.
Angiogenic activity of enzymes.
Nature, 368 (1994), pp. 198
[25.]
K Stromberg, TJ Collins, AW Gordon, CL Jackson, GR. Johnson.
Transforming growth factor-a?acts an autocrine growth factor in ovarian carcinoma cell lines.
Cancer Res, 52 (1992), pp. 341-347
[26.]
J. Massague.
The transforming growth factor-β family.
Ann Rev Cell Biol, 6 (1990), pp. 597-641
[27.]
J Hurteau, GC Rodríguez, RS Whitaker, S Shah, G Mills, RC Bast, et al.
Transforming growth factor-β inhibits proliferation of human ovarian cancer cells obtained from ascitis.
Cancer, 74 (1994), pp. 93-99
[28.]
J Lee, J. Vilcek.
Biology of disease. Tumour necrosis factor and interleukin-1: cytokines with multiple overlapping biological activities.
Lab Invest, 56 (1987), pp. 234-248
[29.]
K Mukai, J Rosai, WH. Burgdorf.
Localization of factor VIII-related antigen in vascular endothelial cells using an immunoperoxidase method.
Am J Surg Pathol, 4 (1980), pp. 273-276
[30.]
H Holthöffer, I Virtanen, AL Kariniemi, M Hormia, E Linder, A. Miettinen.
Ulex europaeus I Lectin as marker for vascular endothelium in human tissues.
Lab Invest, 47 (1982), pp. 60-66
[31.]
DS Krause, MJ Fackler, CI Civin, WS. May.
CD34: structure, biology, and clinical utility.
Blood, 87 (1996), pp. 1-13
[32.]
TA Longacre, RV. Rouse.
CD31: a new marker for vascular neoplasia.
Adv Anat Pathol, 1 (1994), pp. 16-20
[33.]
JU Alles, K. Bosslet.
Immunohistochemical and immunochemical characterization of a new endothelial cell-specific antigen.
J Histochem Cytochem, 34 (1986), pp. 209-214
[34.]
N. Weidner.
Current pathologic methods for measuring tumoral microvessel density within breast carcinoma and others tumors.
Breast Cancer Res Treat, 36 (1995), pp. 169-180
[35.]
PJ Van Diest, P Van Dam, SC Henzen-Logmans, E Berns, Burgmel J Van der, J Green, et al.
A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG.
J Clin Pathol, 50 (1997), pp. 801-804
[36.]
PB Vermeulen, G Gasparini, SB Fox, M Toi, L Martin, P McCulloch, et al.
Quantification of angiogenesis in solid human tumors: An international consensus on the methodology and criteria of evaluation.
Eur J Cancer, 321 (1996), pp. 2474-2484
[37.]
HC Hollingsworth, EC Kohn, SM Steinberg, ML Rothenberg, M. Merino.
Tumor angiogenesis in advanced ovarian carcinoma.
Am J Pathol, 147 (1995), pp. 33-41
[38.]
G Gasparini, E Bonaldi, G Viale, P Verderio, P Boracchi, GA Panizzoni, et al.
Prognostic and predictive value of tumor angiogenesis in ovarian carcinomas.
[39.]
H Brustmann, P Riss, S. Naudé.
The relevance of angiogenesis in bening and malignant epithelial tumors of the ovary: A quantitative histologic study.
Gynecol Oncol, 67 (1997), pp. 20-26
[40.]
O Abulafia, WE Triest, DM. Sherer.
Angiogenesis in primary and metastatic epithelial ovarian carcinoma.
Am J Obstet Gynecol, 177 (1997), pp. 541-547
[41.]
M Orre, M Lotfi-Miri, P Mamers, PAW. Rogers.
Increased microvessel density in mucinous compared with malignant serous and bening tumours of he ovary.
Br J Cancer, 77 (1998), pp. 2204-2209
[42.]
E Darai, A-F Bringuier, F Walker-Combrouze, A Fauconnier, A Couvelard, G Feldman, et al.
CD31 expression in benign, borderline, and malignant epithelial ovarian tumors: an immunohistochemical and serological analysis.
Gynecol Oncol, 71 (1998), pp. 122-127
[43.]
AA Álvarez, HS Krigman, RS Whitaker, RK Dodge, GC. Rodríguez.
The prognosis significance of angiogenesis in epithelial ovarian carcinoma.
Clin Cancer Res, 5 (1999), pp. 587-591
[44.]
K Hata, R Fujiwaki, Y Maede, K Nakayama, M Fukumoto, K. Miyazaki.
Expression of thymidine phosphorylase in epithelial ovarian cancer: correlation with angiogenesis, apoptosis, and ultrasoundderived peak systolic velocity.
Gynecol Oncol, 77 (2000), pp. 26-34
[45.]
Y Terai, M Ueda, K Kumagai, K Ueki, M. Ueki.
Tumor angiogenesis and thymidine phosphorylase expression in ovarian carcinomas including serous surface papillary adenocarcinoma of the peritoneum.
Int J Gynaecol Pathol, 19 (2000), pp. 354-360
[46.]
GH Shen, M Ghazizadeh, O Kawanami, H Shimizu, E Jin, T Araki, et al.
Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma.
Br J Cancer, 83 (2000), pp. 196-203
[47.]
D Salani, Castro V Di, MR Nicotra, L Rosano, R Tecce, A Venuti, et al.
Role of endothelin-1 in neovascularization of ovarian carcinoma.
Am J Pathol, 157 (2000), pp. 1537-1547
[48.]
CA Boocock, DS Charnok-Jones, AM Sharkey, J McLaren, PJ Barker, K Wright, et al.
Expression of vascular endothelial growth factor and its receptors flt, and KDR in ovarian carcinoma.
J Natl Cancer Inst, 87 (1995), pp. 506-515
[49.]
GM AbuJawdeh, JD Faix, J Niloff, K Tognazzi, E Manseau, HF Dvorak, et al.
Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms.
Lab Invest, 74 (1996), pp. 1105-1115
[50.]
M Emoto, H Iwasaki, K Mimura, T Kawarabayashi, M. Kikuchi.
Differences in the angiogenesis of benign and malignant ovarian tumors, demonstrated by analysis of color Doppler ultrasound, immunohistochemistry, and microvessel density.
Cancer, 80 (1997), pp. 899-907
[51.]
S Yamamoto, I Konishi, M Mandai, H Kuroda, T Komatsu, K Nanbu, et al.
Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels.
Br J Cancer, 76 (1997), pp. 1221-1227
[52.]
Y Nakanishi, J Kodama, M Yoshinouchi, K Tokumo, S Kamimura, H Okuda, et al.
The expression of vascular en-dothelial growth factor and transforming growth factor-β associates with angiogenesis in epithelial ovarian cancer.
Int J Gynaecol Pathol, 16 (1997), pp. 256-262
[53.]
M Orre, PAW. Rogers.
VEGF, VEGFR-1, VEGFR-2, microvessel density and endothelial cell proliferation in tumours of the ovary.
Int J Cancer, 84 (1999), pp. 101-108
[54.]
GG Garzetti, A Ciavattini, G Lucarini, A Pugnaloni, M De Nictolis, S Amati, et al.
Vascular endothelial growth factor expression as a prognostic index in serous ovarian cytoadenocarcinomas: relationship with MIB1 immunostaining.
Gynecol Oncol, 73 (1999), pp. 396-401
[55.]
PJ Paley, BA Goff, AM Gown, BE Greer, EH. Sage.
Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer.
Gynecol Oncol, 78 (2000), pp. 336-341
[56.]
EM Hartenbach, TA Olson, JJ Goswitz, D Mohanraj, LB Twiggs, LF Carson, et al.
Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas.
Cancer Lett, 121 (1997), pp. 169-175
[57.]
R Henriksen, A Gobl, E Wilander, K Berg, K Miyazono, K. Funa.
Expression and prognostic significance of TGF-β isotypes, latent TGF type I and β1 binding protein, TGF-β type II receptors, and endoglin in normal ovary and ovarian neoplasms.
Lab Invest, 73 (1995), pp. 213-220
[58.]
ME Gordinier, H-Z Zhang, R Patenia, LB Levy, EN Atkinson, MA Nash, et al.
Quantitative analysis of transforming growth factor β1 and 2 in ovarian carcinoma.
Clin Cancer Res, 5 (1999), pp. 2498-2505
[59.]
K Reynolds, F Farzaneh, WP Collins, S Campbell, TH Bourne, F Lawton, et al.
Association of ovarian malignancy with expression of platelet-derived endothelial cell growth factor.
J Natl Cancer Inst, 86 (1994), pp. 1234-1238
[60.]
HM Sowter, AN Corps, AL Evans, DE Clark, DS CharnockJones, SK. Smith.
Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors.
Lab Invest, 77 (1997), pp. 607-614
[61.]
PJ Paley, KA Staskus, K Gebhard, D Mohanraj, LB Twiggs, LF Carson, et al.
Vascular endothelial growth factor expression in early stage ovarian carcinoma.
Cancer, 80 (1997), pp. 98-106
[62.]
JM Bartlett, SP Langdon, WN Scott, SB Love, EP Miller, JF Katsaros, et al.
Transforming growth factor-β isoform expression in human ovarian tumours.
Eur J Cancer, 33 (1997), pp. 2397-2403
[63.]
J Fujimoto, H Sakaguchi, R Hirose, S Ichigo, T. Tamaya.
Biologic implications of the expression of vascular endothelial growth factor subtypes in ovarian carcinoma.
Cancer, 83 (1998), pp. 2528-2533
[64.]
J Fujimoto, S Ichigo, M Hori, R Hirose, H Sakaguchi, T. Tamaya.
Expression of basic fibroblast growth factor and its mRNA in advanced ovarian cancers.
Eur J Gynecol Oncol, 18 (1997), pp. 349-352
[65.]
D Hazelton, RF Nicosia, SV. Nicosia.
Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy.
Clin Cancer Res, 5 (1999), pp. 823-829
[66.]
DPJ Barton, A Cai, K Wendt, M Young, A Gamero, S. De Cesare.
Angiogenic protein expression in advanced epithelial ovarian cancer.
Clin Cancer Res, 9 (1997), pp. 1579-1586
[67.]
A Obermair, C Tempfer, L Hefler, O Preyer, A Kaider, R. Zeillinger.
Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer.
Br J Cancer, 77 (1998), pp. 1870-1874
[68.]
Ch-A Chen, W-F Cheng, Ch-N Lee, T-M Chen, Ch Ch Kung, F-J. Hsieh.
Serum vascular endothelial growth factor in epithelial ovarian neoplasms: correlation with patient survival.
Gynecol Oncol, 74 (1999), pp. 235-240
[69.]
AD Santin, PL Hermonat, A Ravaggi, MJ Cannon, S Pecorelli, GP. Parham.
Secretion of vascular endothelial growth factor in ovarian cancer.
Eur J Gynaecol Oncol, 20 (1999), pp. 177-181
[70.]
A Kraft, K Weindel, A Ochs, C Marth, J Zmija, P Schumacher.
endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease.
Cancer, 85 (1999), pp. 178-187
[71.]
MK Oehler, H. Caffier.
Diagnostic value of serum VEGF in women with ovarian tumors.
Anticancer Res, 19 (1999), pp. 2519-2522
[72.]
BK Zebrowski, W Liu, K Ramírez, Y Akagi, GB Mills, LM. Ellis.
Markedly elevated levels of vascular endothelial growth factor in malignant ascitis.
Ann Surg Oncol, 6 (1999), pp. 373-378
[73.]
PJ Van Diest, JP Zevering, LC Zevering, JPA. Baak.
Prognostic value of microvessel quantitation in cisplatin treated Figo 3 and 4 ovarian cancer patients.
Pathol Res Pract, 191 (1995), pp. 25-30
[74.]
S Heimburg, MK Oehler, T Papadopoulos, H Caffier, P Kristen, J. Dietl.
Prognostic relevance of the endothelial marker CD34 in ovarian cancer.
Anticancer Res, 19 (1999), pp. 2527-2529
[75.]
C Tempfer, A Obermair, L Hefler, G Haeusler, G Gitsch, C. Kainz.
Vascular endothelial growth factor serum concentrations in ovarian cancer.
Obstet Gynecol, 92 (1998), pp. 360-363
[76.]
V Chopra, TV Dinh, EV. Hannigan.
Angiogenina, interleukins, and growth-factor levels in serum of patients with ovarian cancer: correlation with angiogenesis.
Can J Sci Am, 2 (1996), pp. 279-285
[77.]
J Mattern, G Stammler, R Koomagi, D Wallwiener, M Kaufmann, M. Volm.
Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma.
Anticancer Res, 17 (1997), pp. 621-624
[78.]
WMJ Schoell, D Pieber, O Reich, M Lahousen, M Janicek, F Guecer.
endothelial immunoreactivity by image analysis.
Cancer, 80 (1997), pp. 2257-2262
[79.]
A Moreno, JA Vidart, L González, JA Asenjo, V Furio, PJ Coronado, et al.
La medición de la angiogénesis tumoral como factor pronóstico eficaz para conocer el cáncer de ovario. Resultados preliminares.
Acta Obstet Gynecol, 13 (2000), pp. 326-330
[80.]
DR. Cox.
Regression models and life tables.
J R Stat Soc, 34 (1972), pp. 187-202
[81.]
A Obermair, P Speiser, K. Reisenberger.
Influence of intratumoral basic fibroblast growth factor concentration on survival in ovarian cancer patients.
Cancer Lett, 130 (1998), pp. 69-76
[82.]
CL Arteaga, AR Hanauske, GM Clark, CK Osborne, P Hazarika, RL Pardue, et al.
Immunoreactive a transforming growth factor activity in effusions from cancer patients as a marker of tumor burden and patient prognosis.
Cancer Res, 48 (1988), pp. 5023-5028
[83.]
A Saltzman, E Hartenbach, JR Carter, DN Contreras, LB Twiggs, LF Carson, et al.
Transforming growth factoralpha levels in the serum and ascitis of patients with advanced epithelial ovarian cancer.
Gynecol Obstet Invest, 47 (1999), pp. 200-204
[84.]
MB Sporn, AB. Roberts.
Autocrine growth factors and cancer.
Nature, 313 (1985), pp. 745-747
[85.]
J. Folkman.
Angiogenesis inhibitors generated by tumors.
Mol Med, 1 (1995), pp. 120-122
[86.]
MS Murthy, RA Goldschmidt, CN Rao, M Ammirati, T Buchmann, EF. Scanlon.
Influence of surgical trauma on experimental metastasis.
Cancer, 64 (1989), pp. 2035-2044
[87.]
WG Jiang, MLA Puntis, MB. Hallett.
Molecular and cellular basis of cancer invasion and metastasis: implications for treatment.
Br J Surg, 81 (1994), pp. 1576-1579
[88.]
D Skipper, MJ Jeffrey, AJ Cooper, P Alexander, I. Taylor.
Enhaced growth of tumour cells in healing colonic anastomoses and laparotomy wounds.
Int J Colorectal Dis, 4 (1989), pp. 172-177
[89.]
Costa ML Da, HP Redmond, DJ. BouchierHayes.
Increased tumor establishment and growth after laparotomy vs laparoscopy.
Arch Surg, 131 (1996), pp. 1003
[90.]
L Holmgren, Reilly MS O’, J. Folkman.
Dormancy of micrometastasis balanced proliferation and apoptosis in presence of angiogenesis suppression.
Nat Med, 1 (1995), pp. 149-153
[91.]
LA Liotta, PS Steeg, WG. Stetler-Stevenson.
Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation.
Cell, 64 (1991), pp. 327-336
[92.]
BA Teicher, EA Sotomayor, ZD. Huang.
Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease.
Cancer Res, 52 (1992), pp. 6702-6704
[93.]
T Boehm, J Folkman, T Browder.
Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.
Nature, 390 (1997), pp. 404-407
[94.]
A Feldman, SK. Libutti.
Progress in antiangiogenic gene therapy of cancer.
Cancer, 89 (2000), pp. 1181-1194
[95.]
CT Baillie, MC Winslett, NJ. Bradley.
Tumor vasculature: A potentil therapeutic target.
Br J Cancer, 72 (1995), pp. 257-267
[96.]
AL. Harris.
Antiangiogenesis for cancer therapy.
Lancet, 349 (1997), pp. 13-15
[97.]
T Eisen, C Boshoff, I Mak, F Sapunar, MM Vaughan, L Pyle, et al.
Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer.
Br J Cancer, 82 (2000), pp. 812-817
[98.]
N Klauber, RM Rohan, E Flynn.
Amato RJ. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM1470.
Nat Med, 3 (1997), pp. 443-446
[99.]
GJ Beattie, HA Young, JF. Smythe.
Phase I study of intraperitoneal metalloproteinase inhibitor BB96 in patients with malignant ascitis [resumen].
Ann Oncol, 5 (1994), pp. 72
[100.]
BA Teicher, SA Holden, G Ara, EA Sotomayor, ZD Huang, YN Chen, et al.
Potentiation of cytotoxic cancer therapies by TNP470 alone and with other antiangiogenic agents.
Int J Cancer, 57 (1994), pp. 920-925
[101.]
J Vukanovic, A Passaniti, T Hirata, RJ Traystmann, B HartleyAsp, JT. Isaacs.
Antiangiogenic effects of the quinoline-3-carboxamide linomide.
Cancer Res, 53 (1993), pp. 1833-1837
[102.]
DM Sherer, R Eliakim, O. Abulafia.
The role of angiogenesis in the accumulation of peritoneal fluid in bening conditions and the development of malignant ascitis in the female.
Gynecol Obstet Invest, 50 (2000), pp. 217-224
[103.]
GJ Beattie, JF. Smythe.
Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascitis.
Clin Cancer Res, 4 (1998), pp. 1899-1902
[104.]
L Xu, J Yoneda, C Herrera, J Wood, JJ Killion, IJ. Fidler.
Inhibition of malignant ascitis and growth of human ovarian carcinoma by oral administration of a potent inhibidor of the vascular endothelial growth factor receptor tyrosin kinase.
Int J Oncol, 16 (2000), pp. 445-454
[105.]
A Hori, R Sasada, E Matsutani, K Naito, Y Sakura, T. Fujita.
Suppression of solid tumor growth by immuno-neutralizaing monoclonal antibody against human basic fibroblast growth factor.
Cancer Res, 51 (1991), pp. 6180-6184
[106.]
KJ Kim, J Winner, M Armanini, N Guillet, HS Phillips, N. Ferrara.
Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumor growth in vivo.
Nature, 362 (1993), pp. 841-844
[107.]
G Martiny-Baron, D. Marme.
VEGF-mediated tumour angiogenesis: a new target for cancer therapy.
Curr Opin Biotechnol, 6 (1996), pp. 675-680
[108.]
H-L Kong, RG. Crystal.
Gene therapy strategies for tumoantiangiogenesis.
J Natl Cancer Inst, 90 (1998), pp. 273-286
Copyright © 2001. Elsevier España, S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos