was read the article
array:23 [ "pii" => "S0210570518301572" "issn" => "02105705" "doi" => "10.1016/j.gastrohep.2018.05.026" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "1290" "copyright" => "Elsevier España, S.L.U.. All rights reserved" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Gastroenterol Hepatol. 2018;41:490-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 17 "formatos" => array:2 [ "HTML" => 10 "PDF" => 7 ] ] "itemSiguiente" => array:19 [ "pii" => "S0210570517302005" "issn" => "02105705" "doi" => "10.1016/j.gastrohep.2017.08.008" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "1188" "copyright" => "Elsevier España, S.L.U." "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Gastroenterol Hepatol. 2018;41:498-500" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 40 "formatos" => array:2 [ "HTML" => 17 "PDF" => 23 ] ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Scientific letter</span>" "titulo" => "Granulomatous gastritis induced by onychophagia: First case report" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "498" "paginaFinal" => "500" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Gastritis granulomatosa inducida por onicofagia: primer relato de caso" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1252 "Ancho" => 1667 "Tamanyo" => 458720 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Gastric mucosa with moderate chronic gastritis (A – H&E stain, ×200; B – H&E stain, ×400). <span class="elsevierStyleItalic">Helicobacter pylori</span> microorganisms were identified (C – modified Giemsa stain, ×400).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Rui Morais, Amadeu C.R. Nunes, Elisabete Rios, Susana Rodrigues, Guilherme Macedo" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Rui" "apellidos" => "Morais" ] 1 => array:2 [ "nombre" => "Amadeu C.R." "apellidos" => "Nunes" ] 2 => array:2 [ "nombre" => "Elisabete" "apellidos" => "Rios" ] 3 => array:2 [ "nombre" => "Susana" "apellidos" => "Rodrigues" ] 4 => array:2 [ "nombre" => "Guilherme" "apellidos" => "Macedo" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2444382418301512" "doi" => "10.1016/j.gastre.2018.08.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2444382418301512?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210570517302005?idApp=UINPBA00004N" "url" => "/02105705/0000004100000008/v1_201810020616/S0210570517302005/v1_201810020616/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S021057051830147X" "issn" => "02105705" "doi" => "10.1016/j.gastrohep.2018.05.016" "estado" => "S300" "fechaPublicacion" => "2018-10-01" "aid" => "1280" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Gastroenterol Hepatol. 2018;41:483-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 97 "formatos" => array:2 [ "HTML" => 61 "PDF" => 36 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Análisis retrospectivo del uso de la cuádruple terapia con bismuto (Pylera<span class="elsevierStyleSup">®</span>) en la práctica clínica real en España" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "483" "paginaFinal" => "489" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Retrospective analysis of the use of quadruple therapy with bismuth (Pylera<span class="elsevierStyleSup">®</span>) in real-life clinical practice in Spain" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Sandra Agudo-Fernández, Ana González Blanco" "autores" => array:2 [ 0 => array:2 [ "nombre" => "Sandra" "apellidos" => "Agudo-Fernández" ] 1 => array:2 [ "nombre" => "Ana" "apellidos" => "González Blanco" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2444382418301603" "doi" => "10.1016/j.gastre.2018.05.017" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2444382418301603?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S021057051830147X?idApp=UINPBA00004N" "url" => "/02105705/0000004100000008/v1_201810020616/S021057051830147X/v1_201810020616/es/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Role of sodium-hydrogen exchanger isoform 1 in regulating hepatocyte apoptosis induced by hyperammonaemia" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "490" "paginaFinal" => "497" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Peng Wang, Xin Wang, Ling Li, Quancheng Kan, Zujiang Yu, Rongfang Feng, ZiXiao Chen, Yan Shi, Jinling Gao" "autores" => array:9 [ 0 => array:3 [ "nombre" => "Peng" "apellidos" => "Wang" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] 1 => array:4 [ "nombre" => "Xin" "apellidos" => "Wang" "email" => array:1 [ 0 => "wang_x@aliyun.com" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "Ling" "apellidos" => "Li" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Quancheng" "apellidos" => "Kan" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 4 => array:3 [ "nombre" => "Zujiang" "apellidos" => "Yu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "Rongfang" "apellidos" => "Feng" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "ZiXiao" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:3 [ "nombre" => "Yan" "apellidos" => "Shi" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 8 => array:3 [ "nombre" => "Jinling" "apellidos" => "Gao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Palliative and Hospice Care, The Ninth People's Hospital of Zhengzhou, Henan, PR China" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Papel de la isoforma 1 del intercambiador iónico de sodio/hidrógeno en la regulación de la apoptosis de hepatocitos inducida por hiperamoniaquemia" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1432 "Ancho" => 1501 "Tamanyo" => 82842 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Cell viability upon treatment with NH<span class="elsevierStyleInf">4</span>Cl and cariporide (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. Cell viability was determined by MTT assay as described under “Materials and methods”, and was presented as optical density versus control. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Hepatic failure (HF) is a life threatening disease and is caused by a variety of factors, which induce liver cell damage and liver dysfunction. The mortality rate of HF is very high<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">1</span></a> and the complications associated with HF include hepatic encephalopathy, hepatorenal syndrome and hemorrhaging.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">2</span></a> It has been proved that hyperammonaemia was involved in the pathogenesis of hepatic encephalopathy and it is commonly studied as the mechanism of encephalopathy.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">3</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Recent studies, including the results obtained from our laboratory, have demonstrated that hyperammonemia has a direct adverse effect on hepatocytes and it is therefore both a cause and an effect of hepatic failure.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">4–6</span></a> But the effect of high blood ammonia on liver cell injury and its underlying mechanism remain unclear.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Proper cell function depends on the maintenance of intracellular and extracellular physicochemical parameters within certain physiological limits. Such an important parameter is pH.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">7</span></a> In fact, the activity of intracellular enzymes, the interaction of cytoskeletal elements, the rate at which cells grow and differentiate all depend on pHi.<a class="elsevierStyleCrossRefs" href="#bib0200"><span class="elsevierStyleSup">8,9</span></a> Cells can minimize significant pHi fluctuations through several H<span class="elsevierStyleSup">+</span> transport systems; the best known system is represented by the sodium/hydrogen exchanger (NHE) family. Among all the NHE isoforms, NHE isoform 1 (NHE1) is the dominant subtype in hepatic tissue and displays a widespread tissue distribution by maintaining pHi and cell volume levels, in contrast, other subtypes have more limited tissue distribution and are thought to be involved in NaCl absorption.<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">11,12</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">Most studies have demonstrated that apoptosis is ultimately accompanied by cytosol acidification.<a class="elsevierStyleCrossRefs" href="#bib0210"><span class="elsevierStyleSup">10,13,14</span></a> More recently, it was reported that rats subjected to 280<span class="elsevierStyleHsp" style=""></span>mmol/L NH<span class="elsevierStyleInf">4</span>Cl loading for five days developed metabolic acidosis.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">15</span></a> Flow cytometric analysis from our previous research work revealed that the cell apoptosis ratio increased with increasing concentrations of NH<span class="elsevierStyleInf">4</span>Cl. This demonstrated that high blood ammonia levels may lead to liver cell damage and apoptosis.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">4–6,16</span></a> A cytoprotective role of NHE1 is also supported by experiments in which NHE1-null proximal tubule cells demonstrated enhanced sensitivity to multiple apoptotic stimuli compared with wild-type cells.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">14</span></a> Manucha<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">17</span></a> demonstrated that tubular epithelial cell apoptosis was associated with decreased NHE1 expression in a neonatal rat model of ureteral obstruction.</p><p id="par0025" class="elsevierStylePara elsevierViewall">In our present study, we investigated whether hyperammonemia has any effects on the pHi and activity of NHE1 in hepatic cells. A hyperammonia hepatic cell model was established to determined the role of NHE1 in the regulation of hepatocyte apoptosis induced by hyperammonaemia and its mechanism underlying liver failure.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Materials</span><p id="par0030" class="elsevierStylePara elsevierViewall">All cell culture reagents, including antibiotics, fetal bovine serum (FBS), phosphate-buffered saline (PBS) and RIMP1640 were purchased from Thermo Fisher Scientific, Inc. (Waltham, MA, USA). 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluo rescein acetoxymethyl ester (BCECF-AM), cariporide and antibodies were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Cell culture plastics were purchased from Corning Incorporated (Corning, New York, USA). Annexin V fluorescein isothiocyanate (FITC) apoptosis detection kit was purchased from Beyotime Institute of Biotechnology (Haimen, China). All other chemicals were purchased from Sigma–Aldrich (St. Louis, MO, USA).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Cell line and experimental treatments</span><p id="par0035" class="elsevierStylePara elsevierViewall">Hepatocytes were obtained from the Type Culture Collection of the Chinese Academy of Sciences, Shanghai, China. When the cells monolayer became confluent, the cells were divided into four groups and incubated for 12<span class="elsevierStyleHsp" style=""></span>h in serum free medium or serum free medium with 10<span class="elsevierStyleHsp" style=""></span>μM cariporide, 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl, or 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>μM cariporide, respectively.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Intracellular pHi and NHE activity measurement</span><p id="par0040" class="elsevierStylePara elsevierViewall">Hepatocytes were plated on glass coverslips and in complete RIMP1640 at 37<span class="elsevierStyleHsp" style=""></span>°C in a humidified atmosphere with 5% CO<span class="elsevierStyleInf">2</span>. Intracellular pH was measured after chemical treatments. Cellular NHE activity was determined fluorometrically by using intracellular pH-sensitive dye acetoxymethyl ester of BCECF-AM, as described previously.<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">10</span></a> In briefly, cells were exposed to Na<span class="elsevierStyleSup">+</span> solution (138<span class="elsevierStyleHsp" style=""></span>mM NaCl, 5<span class="elsevierStyleHsp" style=""></span>mM KCl, 2<span class="elsevierStyleHsp" style=""></span>mM CaCl<span class="elsevierStyleInf">2</span>, 1<span class="elsevierStyleHsp" style=""></span>mM NaH<span class="elsevierStyleInf">2</span>PO<span class="elsevierStyleInf">4</span>, 1<span class="elsevierStyleHsp" style=""></span>mM MgSO<span class="elsevierStyleInf">4</span>, 25<span class="elsevierStyleHsp" style=""></span>mM glucose, and 20<span class="elsevierStyleHsp" style=""></span>mM HEPES, pH 7.4) with 5<span class="elsevierStyleHsp" style=""></span>μM BCECF-AM at 37<span class="elsevierStyleHsp" style=""></span>°C for 1<span class="elsevierStyleHsp" style=""></span>h. Then cells were washed with Na<span class="elsevierStyleSup">+</span> solution to remove extracellular dye and perfused with Na<span class="elsevierStyleSup">+</span> solution and measured the baseline pHi.</p><p id="par0045" class="elsevierStylePara elsevierViewall">Next, cells were exposed to 40<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl (pH 7.4) and perfused with Na<span class="elsevierStyleSup">+</span> free medium (130<span class="elsevierStyleHsp" style=""></span>mM tetramethyl ammonium chloride, 5<span class="elsevierStyleHsp" style=""></span>mM KCl, 2<span class="elsevierStyleHsp" style=""></span>mM CaCl<span class="elsevierStyleInf">2</span>, 1<span class="elsevierStyleHsp" style=""></span>mM NaH<span class="elsevierStyleInf">2</span>PO<span class="elsevierStyleInf">4</span>, 1<span class="elsevierStyleHsp" style=""></span>mM MgSO<span class="elsevierStyleInf">4</span>, 25<span class="elsevierStyleHsp" style=""></span>mM glucose, and 20<span class="elsevierStyleHsp" style=""></span>mM HEPES, pH 7.4). Then, re-addition of extracellular Na<span class="elsevierStyleSup">+</span> allowed activation of Na<span class="elsevierStyleSup">+</span>/H<span class="elsevierStyleSup">+</span> exchange and recovery from acidification to basal levels. At the end of each experiment, the fluorescence ratio was calibrated to pHi by using nigericin (2<span class="elsevierStyleHsp" style=""></span>μM)/high K<span class="elsevierStyleSup">+</span> solutions of different pH values method.</p><p id="par0050" class="elsevierStylePara elsevierViewall">Initial rate of Na<span class="elsevierStyleSup">+</span>-dependent recovery from intracellular acidification corresponding to NHE1 activity was almost linear during the first 1<span class="elsevierStyleHsp" style=""></span>min of the reaction. NHE1 activity was measured by calculating the pHi change over the first 1<span class="elsevierStyleHsp" style=""></span>min and expressed as ΔpH/min.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Cell viability assay</span><p id="par0055" class="elsevierStylePara elsevierViewall">After experimental treatments, cell viability of hepatocytes was demonstrated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay according to manufacturer's instructions. In brief, MTT solution (5<span class="elsevierStyleHsp" style=""></span>mg/ml) was added to each well and incubated for 4<span class="elsevierStyleHsp" style=""></span>h at 37<span class="elsevierStyleHsp" style=""></span>°C. Then 1<span class="elsevierStyleHsp" style=""></span>ml of dimethyl sulfoxide (DMSO) was added and thoroughly mixed for 10<span class="elsevierStyleHsp" style=""></span>min. Subsequently, MTT absorbance was measured at 570 and 630<span class="elsevierStyleHsp" style=""></span>nm using a microplate reader.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Flow cytometry</span><p id="par0060" class="elsevierStylePara elsevierViewall">To confirm the results from MTT assay, hepatocytes were harvested using trypsin/EDTA solution after experimental treatments, rinsed with binding buffer (0.01<span class="elsevierStyleHsp" style=""></span>M HEPES, 2.5<span class="elsevierStyleHsp" style=""></span>mM CaCl<span class="elsevierStyleInf">2</span>, 0.14<span class="elsevierStyleHsp" style=""></span>M NaCl, pH 7.4) and collected by centrifugation at 1000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 10<span class="elsevierStyleHsp" style=""></span>min. Cell pellets were resuspended with binding buffer at a concentration of 1<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">6</span><span class="elsevierStyleHsp" style=""></span>cells/ml and incubated with propidium iodide and FITC-Annexin V following the manufacturer's recommendations for 15<span class="elsevierStyleHsp" style=""></span>min at room temperature in the dark. Cell apoptosis analysis was performed by using a FACScalibur (Becton Dickinson Corp., USA).</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Measuring intracellular ATP content</span><p id="par0065" class="elsevierStylePara elsevierViewall">Briefly, following cell preparations, intracellular ATP content was measured as described previously<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">18</span></a> by bioluminescence assay using a commercial ATP assay kit (EMD Millipore, Darmstadt, Germany) according to the manufacturer's instructions. In brief, cells were treated with 100<span class="elsevierStyleHsp" style=""></span>μL nuclear releasing reagent for 5<span class="elsevierStyleHsp" style=""></span>min at room temperature while gently shaking, and 1.0<span class="elsevierStyleHsp" style=""></span>μL ATP monitoring enzyme was added into the cell lysates. Bioluminescence of intracellular ATP content was determined by comparing with a standard curve that was generated by using various ATP solutions with known concentrations. The intracellular ATP is further normalized to protein concentration for comparison.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Western blot analysis</span><p id="par0070" class="elsevierStylePara elsevierViewall">Following experimental treatments, hepatocytes were washed three times by ice-cold PBS containing 50<span class="elsevierStyleHsp" style=""></span>mM Tris. Then hepatocytes were harvested by centrifugation at 750<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 10<span class="elsevierStyleHsp" style=""></span>min at 4<span class="elsevierStyleHsp" style=""></span>°C. Cell pellets were resuspended and lysed in 500<span class="elsevierStyleHsp" style=""></span>μl of ice-cold lysis buffer (50<span class="elsevierStyleHsp" style=""></span>mM NaCl, 10<span class="elsevierStyleHsp" style=""></span>mM HEPES, 5<span class="elsevierStyleHsp" style=""></span>mM EDTA, 1<span class="elsevierStyleHsp" style=""></span>mM benzamidine, 0.5% Triton X-100). Cell lysate was solubilized at 4<span class="elsevierStyleHsp" style=""></span>°C for 30<span class="elsevierStyleHsp" style=""></span>min with end-over-end rotation and subsequently homogenized 10 times using a 26-gauge needle applied to a 1-ml syringe. Cellular debris was cleared by centrifugation at 14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 15<span class="elsevierStyleHsp" style=""></span>min. Supernatant was collected and solubilized in loading buffer (5<span class="elsevierStyleHsp" style=""></span>mM Tris–HCl, 1% SDS, 10% glycerol, and 1% 2-mercaptoethanol, pH 6.8), boiled for 10<span class="elsevierStyleHsp" style=""></span>min. Protein content of each fraction was determined by the bicinchoninic acid assay (Sigma). Subsequently, normalized samples were loaded, size-fractionated by 10% SDS-PAGE, and electrophoretically transferred to nitrocellulose membrane. After blocking with 5% nonfat milk in PBST (0.05% Tween/PBS) at room temperature for 1<span class="elsevierStyleHsp" style=""></span>h and incubated with anti-p-Akt antibody, anti-Akt antibody, anti-p-PI3K antibody and anti-PI3K antibody or anti-β-actin antibody (dilution 1:1000), respectively, membrane was washed with PBST for three times for 10<span class="elsevierStyleHsp" style=""></span>min each. Following incubation with Alexa Fluor<span class="elsevierStyleSup">®</span>488 mouse anti-rabbit IgG and Alexa Fluor<span class="elsevierStyleSup">®</span> 680 rabbits anti-mouse IgG (Thermo Fisher Scientific, Inc.; dilution 1:10,000) for 60<span class="elsevierStyleHsp" style=""></span>min at room temperature in the dark. Subsequently, lots were detected and relative density units were estimated from the mean pixel density using Image Studio Lite 4.0 and normalized to β-actin.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Statistical analysis</span><p id="par0075" class="elsevierStylePara elsevierViewall">Statistical analyses were performed using SPSS 13.0 software (SPSS, Inc., Chicago, IL, USA). Data from multiple experiments were processed and expressed as mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation. Statistical differences between the different groups were determined using one-way analysis of variance followed by a Student–Newman–Keuls test. <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 was considered to indicate a statistically significant difference.</p></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Results</span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">NH<span class="elsevierStyleInf">4</span>Cl and cariporide lowered intracellular pH</span><p id="par0080" class="elsevierStylePara elsevierViewall">To verify the effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on intracellular pH in hepatocytes, the fluorescent indicator dye BCECF-AM was used. <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> showed that application of NH<span class="elsevierStyleInf">4</span>Cl produced an obvious intracellular acidification. As expected, cariporide, a specific NHE1 inhibitor, decreased pHi, but its effect on pHi was much less than that in NH<span class="elsevierStyleInf">4</span>Cl medium. However, this intracellular acidification was synergistically increased when they were used together.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on NHE1 Activity</span><p id="par0085" class="elsevierStylePara elsevierViewall">Because NHE activity contributes to the maintenance of intracellular pH homeostasis, we next investigated the effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on NHE1 activity. In hepatic cells, the mean activity of the NHE1 was 0.209<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.005 ΔpH/min and more than 77% of the sodium dependent pHi recovery is inhibited by cariporide. When hepatic cells were incubated with 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl, Na<span class="elsevierStyleSup">+</span>/H<span class="elsevierStyleSup">+</span> activity significantly increased to 0.261<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.003 ΔpH/min, whereas addition of cariporide to the culture medium with 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl decreased Na<span class="elsevierStyleSup">+</span>/H<span class="elsevierStyleSup">+</span> activity to the same level as the cariporide group (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on cell viability</span><p id="par0090" class="elsevierStylePara elsevierViewall">The effects of NH<span class="elsevierStyleInf">4</span>Cl on the viability of hepatic cells were valuated by MTT assay. The data revealed that treatment of hepatic cells with cariporide or 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl reduced the cell viability by 10.88% or 12.69% of the control cells, respectively. Whereas cell viability decreased significantly to 68.44% when they were used together (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on cell apoptosis</span><p id="par0095" class="elsevierStylePara elsevierViewall">Because above data suggests good correlation between decreased pHi and increased hepatocytes death, the involvement of apoptosis in the hepatocytes death induced by NH<span class="elsevierStyleInf">4</span>Cl is evaluated by flow cytometry analysis. After 24<span class="elsevierStyleHsp" style=""></span>h treatment with NH<span class="elsevierStyleInf">4</span>Cl or cariporide increased cell apoptosis up to 14.03<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.56% or 16.27<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.38%, respectively, and interestingly, co-incubation with cariporide increased cell apoptosis dramatically in ammonia-treated cells to almost 33.88<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.53% compared with the control (3.16<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.17%) (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on cellular ATP</span><p id="par0100" class="elsevierStylePara elsevierViewall">As apoptosis is an ATP-dependent process, we next investigated the effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on cellular ATP. After 24<span class="elsevierStyleHsp" style=""></span>h of treatment with cariporide, cellular ATP in hepatic cells was decreased to 82%, whereas treatment of hepatic cells with 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl reduced cellular ATP to 74.59<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.28%, and addition of cariporide to the culture medium with 5<span class="elsevierStyleHsp" style=""></span>mM NH<span class="elsevierStyleInf">4</span>Cl decreased cellular ATP even more to 55% compared with the control (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on the ratio of phosphor-Akt (p-Akt/Akt) and phosphor-PI3K (p-PI3K/PI3K)</span><p id="par0105" class="elsevierStylePara elsevierViewall">As the PI3K/Akt pathway is a well-known antiapoptotic pathway, we examined whether NH<span class="elsevierStyleInf">4</span>Cl and cariporide affected the kinase-mediated phosphorylation process in the following experiments. The relative levels of p-Akt/Akt and p-PI3K/PI3K were monitored by western blot analysis. <a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a> shows that cariporide slightly reduced the ratio of p-Akt/Akt and p-PI3K/PI3K, whereas, the ratio of p-Akt/Akt and p-PI3K/PI3K significantly increased in NH<span class="elsevierStyleInf">4</span>Cl treated cells and the upregulated phosphorylation of Akt and PI3K was strongly blocked by cariporide.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Discussion</span><p id="par0110" class="elsevierStylePara elsevierViewall">The ‘secondary injury’ theory of HF indicates that serious metabolic disorders develop, including hyperammonaemia, lactic acid poisoning, blood disorders and increased indole levels, and hyperammonaemia is the most significant causes of liver abnormalities or failure.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">18,19</span></a> Many studies supported that hyperammonaemia, which is both the result and the cause of liver damage, may aggravate hepatic damage.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">4–6,16</span></a></p><p id="par0115" class="elsevierStylePara elsevierViewall">Previous studies from ours showed that hyperammonemia induce liver cell damage, not by inflammation or necrosis, but by cell apoptosis. Cell apoptosis was the predominant effect after treating with low concentration of NH<span class="elsevierStyleInf">4</span>Cl for a short period of time. As the concentration of NH<span class="elsevierStyleInf">4</span>Cl increased and the treatment time lengthened, the number of apoptotic cells increased significantly and the growth of cells was markedly inhibited.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">4,16</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">It has been reported that rats subjected to NH<span class="elsevierStyleInf">4</span>Cl loading developed metabolic acidosis<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">15</span></a> and metabolic acidosis increased NHE1 activity/expression.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">20</span></a> Intracellular pH is a fundamental modulator of protein function in cells. Optimum pH for endonuclease and caspase activation are 6.3–6.8 and intracellular acidification is critical for apoptosis execution.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">21</span></a> Activation of the NHE1 results in an efflux of H<span class="elsevierStyleSup">+</span> and influx of Na<span class="elsevierStyleSup">+</span> ions with a resultant increase in pHi, and NHE1-induced cytosol alkalinization were sufficient to prevent apoptosis. Additionally, cells undergoing apoptosis exhibit persistent cell shrinkage, even under isotonic environments. NHE1-mediated cytoplasmic volume expansion by inducing Na<span class="elsevierStyleSup">+</span> and H<span class="elsevierStyleInf">2</span>O influx also protect cells against apoptotic volume decreases.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">22</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">Cariporide, which is a highly selective NHE-1 inhibitor with no apparent effect on the Na<span class="elsevierStyleSup">+</span>/Ca<span class="elsevierStyleSup">2+</span> exchanger or fast Na<span class="elsevierStyleSup">+</span> currents at levels not exceeding 10<span class="elsevierStyleHsp" style=""></span>μmol/l,<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">23</span></a> NHE1 inhibition induced by cariporide has been implicated as an explanation for diminished intracellular pH (pHi), with possible mechanisms of inactivation including ATP depletion, NHE1 dephosphorylation, or cleavage.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">14</span></a> Cariporide was used in this study because it specifically inhibits the NHE-1 exchanger.</p><p id="par0130" class="elsevierStylePara elsevierViewall">It has been well known that pHi may contribute to NHE1-mediated modulation of cell proliferation and cells cannot properly differentiate if lacking NHE1.<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">24,25</span></a> Suppression of apoptosis can be achieved by NHE1 activation and cellular alkalinization, that is stimulated by phosphorylation of the C-terminal regulatory domain of the NHE resulting in increased affinity for intracellular H<span class="elsevierStyleSup">+</span>.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">26</span></a> In this study, we noted NH<span class="elsevierStyleInf">4</span>Cl treatment caused cytoplasmic acidification, and in response, the activity of NHE1increased. On the contrary, cariporide inhibited the activities of NHE1 and reduced pHi in hepatic cells. And we also noted that the presence of cariporide decreased the activity of NHE-1induced by NH<span class="elsevierStyleInf">4</span>Cl and enhanced cytoplasmic acidification. As expected, we also observed that decreased pHi induced by NH<span class="elsevierStyleInf">4</span>Cl was associated with increased apoptosis and low cell proliferation, which was exacerbated by exposure to the NHE1 inhibitor cariporide.</p><p id="par0135" class="elsevierStylePara elsevierViewall">It was reported that NHE inhibitors acted as ATP analogs that caused the formation of nonproductive enzyme–substrate complexes.<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">27</span></a> As apoptosis is an ATP-dependent process, we also found the degree of ATP depletion increased when the cells were treated by NH<span class="elsevierStyleInf">4</span>Cl or cariporide, and when they worked together, the degree of ATP depletion became further lower.</p><p id="par0140" class="elsevierStylePara elsevierViewall">All of these findings are consistent with observations that intracellular acidification triggers cell death.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">20</span></a> NHE1 is likely to be activated in response to decreased pHi and activited NHE1 may then be sufficient to prevent further intracellular acidification and perhaps even promote cell survival, provide the apoptotic stimulus is not too robust.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">21</span></a> Thus it appears that endogenous NHE activity contributes to the maintenance of intracellular pH homeostasis and NHE1 plays a cytoprotective role in mechanics of cell apoptosis. On the contrary, pharmacological inhibition of NHE1 is sufficient to induce or exacerbate apoptotic cell death.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">24</span></a></p><p id="par0145" class="elsevierStylePara elsevierViewall">The PI3K/Akt pathway is a well-known antiapoptotic pathway. Phosphorylated Akt, active form of Akt, activates antiapoptotic proteins such as Bcl-2 and Bcl-xL<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">28</span></a> and prevents cytochrome c leakage from the mitochondria.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">22,29</span></a> The present study showed that there is an decrease in phospho-PI3K and phospho-Akt in cariporide medium compared with that in normal medium. On the contrary, ratios of p-Akt/Akt or p-PI3K/PI3K significantly increased under NH<span class="elsevierStyleInf">4</span>Cl treatment and their stimulation were strongly prevented by cariporide treatment. In this context, upregulation of PI3K/Akt pathway activity appears to play a major role in facilitating cell growth and protecting cells from NH<span class="elsevierStyleInf">4</span>Cl-induced apoptosis, but dephosphorylation (inactivation) is responsible for the cariporide -induced enhancement of NH<span class="elsevierStyleInf">4</span>Cl cytotoxicity.</p><p id="par0150" class="elsevierStylePara elsevierViewall">To further clarify the role of the PI3K/Akt pathway linking NHE1 activity, Newell KJ examined NHE1 activity in the presence of three different concentrations of the Akt inhibitor API-2 and found that these inhibitors concentrations had no effect on the rate of acid efflux, thus indicating that Akt is clearly downstream of NHE1. Moreover they also found the decrease in NHE1 activities after cariporide treatment seemed to contribute to reducing ERK phosphorylation.<a class="elsevierStyleCrossRefs" href="#bib0310"><span class="elsevierStyleSup">30,31</span></a> These findings are consistent with that NHE1 uses ERM to bind PIP2 in a signalplex, which induces PI3K expression. PI3K converts PIP2 into phosphatidylinositol (3,4,5)-phosphate [PI(3,4,5) P3] and results in the phosphorylation of Akt.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">22</span></a> Moreover, the mechanism of blocking the kinase-mediated phosphorylaton process was by competing with ATP.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">24</span></a></p><p id="par0155" class="elsevierStylePara elsevierViewall">An important and novel observation in this study was that intracellular acidification induced by NH<span class="elsevierStyleInf">4</span>Cl in hepatic cells, stimulated PI3K and Akt phosphorylation and that this effect was strongly reduced by NHE1 inhibitions. This work has highlighted an important role for NHE1 in the protection of hepatocytes from apoptosis induced by hyperammonaemia. Cariporide is an inhibitor of NHE1 and increases apoptosis it is not clinical beneficious, at least in this condition. So, in medical point of view, it will be interesting to suggest strategies to preserve or increase NHE1 activity that may be therapeutically beneficial for acute liver failure.</p><p id="par0160" class="elsevierStylePara elsevierViewall">Taken together, in light of these findings, we postulate that apoptotic stress triggers NHE1-dependent defense against intracellular acidification, but we should realize that NH4Cl-induced protons leaving the hepatic cells via NHE1 may lead to Na<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>loading, which may subsequently induce Ca2+ overloading as Na+ leaves the cell via the Na+/Ca2+ exchanger if ammonium is cleared out in time. The resultant rise in intracellular calcium concentration is believed to trigger Ca2+-activated protease and phospholipases that cause cellular damage.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">32</span></a> Those are just speculation, which need further research to confirm. Therefore, NHE1-dependent defense against intracellular acidification plays a role in the protective effect in the early stages of apoptosis induced by hyperammonaemia.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Conclusion</span><p id="par0165" class="elsevierStylePara elsevierViewall">Increased levels of ammonia in the blood may be an important cause of further damage to residual liver cells following liver failure. Intracellular acidification induced by NH4Cl triggers cell death and cell apoptosis was the predominant effect in the early injury of liver cells, induced by high levels of blood ammonia. The injury of hepatocytes induced by high ammonia may be related to the reduction of pHi, and increased activation of NHE1 protein in hepatocytes via an increase in phosphorylated Akt to suppress hepatocytes apoptosis, while cariporide inhibits NHE1 activities and amplifies the intracellular acidosis and consequently enhance NH4Cl-induced cytotoxicity via diminution of Akt phosphorylation, verified that suppression of apoptosis can be achieved by NHE1 activation and cellular alkalinization. Overall, our model may provide important insights into how NHE1 plays a role in the protective effect in the early stages of apoptosis induced by hyperammonaemia and we believe that this model provides a framework for future studies.</p></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Conflicts of interest</span><p id="par0170" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1089427" "titulo" => "Abstract" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Conclusion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1032911" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1089426" "titulo" => "Resumen" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0020" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0025" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0030" "titulo" => "Conclusión" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1032910" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:8 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Materials" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Cell line and experimental treatments" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Intracellular pHi and NHE activity measurement" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Cell viability assay" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Flow cytometry" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Measuring intracellular ATP content" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Western blot analysis" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0055" "titulo" => "Results" "secciones" => array:6 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "NHCl and cariporide lowered intracellular pH" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Effects of NHCl and cariporide on NHE1 Activity" ] 2 => array:2 [ "identificador" => "sec0070" "titulo" => "Effects of NHCl and cariporide on cell viability" ] 3 => array:2 [ "identificador" => "sec0075" "titulo" => "Effects of NHCl and cariporide on cell apoptosis" ] 4 => array:2 [ "identificador" => "sec0080" "titulo" => "Effects of NHCl and cariporide on cellular ATP" ] 5 => array:2 [ "identificador" => "sec0085" "titulo" => "Effects of NHCl and cariporide on the ratio of phosphor-Akt (p-Akt/Akt) and phosphor-PI3K (p-PI3K/PI3K)" ] ] ] 7 => array:2 [ "identificador" => "sec0090" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0095" "titulo" => "Conclusion" ] 9 => array:2 [ "identificador" => "sec0100" "titulo" => "Conflicts of interest" ] 10 => array:2 [ "identificador" => "xack370032" "titulo" => "Acknowledgements" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-10-10" "fechaAceptado" => "2018-05-24" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1032911" "palabras" => array:4 [ 0 => "Hyperammonaemia" 1 => "Intracellular pH" 2 => "Sodium-hydrogen exchanger isoform 1" 3 => "Apoptosis" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1032910" "palabras" => array:4 [ 0 => "Hiperamoniaquemia" 1 => "pH intracelular" 2 => "Isoforma 1 del intercambiador iónico de sodio/hidrógeno" 3 => "Apoptosis" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The “secondary injury” theory of liver failure indicated that hyperammonaemia due to liver failure causes further deterioration of hepatocytes. Our previous studies have demonstrated that high blood ammonia levels may lead to hepatocyte apoptosis, as NH<span class="elsevierStyleInf">4</span>Cl loading caused metabolic acidosis and an increase in sodium-hydrogen exchanger isoform 1 (NHE1). In this study, we established a hyperammonia hepatocyte model to determine the role of NHE1 in the regulation of hepatocyte apoptosis induced by NH<span class="elsevierStyleInf">4</span>Cl.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Materials and methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">In current studies, intracellular pH (pHi) and NHE1 activity were analyzed using the pHi-sensitive dye BCECF-AM. The results showed that intracellular pH dropped and NHE1 activity increased in hepatocytes under NH<span class="elsevierStyleInf">4</span>Cl treatment. As expected, decreased pHi induced by NH<span class="elsevierStyleInf">4</span>Cl was associated with increased apoptosis, low cell proliferation and ATP depletion, which was exacerbated by exposure to the NHE1 inhibitor cariporide. We also found that NH<span class="elsevierStyleInf">4</span>Cl treatment stimulated PI3K and Akt phosphorylation and this effect was considerably reduced by NHE1 inhibition.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Conclusion</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">This study highlighted the significant role of NHE1 in the regulation of cell apoptosis induced by hyperammonaemia.</p></span>" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Conclusion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Antecedentes</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">La teoría de la «lesión secundaria» de la insuficiencia hepática mostró que la hiperamoniaquemia provocada por la insuficiencia hepática causa mayor deterioro de los hepatocitos. Nuestros anteriores estudios previos han demostrado que los niveles altos de amoníaco en sangre pueden conducir a la apoptosis de los hepatocitos. Como la carga de NH<span class="elsevierStyleInf">4</span>Cl provocó acidosis metabólica y un aumento de la isoforma 1 del intercambiador de sodio/hidrógeno (NHE1). En este estudio, establecimos un modelo de hepatocitos de hiperamonia para establecer el papel de NHE1 en la regulación de la apoptosis de hepatocitos inducida por NH<span class="elsevierStyleInf">4</span>Cl.</p></span> <span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Materiales y métodos</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">En los estudios actuales, el pH intracelular (pHi) y la actividad del NHE1 se analizaron con el colorante BCECF-AM, sensible al pHi. Los resultados mostraron que el pH intracelular disminuyó y la actividad del NHE1 aumentó en hepatocitos con tratamiento del NH<span class="elsevierStyleInf">4</span>Cl. Como se esperaba, la disminución del pHi inducido por NH<span class="elsevierStyleInf">4</span>Cl se relacionó con un aumento de la apoptosis, baja proliferación celular y reducción del ATP, que se exacerbó por la exposición a cariporide, inhibidor del NHE1. También encontramos que el tratamiento del NH<span class="elsevierStyleInf">4</span>Cl estimuló la fosforilación de PI3K y Akt, y este efecto se redujo considerablemente por la inhibición del NHE1.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conclusión</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Este trabajo ha destacado el importante papel del NHE1 en la regulación de la apoptosis celular inducida por hiperamoniaquemia.</p></span>" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0020" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0025" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0030" "titulo" => "Conclusión" ] ] ] ] "NotaPie" => array:1 [ 0 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Contributed equally to this work and are joint first authors.</p>" "identificador" => "fn0005" ] ] "multimedia" => array:6 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1345 "Ancho" => 1497 "Tamanyo" => 69616 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Intracellular acidification upon treatment with NH<span class="elsevierStyleInf">4</span>Cl and cariporide (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide. Control cells were untreated. The intracellular pH (pHi) was then determined with the use of BCECF-AM as described under “Materials and methods”. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1488 "Ancho" => 1509 "Tamanyo" => 75295 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on NHE1 Activity (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. NHE activity was measured by calculating the pHi change over the first 1<span class="elsevierStyleHsp" style=""></span>min and expressed as ΔpH/min with the use of BCECF-AM as described under “Materials and methods”. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1432 "Ancho" => 1501 "Tamanyo" => 82842 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Cell viability upon treatment with NH<span class="elsevierStyleInf">4</span>Cl and cariporide (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. Cell viability was determined by MTT assay as described under “Materials and methods”, and was presented as optical density versus control. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1514 "Ancho" => 1531 "Tamanyo" => 69835 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Cell apoptosis upon treatment with NH<span class="elsevierStyleInf">4</span>Cl and cariporide (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. Cell injury was determined as described under “Materials and methods”, and was presented as the percentage of cells with FITC-Annexin V binding excluding propidium iodide staining in total cell numbers. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1324 "Ancho" => 1535 "Tamanyo" => 81327 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on cellular ATP (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>9). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. Cellular ATP was determined as described under “Materials and methods”. Values are presented as the percentage vs. control. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments and samples were analyzed in triplicate.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 4060 "Ancho" => 1639 "Tamanyo" => 304794 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Effects of NH<span class="elsevierStyleInf">4</span>Cl and cariporide on p-Akt/Akt and p-PI3K/PI3K (x¯±sd, <span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3). Hepatic cells were treated for 24<span class="elsevierStyleHsp" style=""></span>h with NH<span class="elsevierStyleInf">4</span>Cl, cariporide or NH<span class="elsevierStyleInf">4</span>Cl plus cariporide, respectively. Control cells were untreated. Normalized samples were determined by western blot analysis using β-actin as the loading control. Values were presented as ratios of p-Akt/Akt or p-PI3K/PI3K. Results are presented as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation of three independent experiments.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:32 [ 0 => array:3 [ "identificador" => "bib0165" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acute liver failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Grek" 1 => "L. Arasi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4037/aacnacc2016324" "Revista" => array:6 [ "tituloSerie" => "AACN Adv Crit Care" "fecha" => "2016" "volumen" => "27" "paginaInicial" => "420" "paginaFinal" => "429" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27959298" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0170" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Emerging strategies for the treatment of patients with acute hepatic failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.A. Kandiah" 1 => "J.C. Olson" 2 => "R.M. Subramanian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/MCC.0000000000000291" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Crit Care" "fecha" => "2016" "volumen" => "22" "paginaInicial" => "142" "paginaFinal" => "151" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26849251" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0175" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ammonium increases Ca(2+) signalling and upregulates expression of Cav1.2 gene in astrocytes in primary cultures and in the in vivo brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F. Wang" 1 => "T. Du" 2 => "C. Liang" 3 => "A. Verkhratsky" 4 => "L. Peng" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Physiol (Oxf)" "fecha" => "2015" "volumen" => "214" "paginaInicial" => "261" "paginaFinal" => "274" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0180" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hyperammonaemia induces hepatic injury with alteration of gene expression profiles" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B. Jia" 1 => "Z.J. Yu" 2 => "Z.F. Duan" 3 => "X.Q. Lü" 4 => "J.J. Li" 5 => "X.R. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/liv.12365" "Revista" => array:6 [ "tituloSerie" => "Liver Int" "fecha" => "2014" "volumen" => "34" "paginaInicial" => "748" "paginaFinal" => "758" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24134218" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0185" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Q. Wang" 1 => "Y. Wang" 2 => "Z. Yu" 3 => "D. Li" 4 => "Jia B1" 5 => "J. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Arch Biochem Biophys 2014" "fecha" => "2014" "volumen" => "555–556" "paginaInicial" => "16" "paginaFinal" => "22" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0190" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hyperammonia induces specific liver injury through an intrinsic Ca2+-independent apoptosis pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Li" 1 => "Z. Yu" 2 => "Q. Wang" 3 => "D. Li" 4 => "B. Jia" 5 => "Y. Zhou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/1471-230X-14-151" "Revista" => array:5 [ "tituloSerie" => "BMC Gastroenterol" "fecha" => "2014" "volumen" => "14" "paginaInicial" => "151" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25145683" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0195" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MAPK signaling pathways are needed for survival of H9c2 cardiac myoblasts under extracellular alkalosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Stathopoulou K1" 1 => "I. Beis" 2 => "C. Gaitanaki" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajpheart.01362.2007" "Revista" => array:7 [ "tituloSerie" => "Am J Physiol Heart Circ Physiol" "fecha" => "2008" "volumen" => "295" "paginaInicial" => "H1319" "paginaFinal" => "H1329" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18660438" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1470204517301894" "estado" => "S300" "issn" => "14702045" ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0200" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The sodium/hydrogen exchanger: a possible mediator of immunity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "P. De Vito" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cellimm.2006.07.001" "Revista" => array:6 [ "tituloSerie" => "Cell Immunol" "fecha" => "2006" "volumen" => "240" "paginaInicial" => "69" "paginaFinal" => "85" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16930575" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0205" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overcoming hypoxia-mediated tumor progression: combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.C. McDonald" 1 => "S.C. Chafe" 2 => "S. Dedhar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fcell.2016.00027" "Revista" => array:5 [ "tituloSerie" => "Front Cell Dev Biol" "fecha" => "2016" "volumen" => "4" "paginaInicial" => "27" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27066484" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0210" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Time-dependent activity of Na+/H+ exchanger isoform 1 and homeostasis of intracellular pH in astrocytes exposed to CoCl<span class="elsevierStyleInf">2</span> treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P. Wang" 1 => "L. Li" 2 => "Z. Zhang" 3 => "Q. Kan" 4 => "F. Gao" 5 => "S. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2016.5067" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2016" "volumen" => "13" "paginaInicial" => "4443" "paginaFinal" => "4450" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27035646" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0215" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NHE1 deficiency in liver: implications for non-alcoholic fatty liver disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "V. Prasad" 1 => "S. Chirra" 2 => "R. Kohli" 3 => "G.E. Shull" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2014.06.095" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2014" "volumen" => "450" "paginaInicial" => "1027" "paginaFinal" => "1031" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24976401" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0220" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.A. Brown" 1 => "J.E. Melvin" 2 => "D.I. Yule" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajpgi.00150.2003" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Gastrointest Liver Physiol" "fecha" => "2003" "volumen" => "285" "paginaInicial" => "G804" "paginaFinal" => "G812" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12842825" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0225" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T.F. Sergeeva" 1 => "M.V. Shirmanova" 2 => "O.A. Zlobovskaya" 3 => "A.I. Gavrina" 4 => "V.V. Dudenkova" 5 => "M.M. Lukina" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Biochim Biophys Acta" "fecha" => "2017" "volumen" => "1864" "paginaInicial" => "604" "paginaFinal" => "611" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0230" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regulation of cell survival by Na/H exchanger-1" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Schelling JR1" 1 => "B.G. Abu Jawdeh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Am J Physiol Renal Physiol" "fecha" => "2008" "volumen" => "5" "paginaInicial" => "F625" "paginaFinal" => "F632" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0235" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Coordinated down-regulation of NBC-1 and NHE-3 in sodium and bicarbonate loading" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Amlal H1" 1 => "Q. Chen" 2 => "T. Greeley" 3 => "L. Pavelic" 4 => "M. Soleimani" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1046/j.1523-1755.2001.00995.x" "Revista" => array:6 [ "tituloSerie" => "Kidney Int" "fecha" => "2001" "volumen" => "60" "paginaInicial" => "1824" "paginaFinal" => "1836" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11703600" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0240" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Poly (ADP-ribose) polymerase- and cytochrome c-mediated apoptosis induces hepatocyte injuryin a rat model of hyperammonia-induced hepatic failure" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Gao" 1 => "Z. Yu" 2 => "J. Yan" 3 => "J. Li" 4 => "S. Shen" 5 => "B. Jia" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2015.3281" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2015" "volumen" => "11" "paginaInicial" => "4211" "paginaFinal" => "4219" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25634059" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0245" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W. Manucha" 1 => "L. Carrizo" 2 => "C. Ruete" 3 => "P.G. Vallés" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1464-410X.2007.06840.x" "Revista" => array:6 [ "tituloSerie" => "BJU Int" "fecha" => "2007" "volumen" => "100" "paginaInicial" => "191" "paginaFinal" => "198" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17552965" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0250" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoCl<span class="elsevierStyleInf">2</span> treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P. Wang" 1 => "L. Li" 2 => "Z. Zhang" 3 => "Q. Kan" 4 => "S. Chen" 5 => "F. Gao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2016.4873" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2016" "volumen" => "13" "paginaInicial" => "2909" "paginaFinal" => "2917" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26847382" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0255" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Understanding secondary injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.B. Borgens" 1 => "P. Liu-Snyder" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Q Rev Biol" "fecha" => "2012" "volumen" => "87" "paginaInicial" => "89" "paginaFinal" => "127" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22696939" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0260" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of NHE1 in the cellular dysfunction of acute metabolic acidosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Wu" 1 => "J.A. Kraut" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000364783" "Revista" => array:6 [ "tituloSerie" => "Am J Nephrol" "fecha" => "2014" "volumen" => "40" "paginaInicial" => "36" "paginaFinal" => "42" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24994076" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0265" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.L. Wu" 1 => "S. Khan" 2 => "S. Lakhe-Reddy" 3 => "L. Wang" 4 => "G. Jarad" 5 => "R.T. Miller" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajprenal.00314.2002" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Renal Physiol" "fecha" => "2003" "volumen" => "284" "paginaInicial" => "F829" "paginaFinal" => "F839" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12453872" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0270" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Peroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na+/H+ exchanger NHE1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.H. Chen" 1 => "T.H. Chen" 2 => "M.Y. Wu" 3 => "J.R. Chen" 4 => "H.F. Tsai" 5 => "L.Y. Hong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2119/molmed.2015.00196" "Revista" => array:6 [ "tituloSerie" => "Mol Med" "fecha" => "2015" "volumen" => "21" "paginaInicial" => "886" "paginaFinal" => "899" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26623927" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0275" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exercise attenuates intermittent hypoxia-induced cardiac fibrosis associated with sodium-hydrogen exchanger-1 in rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T.I. Chen" 1 => "W.C. Tu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fphys.2016.00462" "Revista" => array:5 [ "tituloSerie" => "Front Physiol" "fecha" => "2016" "volumen" => "7" "paginaInicial" => "462" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27790155" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0280" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NHE-1: a molecular target for signalling and cell matrix interactions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Koliakos" 1 => "K. Paletas" 2 => "M. Kaloyianni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/03008200802151581" "Revista" => array:6 [ "tituloSerie" => "Connect Tissue Res" "fecha" => "2008" "volumen" => "49" "paginaInicial" => "157" "paginaFinal" => "161" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18661333" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0285" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NHE1 is upregulated in gastric cancer and regulates gastric cancer cell proliferation, migration and invasion" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R. Xie" 1 => "H. Wang" 2 => "H. Jin" 3 => "G. Wen" 4 => "B. Tuo" 5 => "J. Xu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/or.2017.5386" "Revista" => array:6 [ "tituloSerie" => "Oncol Rep" "fecha" => "2017" "volumen" => "37" "paginaInicial" => "1451" "paginaFinal" => "1460" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28098891" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0290" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Goldman" 1 => "H. Chen" 2 => "M.R. Khan" 3 => "H. Roesly" 4 => "K.A. Hill" 5 => "M. Shahidullah" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0023835" "Revista" => array:5 [ "tituloSerie" => "PLoS ONE" "fecha" => "2011" "volumen" => "6" "paginaInicial" => "e23835" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21887327" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0295" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amiloride augments TRAIL-induced apoptotic death by inhibiting phosphorylation of kinases and phosphatases associated with the P13K-Akt pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.M. Kim" 1 => "Y.J. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sj.onc.1208213" "Revista" => array:6 [ "tituloSerie" => "Oncogene" "fecha" => "2005" "volumen" => "24" "paginaInicial" => "355" "paginaFinal" => "366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15558024" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0300" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Liu" 1 => "Q. Ai" 2 => "K. Feng" 3 => "Y. Li" 4 => "X. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10495-016-1306-6" "Revista" => array:6 [ "tituloSerie" => "Apoptosis" "fecha" => "2016" "volumen" => "21" "paginaInicial" => "1366" "paginaFinal" => "1385" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27738772" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0305" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Wang" 1 => "X. Li" 2 => "X. Wang" 3 => "W. Lau" 4 => "Y. Wang" 5 => "Y. Xing" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0070956" "Revista" => array:5 [ "tituloSerie" => "PLoS ONE" "fecha" => "2013" "volumen" => "8" "paginaInicial" => "e70956" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23976968" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0310" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Di Sario" 1 => "E. Bendia" 2 => "A. Omenetti" 3 => "S. De Minicis" 4 => "M. Marzioni" 5 => "H.W. Kleemann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.dld.2006.07.013" "Revista" => array:6 [ "tituloSerie" => "Dig Liver Dis" "fecha" => "2007" "volumen" => "39" "paginaInicial" => "60" "paginaFinal" => "69" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16982221" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0315" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.J. Newell" 1 => "I.F. Tannock" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carboncarbonylcyanide-3-chlorophenylhydrazone" "fecha" => "1989" "volumen" => "49" "paginaInicial" => "4477" "paginaFinal" => "4482" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0320" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hydrogen sulfide regulates Na+/H+ exchanger activity via stimulation of phosphoinositide 3-kinase/Akt and protein kinase G pathways" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L.F. Hu" 1 => "Y. Li" 2 => "K.L. Neo" 3 => "Q.C. Yong" 4 => "S.W. Lee" 5 => "B.K. Tan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Pharmacol Exp Ther" "fecha" => "2011" "volumen" => "39" "paginaInicial" => "726" "paginaFinal" => "735" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack370032" "titulo" => "Acknowledgements" "texto" => "<p id="par0175" class="elsevierStylePara elsevierViewall">This work was supported by grants from the <span class="elsevierStyleGrantSponsor" id="gs1">National Natural Science Foundation of China</span> (grant no. <span class="elsevierStyleGrantNumber" refid="gs1">81500433</span>), the <span class="elsevierStyleGrantSponsor" id="gs2">Foundation of the Henan Educational Committee</span> (grant no. <span class="elsevierStyleGrantNumber" refid="gs2">16A310003</span>), the <span class="elsevierStyleGrantSponsor" id="gs3">Science and Technology Planning Project of Henan</span> (grant nos. <span class="elsevierStyleGrantNumber" refid="gs3">132102310138</span> and <span class="elsevierStyleGrantNumber" refid="gs3">142102310140</span>), the Medical Science and Technology Projects of Henan, <span class="elsevierStyleGrantSponsor" id="gs4">Doctoral Entrepreneurs Foundation and Health Science and Technology Innovation Talents Foundation of Henan</span>.</p> <p id="par0180" class="elsevierStylePara elsevierViewall">The authors are grateful for the financial support to be able to perform this work.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/02105705/0000004100000008/v1_201810020616/S0210570518301572/v1_201810020616/en/main.assets" "Apartado" => array:4 [ "identificador" => "9009" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Originales" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/02105705/0000004100000008/v1_201810020616/S0210570518301572/v1_201810020616/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210570518301572?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 1 | 1 | 2 |
2024 October | 10 | 10 | 20 |
2024 September | 33 | 12 | 45 |
2024 August | 24 | 7 | 31 |
2024 July | 14 | 13 | 27 |
2024 June | 9 | 5 | 14 |
2024 May | 10 | 11 | 21 |
2024 April | 8 | 9 | 17 |
2024 March | 28 | 10 | 38 |
2024 February | 13 | 5 | 18 |
2024 January | 13 | 4 | 17 |
2023 December | 18 | 6 | 24 |
2023 November | 21 | 4 | 25 |
2023 October | 32 | 5 | 37 |
2023 September | 29 | 8 | 37 |
2023 August | 19 | 6 | 25 |
2023 July | 23 | 6 | 29 |
2023 June | 33 | 8 | 41 |
2023 May | 23 | 11 | 34 |
2023 April | 16 | 1 | 17 |
2023 March | 10 | 7 | 17 |
2023 February | 13 | 5 | 18 |
2023 January | 14 | 2 | 16 |
2022 December | 25 | 9 | 34 |
2022 November | 20 | 10 | 30 |
2022 October | 22 | 13 | 35 |
2022 September | 25 | 24 | 49 |
2022 August | 19 | 13 | 32 |
2022 July | 26 | 14 | 40 |
2022 June | 21 | 14 | 35 |
2022 May | 21 | 12 | 33 |
2022 April | 19 | 11 | 30 |
2022 March | 48 | 18 | 66 |
2022 February | 32 | 5 | 37 |
2022 January | 32 | 4 | 36 |
2021 December | 24 | 15 | 39 |
2021 November | 17 | 12 | 29 |
2021 October | 39 | 16 | 55 |
2021 September | 27 | 10 | 37 |
2021 August | 11 | 7 | 18 |
2021 July | 20 | 10 | 30 |
2021 June | 24 | 7 | 31 |
2021 May | 17 | 5 | 22 |
2021 April | 32 | 19 | 51 |
2021 March | 27 | 7 | 34 |
2021 February | 25 | 13 | 38 |
2021 January | 30 | 9 | 39 |
2020 December | 9 | 7 | 16 |
2020 November | 11 | 2 | 13 |
2020 October | 6 | 5 | 11 |
2019 May | 1 | 0 | 1 |
2019 February | 1 | 0 | 1 |
2019 January | 2 | 2 | 4 |
2018 October | 6 | 5 | 11 |