covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Sulfonilureas en el tratamiento del paciente con diabetes mellitus tipo 2
Journal Information
Vol. 55. Issue S2.
Guía de actualización en el tratamiento de la diabetes tipo 2 y sus complicaciones
Pages 17-25 (March 2008)
Share
Share
Download PDF
More article options
Vol. 55. Issue S2.
Guía de actualización en el tratamiento de la diabetes tipo 2 y sus complicaciones
Pages 17-25 (March 2008)
Guía de actualización en el tratamiento de la diabetes tipo 2 y sus complicaciones
Full text access
Sulfonilureas en el tratamiento del paciente con diabetes mellitus tipo 2
Sulfonylureas in the treatment of type 2 diabetes
Visits
141432
L.F. Pallardo Sánchez
Corresponding author
lfpallardo.hulp@salud.madrid.org

Correspondencia: Dr. L.F. Pallardo Sánchez. Servicio de Endocrinología y Nutrición. Hospital Universitario La Paz. P.° de la Castellana, 261. 28046 Madrid. España.
Servicio de Endocrinología y Nutrición. Hospital Universitario La Paz. Universidad Autónoma. Madrid. España
This item has received
Article information

Las sulfonilureas (SU) son fármacos insulinosecretores que actúan en receptores específicos de la célula beta pancreática. Si bien la monoterapia oral inicial de la diabetes mellitus tipo 2 debe centrarse en el uso de metformina, podemos afirmar que las SU siguen siendo fármacos eficaces en su tratamiento, siempre que se utilicen precozmente cuando aún existe función de la célula beta y, fundamentalmente, en terapia combinada con otros fármacos orales (metformina, glitazonas). Las SU no protegen el deterioro progresivo de la célula beta y, por lo que se refiere a efectos secundarios, es evidente la propensión a la hipoglucemia y al aumento de peso. En cuanto a un posible papel específico favorecedor de la morbimortalidad cardiovascular, hasta el momento no se dispone de datos concluyentes que lo corroboren.

Palabras clave:
Sulfonilureas
Antidiabéticos orales
Hipoglucemias
Tratamiento diabetes mellitus tipo 2 (DM2)

Sulfonylureas are insulin-secreting drugs that act on specific pancreatic beta-cell receptors. Although initial monotherapy of type 2 diabetes mellitus should focus on the use of metformin, sulfonylureas continue to be effective in the treatment of this disease, provided they are used early when there is still some beta-cell function and, especially, in combination with other oral drugs (metformin, glitazones). Sulfonylureas do not protect against progressive beta-cell deterioration. Adverse effects consist of a tendency to produce hypoglycemia and weight gain. To date, there are no conclusive data to support a possible deleterious effect on cardiovascular morbidity and mortality.

Key words:
Sulfonylureas
Oral antidiabetic agents
Hypoglycemia
Treatment of type 2 diabetes mellitus
Full text is only aviable in PDF
Bibliografía
[1.]
A. Loubatières.
Analyse du mechanisme de l’action hypoglycemiante du p-aminobenzène-sulfamidpthiazol.
Compt Rend Soc Biol, 138 (1944), pp. 766-767
[2.]
S. Mudaliar, R.H. Henry.
The oral antidiabetic agents.
Ellenberg & Rifkin's Diabetes mellitus, 6th ed., pp. 531-564
[3.]
A.P. Harmel, R. Mathur.
Oral antidiabetic agents.
Davidosn's Diabetes mellitus, 5th ed., pp. 71-108
[4.]
H.E. Lebovitz, A. Melander.
Sulfonylureas: basic aspects and clinical uses.
3rd ed., pp. 801-832
[5.]
W.J. Malaisse, P. Lebrun.
Mechanisms of sulphonilurea-induced insulin release.
Diabetes Care, 13 (1990), pp. 9-17
[6.]
R.L. Prigeon, R.K. Jacobson, D. Porte Jr, S.E. Kahn.
Effect of sulfonylurea withdrawal on proinsulin levels, B cell function and glucose disposal in subjects with noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab, 81 (1996), pp. 3295-3298
[7.]
M. Korytkowski, A. Thomas, L. Reid, M.B. Tedesco, W.E. Gooding, J. Gerich.
Glimepiride improves both first and second phases of insulin secretion in type 2 diabetes.
Diabetes Care, 25 (2002), pp. 1607-1611
[8.]
C.B. Juhl, N. Porksen, S.M. Pincus, A.P. Hansen, J.D. Veldhuis, O. Schmitz.
Acute and short-term administration of a sulfonylurea (gliclazide) increases pulsatile secretion in type 2 diabetes.
Diabetes, 50 (2001), pp. 1778-1784
[9.]
H. Schmid-Antomarchi, J. De Weille, M. Fosset, M. Lazdunski.
The receptor for ntidiabetic sulphonylureas controls the activity of the ATPmodulated K+ channel in insulin secreting cells.
J Biol Chem, 262 (1987), pp. 15840-15844
[10.]
F.M. Ashcroft.
Mechanisms of the glyemic effects of sulfonylureas.
Horm Metab Res, 28 (1996), pp. 456-463
[11.]
L. Aguilar-Bryan, J. Bryan, M. Nakazaki.
Of mice and men:KATP channels and insulin secretion.
Recent Prog Horm, 56 (2001), pp. 47-68
[12.]
J.L. Carpentier, F. Sawano, M. Ravazzola, W.J. Malaisse.
Internalization of (3H) glibenclamide in pancreatic islets cells.
Diabetologia, 29 (1986), pp. 259-261
[13.]
I. Quesada, A. Nadal, B. Soria.
Different effects of tolbutamide and diazoxide in α, β y δ cells within intact islets of Langerhans induces impairment of glucagon and growth hormone responses during mild insulin-induced hypoglycaemia.
Diabetes, 48 (1999), pp. 2390-2397
[14.]
E.W. Ter Braak, I. Van der Tweeel, D.W. Erkelens, T.W. Van Haeften.
The sulfonylurea gliburide induces impairement of glucagon and growth hormone responses during mild insulin-induced hypoglycemia.
Diabetes Care, 25 (2002), pp. 107-112
[15.]
A. Haupt, C. Kausch, D. Dahl, O. Bachmann, M. Stumvoll, H.U. Harin, et al.
Effect of glimepiride on insulin-stimulated glycogen synthesis in cultured human skeletal muscle cells.
Diabetes Care, 25 (2002), pp. 2129-2132
[16.]
J.E. Gerich.
Oral hypoglycaemic agents.
N Engl J Med, 321 (1989), pp. 1235-1241
[17.]
H.E. Lebovitz.
Insulin secretagogues: old and new.
Diabetes Rev, 7 (1999), pp. 139-153
[18.]
B.S. Kuo, G. Korner, T.D. Bjornsson.
Effects of sulphonylureas on the synthesis and secretion of plasminogen activator from bovine aortic endothelial cells.
J Clin Invest, 81 (1988), pp. 730-737
[19.]
D. Siluk, R. Kaliszan, P. Haber, J. Petrusewicz, Z. Brzozowski, G. Sut.
Antiaggregatory activity of hypoglycaemic sulphonylureas.
Diabetologia, 45 (2002), pp. 1034-1037
[20.]
A. Ceriello.
Effects of gliclazide beyond metabolic control.
Metabol Clin Exp, 55 (2006), pp. S10-S15
[21.]
A. Melander.
Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes.
Diabetes, 53 (2004), pp. S151-S155
[22.]
I. Rustenbeck, A. Wienbergen, C. Bleck, A. Jörns.
Desensitization of insulin secretion by depolarizing insulin secretagogues.
Diabetes, (2004), pp. S140-S150
[23.]
E.R. Pearson, W.G. Liddell, M. Sepherd, R.J. Corrall, A.T. Hattersley.
Sensitivity to sulphonylureas inpatients with hepatocyte nuclear factor 1 alpha gene mutations: evidence for pharmacogenetic in diabetes.
Diabet Med, 17 (2000), pp. 543-545
[24.]
H. Lebovitz.
Management of hyperglycemia with oral antihyperglycemic agents in type 2 diabetes.
Joslin's Diabetes mellitus, 14th ed., pp. 687-710
[25.]
M.C. Riddle.
Sulfonylureas differ in effects on ischaemic preconditioning. Is it time to retire glyburide.
J Clin Endocrinol Metab, 88 (2003), pp. 528-530
[26.]
S.N. Davis.
The role of glimepiride in the effective management of type 2 diabetes.
J Diabetes Complications, 18 (2004), pp. 367-376
[27.]
G. Schernthaner.
Gliclazide modified release: a critical review of pharmacodynamic , metabolic and vasoprotective effects.
Metabolism, 52 (2003), pp. 29-34
[28.]
J.J. Meier, B. Gallwitz, W.E. Schmidt, A. Mügge, M.A. Nauck.
Is impairement of ischaemic preconditioning by sulfonylurea drugs clinically important?.
Heart, 90 (2004), pp. 9-12
[29.]
M.Y. Donath, J.A. Ehses, K. Maedler, M. Schumann, H. Ellingsgaard, E. Eppler, et al.
Mechanisms of β-cell death in type 2 diabetes.
Diabetes, 54 (2005), pp. S108-S113
[30.]
D.R. Matthews, C.A. Cull, I.M. Stratton, R.R. Holman, R.C. Turner.
UKPDS 26: Sulphonylurea failure in non-insulin dependent diabetic patients over six years.
[31.]
C.R. Turner, C.A. Cull, V. Frighi, R.R. Holman, For the UKPDS Group.
Glycemic control with diet, sulfonylurea, metformin or insulin in patients with type 2 diabetes mellitus.
JAMA, 281 (1999), pp. 2005-2012
[32.]
R.R. Holman.
Long-term efficacy of sulfonylureas: a United Kingdom Prospective Diabetes Study perspective.
Metabol Clin Exp, 55 (2006), pp. S2-S5
[33.]
A.E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R.A. Rizza, P.C. Butler.
β-cell deficit and increased β-cell apoptosis in human with type 2 diabetes.
Diabetes, 52 (2003), pp. 102-110
[34.]
K. Maedler, R.D. Carr, D. Bosco, R.A. Zuellig, T. Berney, M.Y. Donath.
Sulfonylurea induced β-cell apoptosis in cultured human islets.
J Clin Endocrinol Metab, 90 (2005), pp. 501-506
[35.]
K. Kimoto, K. Suzuki, T. Kizaki, Y. Hitomi, H. Ishida, H. Kastuta, et al.
Gliclazide protects pancreatic beta-cells from damage by hydrogen peroxide.
Biochem Biophys Res Commun, 303 (2003), pp. 112-119
[36.]
P. Marchetti, S. Del Guerra, L. Marselli, R. Lupi, M. Masini, M. Pollera, et al.
Pancreatic islets from yype 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin.
J Clin Endocrinol Metab, 89 (2004), pp. 5535-5541
[37.]
B.A. Kefas, Y. Cai, K. Kerckhofs, Z. Ling, G. Martens, H. Heimberg, et al.
Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis.
Biochem Pharmacol, 68 (2004), pp. 409-416
[38.]
D.T. Finegood, M.D. McArthur, D.T. Kojwang, M.J. Thomas, B.G. Topp, T. Leonard, et al.
β-cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death.
Diabetes, 50 (2001), pp. 1021-1029
[39.]
D.J. Drucker.
Glucagon-like-peptide-1 and the islet beta-cell; augmentation of cell proliferation and inhibition of apoptosis.
Endocrinology, 144 (2003), pp. 5145-5148
[40.]
J. Mu, J. Woods, Y.P. Zhou, R.S. Roy, Z. Li, E. Zyeband, et al.
Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes.
Diabetes, 55 (2006), pp. 1695-1704
[41.]
D.S.H. Bell.
β-cell rejuvenation with thiazolidinediones.
Am J Med, 115 (2003), pp. S20-S23
[42.]
S.E. Kahn, S.M. Haffner, M.A. Heise, W.H. Herman, R.R. Holman, N.P. Jones, For the ADOPT Study Group.
Glycemic durability of rosiglitazone, metformin or glyburide monotherapy.
N Engl J Med, 355 (2006), pp. 2427-2443
[43.]
M. Alvarsson, M. Sundkvist, I. Lager, M. Henricsson, K. Berntorp, E. Fernqvist-Forbes, et al.
Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed type 2 diabetic patients.
Diabetes Care, 26 (2003), pp. 2231-2237
[44.]
M. Riddle.
Combining sulfonylureas and other oral agents.
Am J Med, 108 (2000), pp. S15-S22
[45.]
M. Bajaj, R.A. DeFronzo.
Combination therapy in type 2 diabetes.
3rd ed., pp. 915-950
[46.]
R.A. DeFronzo, A.M. Goodman.
Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus.
N Engl J Med, 333 (1995), pp. 541-549
[47.]
UK Prospective Diabetes Study (UKPDS) Group.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).
Lancet, 352 (1998), pp. 854-865
[48.]
J.A. Johnson, S.R. Majundar, S.H. Simpson, E.L. Toth.
Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes.
Diabetes Care, 25 (2002), pp. 2244-2248
[49.]
M.S. Kipnes, A. Krosnick, M.S. Rendell, J.W. Egan, A.L. Mathisen, R.L. Schneider.
Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a ramdomized, placebo-controlled study.
Am J Med, 111 (2001), pp. 10-17
[50.]
B.H. Wolffenbuttel, R. Gomis, S. Squatrito, N.P. Jones, R.N. Patwardhan.
Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in type 2 diabetic patients.
Diabet Med, 17 (2000), pp. 40-47
[51.]
J.L. Chiasson, R. Josse, J. Hunt, C. Palmasson, N.W. Rodger, S.A. Ross, et al.
The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus.
Ann Intern Med, 121 (1994), pp. 928-935
[52.]
R.R. Holman, C.A. Cull, R.C. Turner.
A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UKPDS 44).
Diabetes Care, 22 (1999), pp. 960-964
[53.]
J.A. Kiayias, E.D. Vlachou, E. Theodosopoulu, E. Lakka-Papadodima.
Rosiglitazone in combination with glimepiride plus metformin in type 2 diabetic patients.
Diabetes Care, 25 (2002), pp. 1251-1252
[54.]
J.L. Johnson, S.L. Wolf, U.M. Kabadi.
Efficacy of insulin and sulfonylurea combination therapy in type II diabetes. A meta-analysis or the randomized placebo-controlled trials.
Arch Intern Med, 156 (1996), pp. 259-264
[55.]
M.C. Riddle, J. Schneider, For the Glimepiride Combination Group.
Beginning insulin treatment of obese patients with evening 70/30 insulin plus glimepiride versus insulin alone.
Diabetes Care, 21 (1998), pp. 1052-1057
[56.]
J. Rosenstock.
Basal insulin supplementation in type 2 diabetes: refining the tactics.
Am J Med, 116 (2004), pp. S10-S16
[57.]
J. Rosenstock, B. Zinman, L.J. Murphy, S.C. Clement, P. Morre, C.K. Bowering, et al.
Inhaled insulin (Exubera) improves glycaemic control when substituted for or added to oral combination therapy in type 2 diabetes: a randomized controlled trial.
Ann Intern Med, 143 (2005), pp. 549-558
[58.]
M.S. Fineman, T.A. Bicsak, L.Z. Shen, K. Taylor, E. Gaines, A. Varns, et al.
Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and /or sulfonylurea treatment in patients with type 2 diabetes.
Diabetes Care, 26 (2003), pp. 2370-2377
[59.]
W. Berger, F. Cardiff, M. Pasquel, A. Rump.
Die relative Haüfigkeit der schweren Sulfonylharnstoff Hypoglykämie in den letzten 25 Jahren in der Schweiz.
Schweiz Med Wschr, 116 (1986), pp. 145-151
[60.]
K. Asplund, B.E. Wiholm, F. Lithner.
Glibenclamide-associated hypoglycaemia: a report of 57 cases.
Diabetologia, 24 (1983), pp. 412-417
[61.]
UK Prospective Diabetes Study (UKPDS) Group.
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
Lancet, 352 (1998), pp. 837-853
[62.]
A. Holstein, A. Plaschke, E.H. Egberts.
Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide.
Metab Res Rev, 17 (2001), pp. 467-473
[63.]
A.D. Harrower.
Comparison of efficacy, secondary failure rate and complications of sulfonylureas.
J Diabetes Complications, 8 (1994), pp. 201-203
[64.]
S. Del Prato, N. Pulizzi.
The place of sulfonylureas in the therapy for type 2 diabetes mellitus.
Metabol Clin Exp, 55 (2006), pp. S20-S27
[65.]
D.C. Simonson, I.A. Kourides, M. Feinglos, H. Shamoon, C.T. Fischette, Glipizide Gastrointestinal Therapeutic System Study Group.
Efficacy, safety and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM. Results of two multicentre, randomized, placebo-controlled clinical trials.
Diabetes Care, 20 (1997), pp. 597-606
[66.]
G. Schernthaner, A. Grimaldi, U. Di Mario, J. Drzewoski, P. Kempler, M. Kvapil, et al.
GUIDE Study: double-blind comparison on once-daily gliclazide MR and glimepiride in type 2 diabetic patients.
Eur J Clin Invest, 34 (2004), pp. 535-542
[67.]
University Group Diabetes Program.
Effects of hypoglycaemic agents on vascular complication in patients with adul-onset diabetes. III: clinical implications of UGDP results.
JAMA, 218 (1971), pp. 1400-1410
[68.]
J.P. Riveline, N. Danchin, F. Ledru, M. Varroud-Vial, G. Charpentier.
Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications.
Diabetes Metab, 29 (2003), pp. 207-222
[69.]
D.S.H. Bell.
Do sulfonylurea drugs increase the risk of cardiac events?.
CMAJ, 17 (2006), pp. 174-175
[70.]
F.M. Gribble, F. Reinman.
Sulphonylurea action revisited: the post-cloning era.
Diabetologia, 46 (2003), pp. 875-889
[71.]
F. Reinman, F.M. Ashcroft, F.M. Gribble.
Structural basis for the interference between nicorandil and sulfonylurea action.
Diabetes, 50 (2001), pp. 2253-2259
[72.]
U. Quast, D. Stephan, S. Bieger, U. Russ.
The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium.
Diabetes, 53 (2004), pp. S156-S164
[73.]
T. Sato, H. Nishida, M. Miyazaki, H. Nakaya.
Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy.
Diabet Metab Res Rev, 22 (2006), pp. 341-347
[74.]
R. Scornamiglio, A. Avogaro, S.V. Kreutzenberg, C. Negut, M. Palisi, E. Bagolin, et al.
Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes.
Diabetes, 51 (2002), pp. 808-812
[75.]
T.M. Lee, T.F. Chou.
Impairment of myocardial protection in type 2 diabetic patients.
J Clin Endocrinol Metab, 88 (2003), pp. 531-537
[76.]
K.N. Garrat, P.A. Brady, N.L. Hasinger, D.E. Grill, A. Terzic, D.R. Holmes Jr.
Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction.
J Am Coll Cardiol, 33 (1999), pp. 119-124
[77.]
J.G. Jollis, R.J. Simpson Jr, W.E. Cascio, M.K. Chowdhury, J.R. Crouse, S.C. Smith.
Relation between sulfonylurea therapy, complications, and outcome for elderly patients with acute myocardial infarction.
Am Heart J, 138 (1999), pp. S376-S380
[78.]
Consensus Development Conference on Insulin Resistance: 5-6 November 1997. American Diabetes Association. Diabetes Care. 1998;21: 310-4.
[79.]
H.N. Ginsberg.
Insulin resistance and cardiovascular disease.
J Clin Invest, 106 (2000), pp. 453-458
[80.]
G.I. Uwaifo, R.E. Ratner.
The roles of insulin resistance, hyperinsulinemia and thiazolidinediones in cardiovascular disease.
Am J Med, 115 (2003), pp. S12-S19
[81.]
V. Fonseca, C. Desouza, S. Asnani, I. Jialal.
Nontraditional risk factors for cardiovascular disease in diabetes.
Endocrine Rev, 25 (2004), pp. 153-175
[82.]
R.C. Bonadonna.
The syndrome of insulin resitance and its links to atherosclerosis.
3rd ed., pp. 1379-1394
[83.]
H.E. Lebovitz.
Insulin secretagogues: sulphonilureas, meglitinides and phenylalanine derivatives.
Diabetes mellitus, 3rd ed., pp. 1107-1122
[84.]
J.B. Ruige, W.J. Assendelft, J.M. Dekker, P.J. Kostense, R.J. Heine, L.M. Bouter.
Insulin and risk of cardiovascular disease: a meta-analysis.
Circulation, 97 (1998), pp. 996-1001
[85.]
S.M. Haffner, R. D’Agostino, L. Mykkanen, C.N. Hales, P.J. Savage, R.N. Bergman, et al.
Proinsulin and insulin concentrations in relation to carotid wall thickness: Insulin Resistance Atherosclerosis Study.
Stroke, 29 (1998), pp. 1498-1503
[86.]
O. Kruszelnicka-Kwiatkowska, A. Surdacki, P. Goldsztajn, J. Matysek, W. Piwowarska, A. Golay.
Relationship between hyperinsulinemia and angiographically defined coronary atherosclerosis in non-diabetic men.
Diabetes Metab, 28 (2002), pp. 305-309
[87.]
K. Shinozaki, M. Suzuki, M. Ikebuchi, Y. Hara, Y. Harano.
Demonstration of insulin resistance in coronary artery disease documented with angiography.
Diabetes Care, 19 (1996), pp. 1-7
[88.]
G. Howard, D.H. O’Leary, D. Zaccaro, S. Haffner, M. Rewers, R. Hamman, For the IRAS Investigators, et al.
Insulin sensitivity and atherosclerosis.
Circulation, 93 (1996), pp. 1809-1817
[89.]
C.C. Low Wang, M.L. Goalstone, B. Draznin.
Molecular mechanisms of insulin resistance that impact cardiovascular biology.
Diabetes, 53 (2004), pp. 2735-2740
[90.]
D. Choi, S.K. Kim, S.H. Choi, Y.G. Ko, C.W. Ahn, Y. Jang, et al.
Preventative effect of rosiglitazone on reestenosis after coronary stent implantation in patients with type 2 diabetes.
Diabetes, 27 (2004), pp. 2654-2660
[91.]
B.E. Sobel, E. Frye, K.M. Detre.
Bypass Angioplasty Revascularization Investigation 2 Diabetes Trial: burgeoning dilemmas in the management of diabetes and cardiovascular disease: rationales for Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI-2D) Trial.
Circulation, 107 (2003), pp. 636-642
[92.]
D.T. Eurich, S.R. Majumdar, F.A. McAlister, R.J. Tsuyuki, J.A. Johnson.
Impaired clinical outcomes associated with metformin in patients with diabetes and heart failure.
Diabetes Care, 28 (2005), pp. 2345-2351
[93.]
J.M.M. Evans, S.A. Ogston, A. Emslie-Smith, A.D. Morris.
Risk of mortality and adverse outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin.
Diabetologia, 49 (2006), pp. 930-936
[94.]
S.M. Maru, G.G. Koch, M. Stender, D. Clark, L. Gibowski, H. Petri, et al.
Antidiabetic drugs and heart failure risk in patients with type 2 diabetes in the U.K. primary care setting.
Diabetes Care, 28 (2005), pp. 20-26
[95.]
H.E. Lebovitz.
Combination therapy for hyperglycemia.
Therapy for diabetes mellitus and related disorders, 3rd ed., pp. 211-219
[96.]
Global Guideline for type 2 Diabetes. International Diabetes Federation. Clinical Guidelines Task Force, Brussels; 2005.
[97.]
D.M. Nathan, J.B. Buse, M.B. Davidson, J.R. Heine, R.R. Holman, R. Sherwin, et al.
Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes.
Diabetologia, 49 (2006), pp. 1711-1721
Copyright © 2008. Sociedad Española de Endocrinología y Nutrición
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos