

Endocrinología y Nutrición

47 - EFFECTS OF KETOCONAZOLE ON ACTH-PRODUCING AND NON ACTH-PRODUCING NEUROENDOCRINE TUMOR CELLS

A.D. Herrera-Martínez^a, R. Feelders^b, J. Castaño^c, F. Dogan^b, P. van Koetsveld^b and L. Hofland^b

^aService of Endocrinology and Nutrition. Reina Sofía University Hospital (HURS); Maimónides Institute of Biomedical Research of Córdoba (IMIBIC). España. ^bEndocrinology Section. Service of Internal Medicine. Erasmus Medical Center Rotterdam. Países Bajos. ^cIMIBIC; Department of Cell Biology. Physiology and Immunology. University of Córdoba (UCO). Córdoba. España.

Resumen

Introduction: Prolonged spontaneous remission of hypercortisolemia in ectopic ACTH syndrome (EAS) after long-term treatment with steroidogenesis inhibitors has been described. Some authors hypothesize a direct drug effect on the adrenal glands or effects on tumoral ACTH secretion and/or *POMC* gene expression. Medical treatment with steroidogenesis inhibitors can be used when a source of ACTH production cannot be identified, not only for control of symptoms, but also for disease control.

Methods: In human BON-1 pancreatic neuroendocrine tumor cells and ectopic ACTH-producing small cell lung carcinoma DMS-79 cells, we have evaluated the effects of ketoconazole on cell growth, apoptosis, cell cycle, chromogranin mRNA expression and ACTH secretion.

Results: In the BON-1 cell line, ketoconazole significantly suppressed cell growth in a dose and time-dependent manner. Maximal inhibitory effects by $10\mu M$ ketoconazole were 41.02% (p < 0.0001) and 95.23% (p < 0.0001) after 3 and 7 days of treatment, respectively. The IC₅₀ value of growth inhibition was 7.768 μM after 7 days of treatment. Ketoconazole also induced a significant G1-phase arrest (p < 0.001) accompanied by a decrease in S-phase and G2-phase, as well as a significant increase in early (p < 0.001) and late (p < 0.01) apoptosis. Ketoconazole did not significantly affect the chromogranin A expression in BON-1 cells. DMS-79 cells are less sensitive to ketoconazole effects, with maximally inhibitory effects by $50\mu M$ ketoconazole of 44.02% (p < 0.0001) and 94.02% (p < 0.0001) after 3 and 7 days of treatment, respectively. The IC₅₀ value of the growth inhibitory effect was 15 μM after 7 days of treatment. The highest ketoconazole (5 × $10^{-5}M$) concentration tested induced a significant G1-phase arrest (p < 0.001), increased dead cells rate (p < 0.001) without significant effect on early or late apoptosis. ACTH secretion was suppressed only concentrations of ketoconazole of $10^{-5}M$ and higher.

Conclusions: These results suggest a potential direct effect of ketoconazole on cell proliferation, apoptosis and cell cycle in ACTH- and non ACTH producing neuroendocrine tumor cells. Additional studies, including experiments in human NET samples, are required to confirm and extend these results.