

Endocrinología, Diabetes y Nutrición

1 - LAS NANOPARTÍCULAS DE ÓXIDO DE CERIO TIENEN EFECTOS HIPOLIPEMIANTES EN RATAS ZUCKER OBESAS

G. Casals^a, M. Parra^a, G. Fernández Varo^a, M. Perramon^a, M. Morales Ruiz^a, E. Casals^b, V. Puntes^c y W. Jiménez^a

"Hospital Clínic. CIBERehd. IDIBAPS. Universidad de Barcelona. "Wuyi University. Jiangmen. China. "Institut Català de Nanociència i Nanotecnologia (ICN2); Vall d'Hebron Institute of Research (VHIR). Barcelona.

Resumen

Introducción: Las nanopartículas de óxido de cerio (CeO₂NP) presentan una estructura electrónica particular que permite eliminar especies reactivas de oxígeno (ROS) a través de un ciclo redox autoregenerativo. Se ha sugerido su utilidad terapéutica en aquellas condiciones donde el incremento de ROS tiene un papel fisiopatológico relevante.

Objetivos: Evaluar los efectos de las CeO₂NP en un modelo animal de síndrome metabólico. Métodos. Las CeO₂NP (4 nm) se sintetizaron mediante precipitación química. Las CeO₂NP (0,1 mg/kg) o vehículo (solución salina) se administraron por vía i.v. en las semanas 8 y 9 a 3 grupos de 10 ratas Zucker: delgadas (vehículo), obesas (vehículo) y obesas (CeO₂NP). Los efectos sistémicos del tratamiento con CeO₂NP se evaluaron mediante un perfil sérico bioquímico (BS-200E, Mindray) y de citoquinas (Milliplex). El estudio de lípidos se amplió con el análisis del contenido de ácidos grasos en los triglicéridos (TG), ésteres de colesterol (CE), fosfatidilcolinas (PC) y fosfatidiletanolaminas (PE) por espectrometría de masas (GC-MS).

Resultados: Las ratas obesas presentaron concentraciones más elevadas de colesterol, TG, transaminasas e insulina en comparación con las ratas delgadas. En comparación con las ratas obesas que recibieron vehículo, las ratas obesas tratadas CeO_2NP presentaron menores concentraciones de TG (463 ± 52 frente a 358 ± 31 mg/dl) y colesterol LDL (30,3 ± 4,5 frente a 20,5 ± 0,9 mg/dl). El análisis de las fracciones de lípidos confirmó la disminución de los ácidos grasos en la fracción de TG (44% de disminución frente a ratas no tratadas), que fue más marcada en ácido linoleico (74% de reducción), α -linolénico (57%) y araquidónico (69%). En la fracción de PE se observó una disminución de los ácidos grasos (64%), debido a la reducción del ácido araquidónico (81%).

Conclusiones: Las CeO₂NPs pueden constituir una nueva aproximación al tratamiento de la hiperlipemia asociada al síndrome metabólico.