covid
Buscar en
Cuadernos de Economía
Toda la web
Inicio Cuadernos de Economía Different methods for gas price forecasting
Journal Information
Vol. 34. Issue 96.
Pages 137-144 (September - December 2011)
Share
Share
Download PDF
More article options
Vol. 34. Issue 96.
Pages 137-144 (September - December 2011)
Full text access
Different methods for gas price forecasting
Métodos para la previsión de los precios del gas
Visits
6093
Hamid Abrishami
Corresponding author
abrihami@ut.ac.ir

Corresponding author.
, Vida Varahrami
Faculty of Economics, University of Tehran, Tehran, Iran
This item has received
Article information
Abstract

The difficulty in gas price forecasting has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting gas prices however, all of the existing models of prediction cannot meet practical needs.

In this paper, a novel hybrid intelligent framework is developed by applying a systematic integration of GMDH neural networks with GA and Rule-based Exert System (RES) employs for gas price forecasting. In this paper we use a new method for extract the rules and compare different methods for gas price forecasting.

Our research reveals that during the recent financial crisis period by employing hybrid intelligent framework for gas price forecasting, we obtain better forecasting results compared to the GMDH neural networks and MLF neural networks and results will be so better when we employ hybrid intelligent system with for gas price volatility forecasting.

Keywords:
Gas price forecasting
Group Method of Data Handling (GMDH) neural networks
Genetic Algorithm (GA)
Hybrid Intelligent System
Rule-based Expert System (RES)
MLF neural networks
Resumen

La dificultad de la previsión de los precios del gas ha atraído considerablemente la atención de los investigadores universitarios y los profesionales del sector. A pesar de que se ha intentado solucionar el problema de la previsión de los precios del gas con diferentes métodos, ninguno de los modelos de predicción existentes llegan a cumplir con las necesidades prácticas.

En este artículo, se ha desarrollado un novedoso sistema inteligente híbrido mediante la aplicación de la integración sistemática de redes neuronales de tipo Group Method of Data Handling (GMDH) con algoritmos genéticos (AG) y un sistema experto basado en reglas (SER) a la previsión de los precios del gas. Igualmente, utilizamos un nuevo método para extraer las reglas y comparar los diferentes métodos para la previsión de los precios del gas.

Nuestra investigación revela que durante la reciente crisis económica se obtienen mejores resultados utilizando un sistema inteligente híbrido para la previsión de los precios del gas, en comparación con las redes neuronales de tipo GMDH y de tipo Multi-Layer Feed-forward (MLF), y que los resultados mejorarán si utilizamos un sistema inteligente híbrido en la previsión de la volatilidad de los precios del gas.

Palabras clave:
Previsión de los precios del gas
Redes neuronales de tipo Group Method of Data Handling (GMDH)
Algoritmo genético (AG)
Sistema inteligente híbrido
Sistema experto basado en reglas (SER)
Redes neuronales de tipo Multi-Layer Feed-forward (MLF)
Full text is only aviable in PDF
References
[Abrishami et al., 2010]
H. Abrishami, M. Mehrara, M. Ahrari, V. Varahrami.
Gold price forecasting by hybrid intelligent systems with GARCH effects.
Far East Journal of Experimental and Theoretical Artificial Intelligence, 6 (2010), pp. 111-128
[Abrishami et al., 2008]
H. Abrishami, A. Moeini, M. Mehrara, M. Ahrari, F. Soleimanikia.
Forecasting gasoline price using GMDH neural network based on GA.
Journal of Quarterly Iranian Economic Research, Allameh Tabatabaii University, (2008), pp. 37-59
[Amanifard et al., 2008]
N. Amanifard, N. Nariman-zadeh, M. Borji, A. Khalkhali, A. Habibdoust.
Modeling and Pareto optimization of heat transfer and flow coefficients in micro channels using GMDH type neural networks and genetic algorithms.
Energy Conversion and Management, 49 (2008), pp. 311-325
[Atashkari et al., 2007]
K. Atashkari, N. Nariman-zadeh, M. Gölcü, A. Khalkhali, A. Jamali.
Modeling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms.
Energy Conversion and Management, 48 (2007), pp. 1029-1041
[Brito Buarque, 2009]
Brito Buarque, H., 2009, Prediction of gasoline properties from composition data. Available from: www.biblioteca.universia.net.
[Casella and Lehmann, 1999]
G. Casella, E.L. Lehmann.
Theory of point estimation.
Springer, (1999),
[Cheng and Titterington, 1994]
B. Cheng, D. Titterington.
Neural networks: A review from a statistical perspective.
Statistical Science, 9 (1994), pp. 2-30
[Farlow, 1984]
S.J. Farlow.
Self-organizing method in modeling: GMDH type algorithm.
Marcel Dekker Inc, (1984),
[Gencay, 1996]
R. Gencay.
Non-linear prediction of security returns with moving average rules.
Journal of Forecasting, 15 (1996), pp. 165-174
[Gencay, 1998]
R. Gencay.
The predictability of security returns with simple technical trading rules.
Journal of Empirical Finance, 5 (1998), pp. 347-359
[Gencay, 1999]
R. Gencay.
Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules.
Journal of International Economics, 47 (1999), pp. 91-107
[Gencay and Stengos, 1998]
R. Gencay, T. Stengos.
Moving average rules, volume and the predictability of security returns with feed forward networks.
Journal of Forecasting, 17 (1998), pp. 401-414
[Iba et al., 1996]
H. Iba, H. deGaris, T. Sato.
A numerical approach to genetic programming for system identifications.
Evolutionary Computation, 3 (1996), pp. 417-452
[Kuo and Reitsch, 1995]
C.H. Kuo, A. Reitsch.
Neural network vs. conventional methods of forecasting.
The Journal of Business Forecasting Methods & Systems, 14 (1995), pp. 17-25
[Ivakhnenko, 1971]
A.G. Ivakhnenko.
Polynomial theory of complex systems.
IEEE Trans. Syst, Man & Cybern, SMC-1, (1971), pp. 364-378
[Jamali et al., 2006]
A. Jamali, N. Nariman-zadeh, K. Atashkari.
Inverse modeling of multi-objective thermodynamically optimized turbojet engines using GMDH and GA.
14th Annual (International) Mechanical Engineering Conference,
[Madala and Ivakhnenko, 1994]
H.R. Madala, A.G. Ivakhnenko.
Inductive learning algorithms for complex systems modeling.
CRC Press Inc., (1994),
[Mehrara et al., 2008]
M. Mehrara, A. Moeini, M. Ahrari, A. Erfanifard.
Investigating the efficiency in oil futures market based on GMDH approach.
Expert Systems with Applications, 36 (2008), pp. 7479-7483
[Nariman-zadeh et al., 2002]
N. Nariman-zadeh, A. Darvizeh, M. Darvizeh, H. Gharababaei.
Modeling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition.
Journal of Materials Processing Technology, 128 (2002), pp. 80-87
[Nasr et al., 2002]
Nasr, G.E., Badr, E.A., Joun, C., 2002. Cross entropy error function in neural networks; forecasting gasoline demand. FLAIRS-02 Proceedings. Available from: www.aaai.org.
[Negnevitsky, 2005]
M.A. Negnevitsky.
Artificial intelligence: A guide to intelligent systems.
2nd edition, Addison Wesley, (2005),
[Sanchez et al., 1997]
E. Sanchez, T. Shibata, L.A. Zadeh.
Genetic algorithms and fuzzy logic systems.
World Scientific, (1997),
[Srinivasan et al., 2002]
N. Srinivasan, V. Ravichandran, K.L. Chan, J.R. Vidhya, S. Ramakirishnan, S.M. Krishnan.
Exponentiated backpropagation algorithm for multilayer feedforward neural networks. Neural Information Processing, 2002. ICONIP apos; 02.
Proceedings of the 9th International Conference on Volume 1, pp. 327-331
[Wang et al., 2004]
S. Wang, L. Yu, K.K. Lai.
A novel hybrid AI system framework for crude oil price forecasting.
Springer-Verlag Heidelberg, (2004),
[Yu et al., 2003]
Yu, L., Wang, S.Y., Lai, K.K., 2003. A hybrid AI system for forex forecasting and trading decision through integration of artificial neural network and rule-based expert system. Expert System with Applications.
Copyright © 2011. Asociación Cuadernos de Economía
Download PDF
Article options