The difficulty in gas price forecasting has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting gas prices however, all of the existing models of prediction cannot meet practical needs.
In this paper, a novel hybrid intelligent framework is developed by applying a systematic integration of GMDH neural networks with GA and Rule-based Exert System (RES) employs for gas price forecasting. In this paper we use a new method for extract the rules and compare different methods for gas price forecasting.
Our research reveals that during the recent financial crisis period by employing hybrid intelligent framework for gas price forecasting, we obtain better forecasting results compared to the GMDH neural networks and MLF neural networks and results will be so better when we employ hybrid intelligent system with for gas price volatility forecasting.
La dificultad de la previsión de los precios del gas ha atraído considerablemente la atención de los investigadores universitarios y los profesionales del sector. A pesar de que se ha intentado solucionar el problema de la previsión de los precios del gas con diferentes métodos, ninguno de los modelos de predicción existentes llegan a cumplir con las necesidades prácticas.
En este artículo, se ha desarrollado un novedoso sistema inteligente híbrido mediante la aplicación de la integración sistemática de redes neuronales de tipo Group Method of Data Handling (GMDH) con algoritmos genéticos (AG) y un sistema experto basado en reglas (SER) a la previsión de los precios del gas. Igualmente, utilizamos un nuevo método para extraer las reglas y comparar los diferentes métodos para la previsión de los precios del gas.
Nuestra investigación revela que durante la reciente crisis económica se obtienen mejores resultados utilizando un sistema inteligente híbrido para la previsión de los precios del gas, en comparación con las redes neuronales de tipo GMDH y de tipo Multi-Layer Feed-forward (MLF), y que los resultados mejorarán si utilizamos un sistema inteligente híbrido en la previsión de la volatilidad de los precios del gas.