covid
Buscar en
Geofísica Internacional
Toda la web
Inicio Geofísica Internacional Dark Matter: A Result of nonadditive gravitational forces
Journal Information

Statistics

Follow this link to access the full text of the article

Dark Matter: A Result of nonadditive gravitational forces
Jesús Arturo Robles-Gutiérrez, Ernesto Lacomba Zamora, Jesús Martiniano Arturo Robles-Domínguez
Corresponding author
rodj@xanum.uam.mx

Corresponding author
Universidad Autónoma Metropolitana México DF, México
Cinna Lomnitz
Instituto de Geofísica, Universidad Nacional Autónoma de México Ciudad Universitaria Delegación Coyoacán, 04510 México DF, México
María Eugenia Robles-Gutiérrez
Universidad Panamericana México DF, México
Read
1495
Times
was read the article
530
Total PDF
965
Total HTML
Share statistics
 array:23 [
  "pii" => "S0016716913714697"
  "issn" => "00167169"
  "doi" => "10.1016/S0016-7169(13)71469-7"
  "estado" => "S300"
  "fechaPublicacion" => "2013-04-01"
  "aid" => "71469"
  "copyright" => "Universidad Nacional Autónoma de México"
  "copyrightAnyo" => "2013"
  "documento" => "article"
  "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
  "subdocumento" => "fla"
  "cita" => "Geofisica Internacional. 2013;52:153-7"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 757
    "formatos" => array:3 [
      "EPUB" => 34
      "HTML" => 505
      "PDF" => 218
    ]
  ]
  "itemSiguiente" => array:18 [
    "pii" => "S0016716913714703"
    "issn" => "00167169"
    "doi" => "10.1016/S0016-7169(13)71470-3"
    "estado" => "S300"
    "fechaPublicacion" => "2013-04-01"
    "aid" => "71470"
    "copyright" => "Universidad Nacional Autónoma de México"
    "documento" => "article"
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Geofisica Internacional. 2013;52:159-72"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 918
      "formatos" => array:3 [
        "EPUB" => 23
        "HTML" => 548
        "PDF" => 347
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "On the estimation of the maximum depth of investigation of transient electromagnetic soundings: the case of the Vizcaino transect, Mexico"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "159"
          "paginaFinal" => "172"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 1368
              "Ancho" => 897
              "Tamanyo" => 111603
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Log-log plots of the in-loop normalized voltage against normalized time for a square loop over a two-layered earth&#46; Three <span class="elsevierStyleItalic">L&#47;d</span> ratios and five &#961;<span class="elsevierStyleInf">2</span> &#47;p&#44; ratios are considered&#46; The unity departure time is <span class="elsevierStyleItalic">&#961;</span><span class="elsevierStyleInf">1</span> indicated</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Carlos Flores, Jos&#233; M&#46; Romo, Mario Vega"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "Carlos"
              "apellidos" => "Flores"
            ]
            1 => array:2 [
              "nombre" => "Jos&#233; M&#46;"
              "apellidos" => "Romo"
            ]
            2 => array:2 [
              "nombre" => "Mario"
              "apellidos" => "Vega"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716913714703?idApp=UINPBA00004N"
    "url" => "/00167169/0000005200000002/v2_201505081345/S0016716913714703/v2_201505081345/en/main.assets"
  ]
  "itemAnterior" => array:18 [
    "pii" => "S0016716913714685"
    "issn" => "00167169"
    "doi" => "10.1016/S0016-7169(13)71468-5"
    "estado" => "S300"
    "fechaPublicacion" => "2013-04-01"
    "aid" => "71468"
    "copyright" => "Universidad Nacional Aut&#243;noma de M&#233;xico"
    "documento" => "article"
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Geofisica Internacional. 2013;52:135-52"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 978
      "formatos" => array:3 [
        "EPUB" => 25
        "HTML" => 708
        "PDF" => 245
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Effect of galvanic distortions on the series and parallel magnetotelluric impedances and comparison with other responses"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "135"
          "paginaFinal" => "152"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 1080
              "Ancho" => 1282
              "Tamanyo" => 102650
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">A</span> and <span class="elsevierStyleItalic">B</span> correspond to the <span class="elsevierStyleSmallCaps">te</span> and <span class="elsevierStyleSmallCaps">tm</span> modes of sounding &#35; 11 of the synthetic data set <span class="elsevierStyleSmallCaps">coprod2s1</span> made available in <span class="elsevierStyleSmallCaps">mtn</span>et&#46;dias&#46;ie by <a class="elsevierStyleCrossRef" href="#bib0080">Varentsov &#40;1998&#41;</a>&#46; When <span class="elsevierStyleItalic">&#952;</span> &#8800; 0 in <a class="elsevierStyleCrossRef" href="#eq0025">equation &#40;5&#41;</a> the elements of the resulting impedance all are mixtures of the phases of <span class="elsevierStyleItalic">A</span> and <span class="elsevierStyleItalic">B</span>&#46; Calculations were made using <span class="elsevierStyleItalic">c</span><span class="elsevierStyleInf">1</span>&#61; 1&#46;97&#44; <span class="elsevierStyleItalic">c</span><span class="elsevierStyleInf">2</span> &#61; &#8722;&#8722;0&#46;77&#44; c<span class="elsevierStyleInf">3</span> &#61; &#8722;0&#46;35 and <span class="elsevierStyleItalic">c</span><span class="elsevierStyleInf">4</span> &#61; 0&#46;64&#46; The graphs correspond to the phase of the impedance&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Enrique G&#243;mez-Trevi&#241;o, Francisco Javier Esparza Hern&#225;ndez, Jos&#233; Manuel Romo Jones"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "Enrique"
              "apellidos" => "G&#243;mez-Trevi&#241;o"
            ]
            1 => array:2 [
              "nombre" => "Francisco Javier"
              "apellidos" => "Esparza Hern&#225;ndez"
            ]
            2 => array:2 [
              "nombre" => "Jos&#233; Manuel"
              "apellidos" => "Romo Jones"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716913714685?idApp=UINPBA00004N"
    "url" => "/00167169/0000005200000002/v2_201505081345/S0016716913714685/v2_201505081345/en/main.assets"
  ]
  "en" => array:18 [
    "idiomaDefecto" => true
    "titulo" => "Dark Matter&#58; A Result of nonadditive gravitational forces"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "153"
        "paginaFinal" => "157"
      ]
    ]
    "autores" => array:3 [
      0 => array:4 [
        "autoresLista" => "Jes&#250;s Arturo Robles-Guti&#233;rrez, Ernesto Lacomba Zamora, Jes&#250;s Martiniano Arturo Robles-Dom&#237;nguez"
        "autores" => array:3 [
          0 => array:2 [
            "nombre" => "Jes&#250;s Arturo"
            "apellidos" => "Robles-Guti&#233;rrez"
          ]
          1 => array:2 [
            "nombre" => "Ernesto"
            "apellidos" => "Lacomba Zamora"
          ]
          2 => array:4 [
            "nombre" => "Jes&#250;s Martiniano Arturo"
            "apellidos" => "Robles-Dom&#237;nguez"
            "email" => array:1 [
              0 => "rodj&#64;xanum&#46;uam&#46;mx"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "&#42;"
                "identificador" => "cor0005"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Universidad Aut&#243;noma Metropolitana M&#233;xico DF&#44; M&#233;xico"
            "identificador" => "aff0005"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#42;"
            "correspondencia" => "Corresponding author"
          ]
        ]
      ]
      1 => array:3 [
        "autoresLista" => "Cinna Lomnitz"
        "autores" => array:1 [
          0 => array:2 [
            "nombre" => "Cinna"
            "apellidos" => "Lomnitz"
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Instituto de Geof&#237;sica&#44; Universidad Nacional Aut&#243;noma de M&#233;xico Ciudad Universitaria Delegaci&#243;n Coyoac&#225;n&#44; 04510 M&#233;xico DF&#44; M&#233;xico"
            "identificador" => "aff0010"
          ]
        ]
      ]
      2 => array:3 [
        "autoresLista" => "Mar&#237;a Eugenia Robles-Guti&#233;rrez"
        "autores" => array:1 [
          0 => array:2 [
            "nombre" => "Mar&#237;a Eugenia"
            "apellidos" => "Robles-Guti&#233;rrez"
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Universidad Panamericana M&#233;xico DF&#44; M&#233;xico"
            "identificador" => "aff0015"
          ]
        ]
      ]
    ]
    "resumenGrafico" => array:2 [
      "original" => 0
      "multimedia" => array:7 [
        "identificador" => "fig0005"
        "etiqueta" => "Figure 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr1.jpeg"
            "Alto" => 730
            "Ancho" => 818
            "Tamanyo" => 54388
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Observations of NGC 3198 &#40;From <a class="elsevierStyleCrossRef" href="#bib0005">Begeman&#44; 1987</a>&#41;&#46;</p>"
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025"><a name="p154"></a>Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Zwicky &#40;1933&#41; interpreted some observations of the Coma Cumulus and concluded that its gravitational mass is several times the luminous mass&#46; He called the difference the <span class="elsevierStyleItalic">dark mass</span>&#46; This work is regarded as the starting point of the Dark Matter problem&#46; <a class="elsevierStyleCrossRef" href="#bib0030">Sciama &#40;1993&#41;</a> discussed several theories intended to explain this interesting phenomenon&#44; including the existence of new particles which do not emit electromagnetic radiation but contribute to the gravitational mass&#44; but without experimental confirmation&#46; Other solutions involve a mathematical modification of Newton&#8217;s laws but insufficient physical reasons in support of such modification have been presented&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#bib0020">Robles-Dom&#237;nguez &#40;2007&#41;</a> and <a class="elsevierStyleCrossRef" href="#bib0025">Robles-Guti&#233;rrez &#40;2010&#41;</a> proposed new intermolecular forces in field theory that arise from interactions between three and more molecules&#46; We showed that such interactions have not been previously considered&#44; and that such nonadditive electromagnetic forces are needed in order to account for the experimental data on critical points in fluids&#44; triple states&#44; and liquid-solid phase transitions&#46; We call these forces <span class="elsevierStyleItalic">nonadditive</span> because their mathematical form differs from that of binary&#44; or additive&#44; forces&#46; Nonadditive forces are important within relatively short distances&#46; In gases the mean intermolecular distances are large and nonadditive forces are not significant as compared with additive forces&#46; In liquids and solids&#44; however&#44; the density is large and the mean intermolecular distance is very short&#46; In this case the nonadditive forces may overcome the additive forces&#46; We show that the existence of liquid and solid phases is experimental proof for the existence of nonadditive forces&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">In <a class="elsevierStyleCrossRef" href="#sec0010">Section 2</a> of this paper we provide a short derivation of the equation of state in fluids from statistical mechanics as provided in greater detail elsewhere &#40;<a class="elsevierStyleCrossRef" href="#bib0020">Robles-Dom&#237;nguez&#44; 2007</a>&#59; <a class="elsevierStyleCrossRef" href="#bib0025">Robles-Guti&#233;rrez&#44; 2010</a>&#41;&#46; This derivation includes nonadditive forces&#46; In Section 3 we apply the equivalent equation from <a class="elsevierStyleCrossRef" href="#sec0010">section 2</a> to the gravitational field using data from <a class="elsevierStyleCrossRef" href="#bib0005">Begeman &#40;1987&#41;</a> on galaxy NGC 3198&#44; and we show how dark mass will arise&#46;</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="sect0030">Nonadditive forces in fluids</span><p id="par0020" class="elsevierStylePara elsevierViewall">Molecules in a fluid interact mainly through the electromagnetic field&#58; the gravitational&#44; weak and strong nuclear fields are irrelevant&#46; We consider a monocomponent fluid that contains <span class="elsevierStyleItalic">N</span> molecules at an absolute temperature <span class="elsevierStyleItalic">T</span>&#44; inside a volume <span class="elsevierStyleItalic">V</span>&#44; which is described in Statistical Mechanics by the canonical partition function Z&#58;<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0025" class="elsevierStylePara elsevierViewall">where &#946;&#61;1kBT&#44; <span class="elsevierStyleItalic">k<span class="elsevierStyleInf">B</span></span> is Boltzmann&#8217;s cons-tant&#44; <span class="elsevierStyleItalic">E</span> is</p><p id="par0030" class="elsevierStylePara elsevierViewall">the Energy of the system&#44; &#915;&#61;&#915;ri&#95;&#59;&#44;pi&#95;&#59;&#44;i&#61;1&#8230;N is the phase space of the system&#44; <span class="elsevierStyleItalic">r<span class="elsevierStyleInf"><span class="elsevierStyleBold">i</span></span></span> and pi&#95;&#59; are the vector position and momentum of the <span class="elsevierStyleItalic">i</span>th particle&#44; <span class="elsevierStyleItalic">N</span> is the total number of molecules&#44; <span class="elsevierStyleItalic">V</span> is the volume of the system&#44; and <span class="elsevierStyleItalic">T</span> is the absolute temperature&#46; We may write<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0035" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">K</span> is the total kinetic energy of the system and &#934; is the total potential energy&#59; and<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0040" class="elsevierStylePara elsevierViewall">as we are considering a single-component fluid&#46;</p><p id="par0045" class="elsevierStylePara elsevierViewall">Integration of <a class="elsevierStyleCrossRef" href="#eq0005">&#40;1&#41;</a> over the momenta is well known &#40;<a class="elsevierStyleCrossRef" href="#bib0015">Reichl&#44; 1998</a>&#41; and the result is<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0050" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">&#955;</span> &#61; <span class="elsevierStyleItalic">h</span>&#40;2&#960;<span class="elsevierStyleItalic">mk<span class="elsevierStyleInf">B</span>T</span>&#41;<span class="elsevierStyleSup">&#8722;&#189;</span> and <span class="elsevierStyleItalic">h</span> is Planck&#8217;s Constant&#46;</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2&#46;1</span><span class="elsevierStyleSectionTitle" id="sect0035">van der Waals equation of state</span><p id="par0055" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#eq0020">Equation &#40;4&#41;</a> considers only the positions of all <span class="elsevierStyleItalic">N</span> molecules in the system&#46; Ornstein and van Kampen &#40;in <a class="elsevierStyleCrossRef" href="#bib0015">Reichl&#44; 1998</a>&#41;&#44; consider than the molecules interact with the next binary additive potential energy<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0060" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">hc</span> stands for &#8220;hard core&#8221;&#46; The subscript <span class="elsevierStyleItalic">2</span> denotes binary additive interaction&#59; <span class="elsevierStyleItalic">r<span class="elsevierStyleInf">i</span></span> and <span class="elsevierStyleItalic">r<span class="elsevierStyleInf">j</span></span> are position of molecules <span class="elsevierStyleItalic">i</span> and <span class="elsevierStyleItalic">j</span> respectively&#44; and it is assumed that the molecules have a hard core of radius <span class="elsevierStyleItalic">a</span> and a smooth attractive binary-additive interaction &#934;<span class="elsevierStyleInf">2</span> with a very long range&#46; Ornstein and van Kampen assume that the density is high enough and the range of the attractive interaction is wide enough so that many molecules will interact simultaneously&#46; Volume <span class="elsevierStyleItalic">V</span> may be divided in cells of volume <span class="elsevierStyleBold">&#8710;</span> large enough to contain many molecules but small enough so that the attraction<a name="p155"></a> between molecules within a given cell is constant regardless of separation in the cell&#46; If the number of molecules in cell &#945; is <span class="elsevierStyleItalic">N</span><span class="elsevierStyleInf">&#945;</span> we may write&#44; from <a class="elsevierStyleCrossRef" href="#eq0020">&#40;4&#41;</a> and <a class="elsevierStyleCrossRef" href="#eq0025">&#40;5&#41;</a>&#58;<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0070" class="elsevierStylePara elsevierViewall">and &#948; is the volume of the hard core of one molecule&#46;</p><p id="par0075" class="elsevierStylePara elsevierViewall">The most probable distribution of molecules in <span class="elsevierStyleItalic">V</span> at thermodynamic equilibrium is the uniform distribution<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">for all &#945;&#44; and defining<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0085" class="elsevierStylePara elsevierViewall">for all &#945;&#46;</p><p id="par0090" class="elsevierStylePara elsevierViewall">We use mean field theory and the definition of Helmholtz energy <span class="elsevierStyleItalic">A</span>&#58;<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0095" class="elsevierStylePara elsevierViewall">The thermodynamics of the systems is deduced from Helmholtz energy <span class="elsevierStyleItalic">A</span>&#44; ie&#44;&#58; fluids&#46; Pressure <span class="elsevierStyleItalic">p</span> is defined as<elsevierMultimedia ident="eq0055"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">Using <a class="elsevierStyleCrossRef" href="#eq0025">equations &#40;5&#41;</a> through <a class="elsevierStyleCrossRef" href="#eq0055">&#40;11&#41;</a> we obtain van der Waals equation of state<elsevierMultimedia ident="eq0060"></elsevierMultimedia></p><p id="par0105" class="elsevierStylePara elsevierViewall">Let us express this equation in terms of fluid density&#58;<elsevierMultimedia ident="eq0065"></elsevierMultimedia></p><p id="par0110" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">m</span> is the mass of one molecule&#59; and we find<elsevierMultimedia ident="eq0070"></elsevierMultimedia></p><p id="par0115" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0075"></elsevierMultimedia></p><p id="par0120" class="elsevierStylePara elsevierViewall">In <a class="elsevierStyleCrossRef" href="#eq0070">equation &#40;14&#41;</a> the first term of the right-hand side contains the hard core contribution and the second contains all binary-additive interactions&#46; This equation can approximately represent the pressure of the gaseous phase but cannot describe the pressures of the liquid and solid phases in the fluid &#40;<a class="elsevierStyleCrossRef" href="#bib0015">Reichl&#44; 1998</a>&#41;&#46;</p><p id="par0125" class="elsevierStylePara elsevierViewall">In the van der Waals equation of state <a class="elsevierStyleCrossRef" href="#eq0070">&#40;14&#41;</a>&#44; we note three important properties&#58;<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1&#46;</span><p id="par0130" class="elsevierStylePara elsevierViewall">The second term on the right-hand side contains <span class="elsevierStyleItalic">all</span> binary-additive intermolecular interactions&#59;</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2&#46;</span><p id="par0135" class="elsevierStylePara elsevierViewall">The two terms on the right-hand side are linearly independent in a functional-analysis sense&#59; and</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3&#46;</span><p id="par0140" class="elsevierStylePara elsevierViewall">This equation cannot reproduce the experimental data in fluids&#46;</p></li></ul></p><p id="par0145" class="elsevierStylePara elsevierViewall">Fourier theory &#40;<a class="elsevierStyleCrossRef" href="#bib0010">Kolmogorov and Fomin&#44; 1961</a>&#41; may be used to describe a function as a Fourier series&#46; Properties 2 and 3 above mean that the van der Waals equation contains only two terms of the infinite series which we need to reproduce the experimental data of fluids&#46; Property 1 means that the last right-hand terms must be expressed in terms of new forces&#46; Thus in terms of linearly independent nonadditive forces&#44; the third term will contain all third-order nonadditive interactions&#44; the fourth term all fourth-order nonadditive interactions and so on&#46; The total pressure may be written as follows&#58;<elsevierMultimedia ident="eq0080"></elsevierMultimedia></p><p id="par0150" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">p<span class="elsevierStyleInf">hc</span></span> contains the hard core interactions&#44; <span class="elsevierStyleItalic">p<span class="elsevierStyleInf">2</span></span></p><p id="par0155" class="elsevierStylePara elsevierViewall">the total scalar additive binary potential energy&#44; <span class="elsevierStyleItalic">p<span class="elsevierStyleInf">3</span></span> the total scalar third-order or triadic nonadditive potential energy&#44; <span class="elsevierStyleItalic">p4</span> the total scalar fourth-order<a name="p156"></a> &#40;or tetradic&#41; nonadditive potential energy&#44; and so on&#46; Thus<elsevierMultimedia ident="eq0085"></elsevierMultimedia><elsevierMultimedia ident="eq0090"></elsevierMultimedia><elsevierMultimedia ident="eq0095"></elsevierMultimedia><elsevierMultimedia ident="eq0100"></elsevierMultimedia></p><p id="par0160" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#eq0085">Equations &#40;17&#41;</a>&#44; <a class="elsevierStyleCrossRef" href="#eq0090">&#40;18&#41;</a>&#44; etc&#46; constitute an infinite Fourier series of independent linear functions&#46;</p><p id="par0165" class="elsevierStylePara elsevierViewall">The hard core cannot allow the fluid volume to vanish and the density cannot be infinite&#58; thus the Fourier series can converge&#46;</p></span></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Nonadditive forces in the gravitational field</span><p id="par0170" class="elsevierStylePara elsevierViewall">In <a class="elsevierStyleCrossRef" href="#bib0025">Robles-Guti&#233;rrez <span class="elsevierStyleItalic">et al</span>&#46; &#40;2010&#41;</a>&#44; we postulated the existence of nonadditive gravitational forces in the gravitational field&#46; Before we extend the theory to galaxies let us describe the astronomical observations of galaxy NGC 3198 &#40;<a class="elsevierStyleCrossRef" href="#bib0005">Begeman&#44; 1987</a>&#41;&#46; <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a> shows Begeman&#8217;s graph of rotational velocity vs&#46; radius in minutes of arc between the vector from Earth to the object and the vector from Earth to the center of NGC 3198&#46; The distance from Earth to NGC 3198 is <span class="elsevierStyleItalic">9&#46;2 Mpc</span>&#46; The maximum distances of masses from the center of the galaxy should provide information on the total mass of the galaxy&#46;</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0175" class="elsevierStylePara elsevierViewall">The galaxy may be likened to a gas inside a jar&#46; The jar exerts a pressure on the gas&#46; In a state of equilibrium the pressure should be constant everywhere in the gas&#46; In the case of a galaxy the peripherical stars plus gas are confined to a galactic volume by a pressure called galactic pressure&#44; which equals gravity per unit area&#46; It is equal to the centripetal force per unit area&#44; and it is not identical at all points of the galaxy&#46;</p><p id="par0180" class="elsevierStylePara elsevierViewall">The centripetal force on an object <span class="elsevierStyleItalic">l</span> is equal to the gravitational force on this object&#44; which is the sum of all gravitational interactions&#44; additive and nonadditive&#58;<elsevierMultimedia ident="eq0105"></elsevierMultimedia></p><p id="par0185" class="elsevierStylePara elsevierViewall">where subscript <span class="elsevierStyleItalic">l</span> refers to the peripheral stars or gas clouds observed by Begeman in NGC 3198 galaxy and subscript <span class="elsevierStyleItalic">j</span> refers to the forces&#46; Let <span class="elsevierStyleItalic">j</span> &#61; 2 refer to binary additive forces&#44; <span class="elsevierStyleItalic">j</span> &#61; 3 to ternary nonadditive forces and so on&#46; We omit the hardcore term because <span class="elsevierStyleItalic">m</span>&#44; is far away from the galaxy&#46;</p><p id="par0190" class="elsevierStylePara elsevierViewall">If we divide <a class="elsevierStyleCrossRef" href="#eq0105">&#40;21&#41;</a> by the unit of area we obtain the equation of the pressures&#44; as in a fluid&#58;<elsevierMultimedia ident="eq0110"></elsevierMultimedia></p><p id="par0195" class="elsevierStylePara elsevierViewall">But a similar expression should obtain for the centripetal and gravitational accelerations&#44; after dividing <a class="elsevierStyleCrossRef" href="#eq0105">equation &#40;21&#41;</a> by <span class="elsevierStyleItalic">m</span> which is necessary because the mass <span class="elsevierStyleItalic">m</span> is unknown&#46; Thus the centripetal acceleration equals the gravitational acceleration <span class="elsevierStyleItalic">g<span class="elsevierStyleInf">l</span></span> generated by the total galaxy mass including the dark mass&#44; over <span class="elsevierStyleItalic">m</span>&#44; which is the sum of all binary-additive contributions <span class="elsevierStyleItalic">g<span class="elsevierStyleInf">12</span></span> plus all third-order nonadditive accelerations g<span class="elsevierStyleInf">13</span>&#44; and so on&#44; over <span class="elsevierStyleItalic">m<span class="elsevierStyleInf">l</span></span>&#58;<elsevierMultimedia ident="eq0115"></elsevierMultimedia></p><p id="par0200" class="elsevierStylePara elsevierViewall">Here the first term of the summand is Newton&#8217;s acceleration of gravity&#58;<elsevierMultimedia ident="eq0120"></elsevierMultimedia></p><p id="par0205" class="elsevierStylePara elsevierViewall">Written out as<elsevierMultimedia ident="eq0125"></elsevierMultimedia></p><p id="par0210" class="elsevierStylePara elsevierViewall">By analogy with the case of a fluid we may write <span class="elsevierStyleItalic">g<span class="elsevierStyleInf">l</span></span>&#44; in terms of an infinite density series&#58;<a name="p157"></a><elsevierMultimedia ident="eq0130"></elsevierMultimedia></p><p id="par0215" class="elsevierStylePara elsevierViewall">where the density &#961;<span class="elsevierStyleItalic"><span class="elsevierStyleInf">l</span></span> equals the luminous mass <span class="elsevierStyleItalic">M<span class="elsevierStyleInf">llum</span></span> within a sphere of radius <span class="elsevierStyleItalic">r<span class="elsevierStyleInf">l</span></span> from the center of the galaxy to <span class="elsevierStyleItalic">m<span class="elsevierStyleInf">l</span></span> over the volume of the sphere&#46; <a class="elsevierStyleCrossRef" href="#eq0130">Equation &#40;26&#41;</a> may be written<elsevierMultimedia ident="eq0135"></elsevierMultimedia></p><p id="par0220" class="elsevierStylePara elsevierViewall">or<elsevierMultimedia ident="eq0140"></elsevierMultimedia></p><p id="par0225" class="elsevierStylePara elsevierViewall">If<elsevierMultimedia ident="eq0145"></elsevierMultimedia></p><p id="par0230" class="elsevierStylePara elsevierViewall">this term will contribute to dark matter&#46;</p><p id="par0235" class="elsevierStylePara elsevierViewall">The series of <a class="elsevierStyleCrossRef" href="#eq0140">equation &#40;28&#41;</a> converges because the density is finite&#46; We may consider only the first and second terms of the series and neglect the small higher terms&#46; Thus<elsevierMultimedia ident="eq0150"></elsevierMultimedia></p><p id="par0240" class="elsevierStylePara elsevierViewall">from which<elsevierMultimedia ident="eq0155"></elsevierMultimedia></p><p id="par0245" class="elsevierStylePara elsevierViewall">and the terms inside the square brackets are the real mass&#46;</p><p id="par0250" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#bib0005">Begeman &#40;1987&#41;</a> obtained the following values of <span class="elsevierStyleItalic">r<span class="elsevierStyleInf">l</span></span> &#61;30 <span class="elsevierStyleItalic">kcp</span>&#44; <span class="elsevierStyleItalic">V<span class="elsevierStyleInf">c</span></span>&#61;150 km&#47;s for this galaxy&#58;<elsevierMultimedia ident="eq0160"></elsevierMultimedia></p><p id="par0255" class="elsevierStylePara elsevierViewall">From <a class="elsevierStyleCrossRef" href="#eq0150">Equations &#40;30&#41;</a>&#44; <a class="elsevierStyleCrossRef" href="#eq0155">&#40;31&#41;</a> and <a class="elsevierStyleCrossRef" href="#eq0160">&#40;32&#41;</a> we find<elsevierMultimedia ident="eq0165"></elsevierMultimedia></p><p id="par0260" class="elsevierStylePara elsevierViewall">and by introducing this value in <a class="elsevierStyleCrossRef" href="#eq0155">&#40;31&#41;</a> we obtain&#44; for <span class="elsevierStyleItalic">l</span>&#61;30 <span class="elsevierStyleItalic">kcp</span>&#44;<elsevierMultimedia ident="eq0170"></elsevierMultimedia></p><p id="par0265" class="elsevierStylePara elsevierViewall">As this value is positive&#44; we fnd that<elsevierMultimedia ident="eq0175"></elsevierMultimedia></p><p id="par0270" class="elsevierStylePara elsevierViewall">This result proves that the dark mass must be due to the presence of nonadditive forces&#46;</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Conclusions</span><p id="par0275" class="elsevierStylePara elsevierViewall">Whenever nonadditive interactions&#44; that are multi-body terms&#44; are taken into account&#44; Newton&#8217;s law of universal gravitation is sufficient to explain the astronomical observations of a &#8220;dark mass&#8221;&#46; The example of Galaxy NGC 3198 &#40;where substantial amounts of dark matter had been detected&#41; shows that nonadditive terms in <a class="elsevierStyleCrossRef" href="#eq0125">Equation &#40;25&#41;</a>&#44; a generalization of Newton&#8217;s law of gravitation&#44; can provide a satisfying explanation of the difference between luminous and gravitational matter&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:10 [
        0 => array:3 [
          "identificador" => "xres497961"
          "titulo" => "Resumen"
          "secciones" => array:1 [
            0 => array:1 [
              "identificador" => "abst0005"
            ]
          ]
        ]
        1 => array:2 [
          "identificador" => "xpalclavsec519509"
          "titulo" => "Palabras clave"
        ]
        2 => array:3 [
          "identificador" => "xres497962"
          "titulo" => "Abstract"
          "secciones" => array:1 [
            0 => array:1 [
              "identificador" => "abst0010"
            ]
          ]
        ]
        3 => array:2 [
          "identificador" => "xpalclavsec519508"
          "titulo" => "Key words"
        ]
        4 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Introduction"
        ]
        5 => array:3 [
          "identificador" => "sec0010"
          "titulo" => "Nonadditive forces in fluids"
          "secciones" => array:1 [
            0 => array:2 [
              "identificador" => "sec0015"
              "titulo" => "van der Waals equation of state"
            ]
          ]
        ]
        6 => array:2 [
          "identificador" => "sec0020"
          "titulo" => "Nonadditive forces in the gravitational field"
        ]
        7 => array:2 [
          "identificador" => "sec0025"
          "titulo" => "Conclusions"
        ]
        8 => array:2 [
          "identificador" => "xack161001"
          "titulo" => "Acknowledgments"
        ]
        9 => array:1 [
          "titulo" => "Bibliography"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "fechaRecibido" => "2012-04-22"
    "fechaAceptado" => "2012-10-02"
    "PalabrasClave" => array:2 [
      "es" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec519509"
          "palabras" => array:2 [
            0 => "materia oscura"
            1 => "fuerzas no aditivas"
          ]
        ]
      ]
      "en" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Key words"
          "identificador" => "xpalclavsec519508"
          "palabras" => array:2 [
            0 => "Dark Matter"
            1 => "nonadditive forces"
          ]
        ]
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:2 [
        "titulo" => "Resumen"
        "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Bas&#225;ndonos en los datos experimentales en fluidos encontramos&#44; en referencias <a class="elsevierStyleCrossRef" href="#bib0020">Robles-Dom&#237;nguez et al&#46; &#40;2007&#41;</a> y <a class="elsevierStyleCrossRef" href="#bib0025">Robles-Guti&#233;rrez <span class="elsevierStyleItalic">et al</span>&#46; &#40;2010&#41;</a>&#44; que en el Campo Electromagn&#233;tico existen realmente nuevas fuerzas no-aditivas entre 3 o m&#225;s mol&#233;culas&#59; postulamos que tambi&#233;n existen nuevas fuerzas no-aditivas en el Campo Gravitacional y al agregarlas a la Ley de Gravitaci&#243;n Universal de Newton &#233;stas dan lugar a la Masa Obscura&#46;</p></span>"
      ]
      "en" => array:2 [
        "titulo" => "Abstract"
        "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Experimental data in fluids suggest that nonadditive electromagnetic forces between 3 or more molecules account for the existence of critical points&#44; triple states and phase transitions &#40;<a class="elsevierStyleCrossRef" href="#bib0020">Robles-Dom&#237;nguez et al&#46;&#44; 2007</a>&#59; <a class="elsevierStyleCrossRef" href="#bib0025">Robles-Guti&#233;rrez <span class="elsevierStyleItalic">et al</span>&#46;&#44; 2010</a>&#41;&#46; Similar nonadditive forces between 3 or more molecules in the gravitational field incorporated into Newton&#8217;s universal gravitational law may also explain the existence of dark matter&#46;</p></span>"
      ]
    ]
    "multimedia" => array:36 [
      0 => array:7 [
        "identificador" => "fig0005"
        "etiqueta" => "Figure 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr1.jpeg"
            "Alto" => 730
            "Ancho" => 818
            "Tamanyo" => 54388
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Observations of NGC 3198 &#40;From <a class="elsevierStyleCrossRef" href="#bib0005">Begeman&#44; 1987</a>&#41;&#46;</p>"
        ]
      ]
      1 => array:6 [
        "identificador" => "eq0005"
        "etiqueta" => "&#40;1&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Z&#40;T&#44;V&#44;N&#41;&#61;&#8747;&#915;exp&#40;&#8722;&#946;E&#41;d&#915;&#44;"
          "Fichero" => "si1.jpeg"
          "Tamanyo" => 2088
          "Alto" => 19
          "Ancho" => 198
        ]
      ]
      2 => array:6 [
        "identificador" => "eq0010"
        "etiqueta" => "&#40;2&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "E&#61;K&#43;&#934;"
          "Fichero" => "si5.jpeg"
          "Tamanyo" => 780
          "Alto" => 12
          "Ancho" => 79
        ]
      ]
      3 => array:6 [
        "identificador" => "eq0015"
        "etiqueta" => "&#40;3&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "d&#915;&#61;&#960;i&#8722;1Ndri&#95;&#59;dpi&#95;&#59;"
          "Fichero" => "si6.jpeg"
          "Tamanyo" => 1227
          "Alto" => 31
          "Ancho" => 104
        ]
      ]
      4 => array:6 [
        "identificador" => "eq0020"
        "etiqueta" => "&#40;4&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Z&#40;T&#44;V&#44;N&#41;&#61;&#40;N&#33;&#955;3N&#41;&#8722;1&#8747;&#46;&#46;&#46;&#8747;dr1&#95;&#59;&#46;&#46;&#46;drN&#95;&#59;exp&#40;&#8722;&#946;&#934;&#41;"
          "Fichero" => "si7.jpeg"
          "Tamanyo" => 3472
          "Alto" => 24
          "Ancho" => 370
        ]
      ]
      5 => array:6 [
        "identificador" => "eq0025"
        "etiqueta" => "&#40;5&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#934;ri&#95;&#59;&#8722;rj&#95;&#59;&#61;&#43;&#8734;&#61;&#934;hc&#44;ri&#95;&#59;&#8722;rj&#95;&#59;&#60;a&#934;2ri&#95;&#59;&#8722;rj&#95;&#59;&#60;0&#44;ri&#95;&#59;&#8722;rj&#95;&#59;&#62;a"
          "Fichero" => "si8.jpeg"
          "Tamanyo" => 4917
          "Alto" => 64
          "Ancho" => 380
        ]
      ]
      6 => array:6 [
        "identificador" => "eq0030"
        "etiqueta" => "&#40;6&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Z&#40;T&#44;V&#44;N&#41;&#61;&#40;N&#33;&#955;3N&#41;&#8722;1&#8721;&#123;N&#945;&#125;&#39;N&#33;&#928;&#945;N&#945;&#33;&#91;&#928;&#945;&#947;&#40;N&#945;&#41;&#93;exp12&#946;&#8721;&#945;&#44;&#945;&#39;&#934;&#945;&#44;&#945;&#39;N&#945;N&#945;&#39;&#8776;1&#955;T3N&#8721;&#123;N&#945;&#125;&#39;exp&#8721;&#945;N&#945;ln&#916;&#8722;N&#945;&#948;N&#945;&#61;N&#945;&#43;12&#946;&#8721;&#945;&#39;&#934;&#945;&#44;&#945;&#39;N&#945;N&#945;&#39;"
          "Fichero" => "si9.jpeg"
          "Tamanyo" => 10275
          "Alto" => 58
          "Ancho" => 811
        ]
      ]
      7 => array:6 [
        "identificador" => "eq0035"
        "etiqueta" => "&#40;7&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#947;&#40;N&#945;&#41;&#61;&#40;&#916;&#8722;N&#945;&#948;&#41;N&#945;"
          "Fichero" => "si10.jpeg"
          "Tamanyo" => 1441
          "Alto" => 18
          "Ancho" => 148
        ]
      ]
      8 => array:6 [
        "identificador" => "eq0040"
        "etiqueta" => "&#40;8&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "N&#945;&#61;NV&#916;"
          "Fichero" => "si11.jpeg"
          "Tamanyo" => 787
          "Alto" => 20
          "Ancho" => 68
        ]
      ]
      9 => array:6 [
        "identificador" => "eq0045"
        "etiqueta" => "&#40;9&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "W0&#916;&#61;&#8721;&#945;&#39;&#934;&#945;&#44;&#945;&#39;"
          "Fichero" => "si12.jpeg"
          "Tamanyo" => 1222
          "Alto" => 36
          "Ancho" => 97
        ]
      ]
      10 => array:6 [
        "identificador" => "eq0050"
        "etiqueta" => "&#40;10&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "A&#40;T&#44;V&#44;N&#41;&#61;&#8722;1&#946;lnZ&#40;T&#44;V&#44;N&#41;&#46;"
          "Fichero" => "si13.jpeg"
          "Tamanyo" => 1991
          "Alto" => 23
          "Ancho" => 205
        ]
      ]
      11 => array:6 [
        "identificador" => "eq0055"
        "etiqueta" => "&#40;11&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p&#61;&#8722;&#8706;A&#8706;VT&#44;N&#46;"
          "Fichero" => "si14.jpeg"
          "Tamanyo" => 1038
          "Alto" => 23
          "Ancho" => 101
        ]
      ]
      12 => array:6 [
        "identificador" => "eq0060"
        "etiqueta" => "&#40;12&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p&#61;NV&#946;1&#8722;NV&#948;&#8722;12NV2W0&#46;"
          "Fichero" => "si15.jpeg"
          "Tamanyo" => 2077
          "Alto" => 41
          "Ancho" => 178
        ]
      ]
      13 => array:6 [
        "identificador" => "eq0065"
        "etiqueta" => "&#40;13&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#961;&#61;mNV"
          "Fichero" => "si16.jpeg"
          "Tamanyo" => 615
          "Alto" => 20
          "Ancho" => 54
        ]
      ]
      14 => array:6 [
        "identificador" => "eq0070"
        "etiqueta" => "&#40;14&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p&#61;&#961;&#946;&#40;m&#8722;&#961;&#948;&#41;&#43;a&#961;2"
          "Fichero" => "si17.jpeg"
          "Tamanyo" => 1162
          "Alto" => 23
          "Ancho" => 125
        ]
      ]
      15 => array:6 [
        "identificador" => "eq0075"
        "etiqueta" => "&#40;15&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "a&#61;&#8722;W02m2&#46;"
          "Fichero" => "si18.jpeg"
          "Tamanyo" => 668
          "Alto" => 23
          "Ancho" => 73
        ]
      ]
      16 => array:6 [
        "identificador" => "eq0080"
        "etiqueta" => "&#40;16&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p&#61;phc&#43;p2&#43;p3&#43;p4&#43;&#46;&#46;&#46;"
          "Fichero" => "si19.jpeg"
          "Tamanyo" => 1511
          "Alto" => 13
          "Ancho" => 198
        ]
      ]
      17 => array:6 [
        "identificador" => "eq0085"
        "etiqueta" => "&#40;17&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "phc&#61;&#961;&#946;&#40;m&#8722;&#961;&#948;&#41;"
          "Fichero" => "si20.jpeg"
          "Tamanyo" => 1028
          "Alto" => 22
          "Ancho" => 94
        ]
      ]
      18 => array:6 [
        "identificador" => "eq0090"
        "etiqueta" => "&#40;18&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p2&#61;a&#961;2&#61;a2&#961;2"
          "Fichero" => "si21.jpeg"
          "Tamanyo" => 985
          "Alto" => 17
          "Ancho" => 127
        ]
      ]
      19 => array:6 [
        "identificador" => "eq0095"
        "etiqueta" => "&#40;19&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p3&#61;a3&#961;3"
          "Fichero" => "si22.jpeg"
          "Tamanyo" => 714
          "Alto" => 17
          "Ancho" => 81
        ]
      ]
      20 => array:6 [
        "identificador" => "eq0100"
        "etiqueta" => "&#40;20&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "p4&#61;a4&#961;4"
          "Fichero" => "si23.jpeg"
          "Tamanyo" => 735
          "Alto" => 17
          "Ancho" => 82
        ]
      ]
      21 => array:6 [
        "identificador" => "eq0105"
        "etiqueta" => "&#40;21&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Ficentrip&#61;Flgrav&#61;&#8721;j&#61;2&#8734;Flj&#44;"
          "Fichero" => "si24.jpeg"
          "Tamanyo" => 2196
          "Alto" => 49
          "Ancho" => 208
        ]
      ]
      22 => array:6 [
        "identificador" => "eq0110"
        "etiqueta" => "&#40;22&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "plcentrip&#61;plgrav&#61;&#8721;j&#61;2&#8734;plj&#46;"
          "Fichero" => "si25.jpeg"
          "Tamanyo" => 2125
          "Alto" => 49
          "Ancho" => 207
        ]
      ]
      23 => array:6 [
        "identificador" => "eq0115"
        "etiqueta" => "&#40;23&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;glgrav&#61;&#8721;j&#61;2&#8734;glj&#44;"
          "Fichero" => "si26.jpeg"
          "Tamanyo" => 2131
          "Alto" => 49
          "Ancho" => 203
        ]
      ]
      24 => array:6 [
        "identificador" => "eq0120"
        "etiqueta" => "&#40;24&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;glgrav&#61;GMllumrl2&#43;gl3&#43;gl4&#43;&#46;&#46;&#46;&#44;"
          "Fichero" => "si27.jpeg"
          "Tamanyo" => 2574
          "Alto" => 28
          "Ancho" => 328
        ]
      ]
      25 => array:6 [
        "identificador" => "eq0125"
        "etiqueta" => "&#40;25&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;glgrav&#61;GVlrl2MllumVl&#43;gl3&#43;gl4&#43;&#46;&#46;&#46;&#61;GVlrl2&#961;l&#43;gl3&#43;gl4&#43;&#46;&#46;&#46;"
          "Fichero" => "si28.jpeg"
          "Tamanyo" => 4124
          "Alto" => 28
          "Ancho" => 494
        ]
      ]
      26 => array:6 [
        "identificador" => "eq0130"
        "etiqueta" => "&#40;26&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;GVlrl2&#961;l&#43;gl3&#43;gl4&#43;&#46;&#46;&#46;&#61;Bl2&#961;l&#43;Bl3&#961;l2&#43;&#46;&#46;&#46;"
          "Fichero" => "si29.jpeg"
          "Tamanyo" => 3251
          "Alto" => 28
          "Ancho" => 375
        ]
      ]
      27 => array:6 [
        "identificador" => "eq0135"
        "etiqueta" => "&#40;27&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;GVlrl2&#961;l&#43;gl3&#43;gl4&#43;&#46;&#46;&#46;&#61;Grl2Mllum&#43;Bl3&#961;l2&#43;&#46;&#46;&#46;&#43;Grl2Mllum&#43;Bl3Vl2Mllum2"
          "Fichero" => "si30.jpeg"
          "Tamanyo" => 5205
          "Alto" => 28
          "Ancho" => 574
        ]
      ]
      28 => array:6 [
        "identificador" => "eq0140"
        "etiqueta" => "&#40;28&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;Grl2Mllum&#43;Bl3Vl2Mllum2&#43;&#46;&#46;&#46;&#61;Grl2Mllum1&#43;Bl3Vl2Mllum2Grl2Mllum&#43;&#46;&#46;&#46;&#61;Grl2Mllum1&#43;Bl3rl2MllumGVl2&#43;&#46;&#46;&#46;"
          "Fichero" => "si31.jpeg"
          "Tamanyo" => 10867
          "Alto" => 141
          "Ancho" => 536
        ]
      ]
      29 => array:6 [
        "identificador" => "eq0145"
        "etiqueta" => "&#40;29&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Bl3rl2MllumGVl2&#43;&#46;&#46;&#46;&#62;0"
          "Fichero" => "si32.jpeg"
          "Tamanyo" => 1554
          "Alto" => 33
          "Ancho" => 132
        ]
      ]
      30 => array:6 [
        "identificador" => "eq0150"
        "etiqueta" => "&#40;30&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "alcentrip&#61;Vl2rlGrl2MllumBl3rl2MllumGVl2&#46;"
          "Fichero" => "si33.jpeg"
          "Tamanyo" => 3147
          "Alto" => 39
          "Ancho" => 283
        ]
      ]
      31 => array:6 [
        "identificador" => "eq0155"
        "etiqueta" => "&#40;31&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "MdarkMllum&#61;Bl3rl2MllumGVl2"
          "Fichero" => "si34.jpeg"
          "Tamanyo" => 1789
          "Alto" => 33
          "Ancho" => 131
        ]
      ]
      32 => array:6 [
        "identificador" => "eq0160"
        "etiqueta" => "&#40;32&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "MdarkMllum&#61;2&#46;99"
          "Fichero" => "si35.jpeg"
          "Tamanyo" => 1081
          "Alto" => 23
          "Ancho" => 92
        ]
      ]
      33 => array:6 [
        "identificador" => "eq0165"
        "etiqueta" => "&#40;33&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Mllum&#61;78&#46;236&#42;1039kg&#44;"
          "Fichero" => "si36.jpeg"
          "Tamanyo" => 1714
          "Alto" => 18
          "Ancho" => 192
        ]
      ]
      34 => array:6 [
        "identificador" => "eq0170"
        "etiqueta" => "&#40;35&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Bl3&#61;9&#46;89036&#42;10&#8722;30m7s2kg2&#8722;1&#62;0"
          "Fichero" => "si37.jpeg"
          "Tamanyo" => 2642
          "Alto" => 23
          "Ancho" => 278
        ]
      ]
      35 => array:6 [
        "identificador" => "eq0175"
        "etiqueta" => "&#40;35&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Mreal&#62;Mllum&#46;"
          "Fichero" => "si38.jpeg"
          "Tamanyo" => 1009
          "Alto" => 13
          "Ancho" => 110
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliography"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:6 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "Begeman&#44; 1987"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Begeman K&#46;H&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "titulo" => "Rotation Curves of Spiral Galaxies"
                        "fecha" => "1987"
                        "editorial" => "Ph&#46; D&#46; Thesis&#44; University of Groningen"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "Kolmogorov and Fomin&#44; 1961"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "Kolmogorov A&#46;N&#46;"
                            1 => "Fomin S&#46;V&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Elements of the Theory of Functions and Functional Analysis"
                        "fecha" => "1961"
                        "editorial" => "Graylock Press"
                        "editorialLocalizacion" => "New York"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "Reichl&#44; 1998"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Reichl L&#46;E&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "A Modern Course in Statistical Physics"
                        "fecha" => "1998"
                        "editorial" => "University of Texas Press"
                        "editorialLocalizacion" => "Austin"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "Robles-Dom&#237;nguez et al&#46;&#44; 2007"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "An Equation of State for more than two phases&#44; with an application to the Earth&#8217;s mantle"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "Robles-Dom&#237;nguez J&#46;M&#46;A&#46;"
                            1 => "Robles-Guti&#233;rrez J&#46;A&#46;"
                            2 => "Lomnitz C&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Geof&#237;sica Internacional"
                        "fecha" => "2007"
                        "volumen" => "40"
                        "numero" => "3"
                        "paginaInicial" => "155"
                        "paginaFinal" => "161"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "Robles-Guti&#233;rrez et al&#46;&#44; 2010"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A generalized equation of state with an application to the Earth&#8217;s mantle"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "Robles-Guti&#233;rrez J&#46;A&#46;"
                            1 => "Robles-Dom&#237;nguez J&#46;M&#46;A&#46;"
                            2 => "Lomnitz C&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Geof&#237;sica Internacional"
                        "fecha" => "2010"
                        "volumen" => "49"
                        "numero" => "2"
                        "paginaInicial" => "77"
                        "paginaFinal" => "82"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "Sciama&#44; 1993"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Sciama D&#46;W&#46;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Modern Cosmology and the Dark Matter Problem"
                        "fecha" => "1993"
                        "editorial" => "Cambridge University Press"
                        "editorialLocalizacion" => "Cambridge"
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
    "agradecimientos" => array:1 [
      0 => array:4 [
        "identificador" => "xack161001"
        "titulo" => "Acknowledgments"
        "texto" => "<p id="par0280" class="elsevierStylePara elsevierViewall">The valuable contribution of L&#46;A&#46; Sylvia Robles Guti&#233;rrez is gratefully acknowledged&#46;</p>"
        "vista" => "all"
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/00167169/0000005200000002/v2_201505081345/S0016716913714697/v2_201505081345/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "36047"
    "tipo" => "SECCION"
    "es" => array:2 [
      "titulo" => "Original paper"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "es"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/00167169/0000005200000002/v2_201505081345/S0016716913714697/v2_201505081345/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716913714697?idApp=UINPBA00004N"
]
Article information
ISSN: 00167169
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 1 0 1
2024 October 8 6 14
2024 September 7 3 10
2024 August 10 7 17
2024 July 12 5 17
2024 June 9 5 14
2024 May 13 6 19
2024 April 8 5 13
2024 March 8 5 13
2024 February 7 4 11
2024 January 7 4 11
2023 December 7 7 14
2023 November 8 4 12
2023 October 9 6 15
2023 September 10 4 14
2023 August 5 6 11
2023 July 4 4 8
2023 June 9 4 13
2023 May 5 5 10
2023 April 8 3 11
2023 March 4 3 7
2023 February 4 2 6
2023 January 7 4 11
2022 December 5 3 8
2022 November 3 4 7
2022 October 8 3 11
2022 September 11 6 17
2022 August 19 10 29
2022 July 10 7 17
2022 June 4 10 14
2022 May 6 3 9
2022 April 8 6 14
2022 March 6 5 11
2022 February 5 18 23
2022 January 16 13 29
2021 December 7 10 17
2021 November 7 8 15
2021 October 7 7 14
2021 September 8 7 15
2021 August 10 7 17
2021 July 17 10 27
2021 June 5 10 15
2021 May 9 4 13
2021 April 18 6 24
2021 March 7 5 12
2021 February 5 6 11
2021 January 4 7 11
2020 December 10 8 18
2020 November 3 2 5
2020 October 4 4 8
2020 September 13 6 19
2020 August 5 2 7
2020 July 11 4 15
2020 June 11 1 12
2020 May 7 3 10
2020 April 4 2 6
2020 March 12 3 15
2020 February 10 0 10
2020 January 5 4 9
2019 December 15 8 23
2019 November 13 3 16
2019 October 13 1 14
2019 September 15 5 20
2019 August 5 0 5
2019 July 13 9 22
2019 June 32 10 42
2019 May 60 24 84
2019 April 15 1 16
2019 March 7 0 7
2019 February 6 0 6
2019 January 6 0 6
2018 December 10 2 12
2018 November 9 0 9
2018 October 6 9 15
2018 September 1 3 4
2018 August 5 1 6
2018 July 5 1 6
2018 June 4 0 4
2018 May 3 1 4
2018 April 7 1 8
2018 February 3 3 6
2017 November 1 0 1
2017 October 6 0 6
2017 September 6 1 7
2017 August 4 1 5
2017 July 2 0 2
2017 June 7 20 27
2017 May 11 8 19
2017 April 15 13 28
2017 March 8 30 38
2017 February 8 0 8
2017 January 3 3 6
2016 December 8 2 10
2016 November 12 2 14
2016 October 17 3 20
2016 September 11 2 13
2016 August 11 1 12
2016 July 10 0 10
2016 June 8 4 12
2016 May 10 4 14
2016 April 8 6 14
2016 March 7 3 10
2016 February 6 5 11
2016 January 6 4 10
2015 December 10 4 14
2015 November 13 3 16
2015 October 17 2 19
2015 September 8 3 11
2015 August 2 4 6
2015 July 5 2 7
2015 June 1 0 1
2015 May 1 1 2
2015 April 0 1 1
Show all

Follow this link to access the full text of the article