was read the article
array:21 [ "pii" => "S0016716915000069" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.005" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "aid" => "5" "copyrightAnyo" => "2015" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:95-109" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4010 "formatos" => array:3 [ "EPUB" => 59 "HTML" => 3211 "PDF" => 740 ] ] "itemAnterior" => array:17 [ "pii" => "S0016716915000057" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.004" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "aid" => "4" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:83-94" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1535 "formatos" => array:3 [ "EPUB" => 35 "HTML" => 1133 "PDF" => 367 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Seismicity in the Basin and Range Province of Sonora, México, between 2003 and 2011, near the Rupture of the 3 May 1887 Mw 7.5 Earthquake" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "83" "paginaFinal" => "94" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1454 "Ancho" => 1468 "Tamanyo" => 112985 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Histogram of the average absolute value of travel-time residuals. Solid lines, SSST relocations using velocity model V2 (<a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a> and <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>) and dashed lines for the relocations reported by <a class="elsevierStyleCrossRef" href="#bib0015">Castro <span class="elsevierStyleItalic">et al</span>. (2010)</a> with the same velocity model.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Raúl R. Castro" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Raúl R." "apellidos" => "Castro" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000057?idApp=UINPBA00004N" "url" => "/00167169/0000005400000001/v1_201505130244/S0016716915000057/v1_201505130244/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "titulo" => "Evaluation of soil liquefaction from surface analysis" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "95" "paginaFinal" => "109" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Efraín Ovando Shelley, Vanessa Mussio, Miguel Rodríguez, José G. Acosta Chang" "autores" => array:4 [ 0 => array:3 [ "nombre" => "Efraín Ovando" "apellidos" => "Shelley" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:4 [ "nombre" => "Vanessa" "apellidos" => "Mussio" "email" => array:1 [ 0 => "vanessamussio@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "Miguel" "apellidos" => "Rodríguez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "José G. Acosta" "apellidos" => "Chang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Instituto de Ingeniería, Universidad Nacional Autónoma de México Ciudad Universitaria, Delegación Coyoacán, 04510 México D.F., México" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Centro de Investigación Científica y Educación Superior de Ensenada" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2710 "Ancho" => 1859 "Tamanyo" => 534070 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">SPAC functions calculated for different separation distances between possible pairs of geophones. Dots represent the frequencies at the first zero crossing of each SPAC function.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Many authors have described and studied liquefaction of granular soils (Seed <span class="elsevierStyleItalic">et al</span>.1971; <a class="elsevierStyleCrossRefs" href="#bib0070">Poulos <span class="elsevierStyleItalic">et al.</span>, 1985; Ishihara K. 1993</a>). It occurs when vibrations or water pressure within soil cause the solid particles to cease having contact with one another. This condition is generally caused by the passage of seismic waves through loose or very loose saturated sandy soils. The soil behaves temporarily as a liquid and loses its ability to support weight. Sand boils, ground fissures or lateral spreading are typical manifestations of sand liquefaction (<a class="elsevierStyleCrossRef" href="#bib0050">Marcuson, 1978</a>).</p><p id="par0010" class="elsevierStylePara elsevierViewall">Shear wave velocity (V<span class="elsevierStyleInf">s</span>) has been correlated with cyclic stress ratio to assess soil liquefaction potential. Vs is estimated from cross-hole or down-hole seismic surveys (<a class="elsevierStyleCrossRef" href="#bib0090">Stokoe and Narzian, 1985</a>; Tokimatsu et al., 1990; Kanyen <span class="elsevierStyleItalic">et al.</span>, 1992; <a class="elsevierStyleCrossRefs" href="#bib0020">Andrus and Stokoe, 1997; Yu Shizhou, <span class="elsevierStyleItalic">et al.</span>, 2008</a>). In this paper we present a method in which shear wave velocity profiles are derived from Microtremor Analysis Method (MAM) and from Multichannel Analysis of Surface Waves (MASW). Combining MAM and MASW allowed us to reach a deeper penetration depth. Specifically, higher frequency waves generated by sledgehammer impacts travel through shallower depths and can be combined with lower frequency data from microtremors that travel through greater depths. The procedure also clarifies modal trends (<a class="elsevierStyleCrossRef" href="#bib0065">Park <span class="elsevierStyleItalic">et al</span>., 2007</a>).</p><p id="par0020" class="elsevierStylePara elsevierViewall">We applied a combination of both techniques to a site in the Mexicali Valley, Baja California, in an area of high seismicity and high population density. Sand liquefaction has repeatedly affected Mexicali, the largest city in the region, causing extensive damage there and in towns and villages as well as in canals, roads and other facilities.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Study area</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Location</span><p id="par0025" class="elsevierStylePara elsevierViewall">Mexicali is a border city that accounts for 18% of the surface of the state of Baja California. It is bounded on the north by the city of Calexico, California, USA. The site we studied is located in the Solidaridad Social Township, 5<span class="elsevierStyleHsp" style=""></span>km south of downtown Mexicali and about 10<span class="elsevierStyleHsp" style=""></span>km south of the border (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>), along a bend in an affluent of the Colorado River.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">The Mexicali Valley is within the Colorado River delta. Geologically young sandy sediments are present over the delta region. High groundwater levels and strong ground motions combined to bring about extensive liquefaction in the El Mayor-Cucapah earthquake of April 4, 2010, the largest earthquake to strike this area since 1892. It was possibly larger than the 1940 earthquake (M = 6.9) or any of the early 20th century events in northern Baja California. It had a magnitude 7.2<span class="elsevierStyleHsp" style=""></span>M<span class="elsevierStyleInf">w</span> with epicenter on the western margin of the Mexicali Valley where the El Major and Cucapah faults converge, some 40<span class="elsevierStyleHsp" style=""></span>km south of the Mexicali urban area.</p><p id="par0035" class="elsevierStylePara elsevierViewall">Superficial cracks and fractures appeared along the riverbanks (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>). The main fracture was 1726 m long and secondary cracks extended to about 800 m. Severe economic damage occurred to homes, the canal system and roadways. At least 151 homes suffered some degree of damage associated with the earthquake, including fissures and differential settlements (INDIVI, 2010). Earthquake induced liquefaction, lateral spreading, sand boils and flooding occurred extensively across farm lands and along rivers and irrigation canals.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Liquefaction potential: simplified empirical analysis</span><p id="par0040" class="elsevierStylePara elsevierViewall">Three parameters are needed to assess liquefaction potential using the simplified empirical method: a) shear velocity V<span class="elsevierStyleInf">s</span>; b) the cyclic stress ratio (CSR) and c) the capacity of the soil to resist liquefaction, expressed in terms of the cyclic resistance ratio (CRR). Shear wave velocity is proportional to soil stiffness and in the simplified method, it must be corrected to account for the effect of overburden stress (V<span class="elsevierStyleInf">s1</span>). Our procedure incorporates some updates and improvements to the original simplified method (Youd <span class="elsevierStyleItalic">et al</span>., 2001).</p><p id="par0045" class="elsevierStylePara elsevierViewall">For the calculation of the cyclic stress ratio, τcσv', we use an expression from the original method:<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0050" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">a</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">max</span></span> is the maximum horizontal acceleration at the surface of the soil; is the acceleration of gravity; σ<span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> and σv′ are the total and effective vertical stresses respectively and <span class="elsevierStyleItalic">r</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span> is the coefficient of reduction of efforts. The following equations may be used to estimate average values of <span class="elsevierStyleItalic">r</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span> (<a class="elsevierStyleCrossRefs" href="#bib0045">Liao <span class="elsevierStyleItalic">et al</span>., 1988; Robertson and Wride, 1998</a>).<elsevierMultimedia ident="eq0010"></elsevierMultimedia><elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0055" class="elsevierStylePara elsevierViewall">where z is the depth below ground surface (m)</p><p id="par0060" class="elsevierStylePara elsevierViewall">The cyclic resistance ratio, CRR, is used to set apart well-characterized sites where liquefaction occurred from those where it did not. Well-characterized sites are those where the stratigraphy is known and where field penetration resistance is available, commonly, usually from SPT or CPT tests (<a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>). <a class="elsevierStyleCrossRefs" href="#bib0020">Andrus and Stokoe (1997, 2000)</a> developed liquefaction resistance criteria from 26 earthquakes and shear wave velocities measured in the field at 70 sites (<a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a>). The curve in that figure was obtained from field observations after earthquakes with M =7.5, from the results of Vs measurements and from estimations of the cyclic stress ratio (equation 1). Their empirical CRR curve in <a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a> separates the points in the CSR versus V<span class="elsevierStyleInf">s1</span> space where liquefaction did and did not occur.<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0065" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span>1</span> was defined previously; MSF is the magnitude scaling factor for earthquakes with magnitudes different from 7.5<span class="elsevierStyleHsp" style=""></span>M<span class="elsevierStyleInf">w</span>; <span class="elsevierStyleItalic">a</span>, <span class="elsevierStyleItalic">b</span> are fitting parameters (<span class="elsevierStyleItalic">a</span> = 0.022, <span class="elsevierStyleItalic">b</span> = 2.8) and Vs1* is a reference shear wave velocity that depends on the amount of fines present in the sand mass:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><p id="par0070" class="elsevierStylePara elsevierViewall">Vs1*= 200 <span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">s</span> soils with 35% fines.</p></li><li class="elsevierStyleListItem" id="lsti0010"><p id="par0075" class="elsevierStylePara elsevierViewall">Vs1*= 210 <span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">s</span> soils with 20% fines.</p></li><li class="elsevierStyleListItem" id="lsti0015"><p id="par0080" class="elsevierStylePara elsevierViewall">Vs1*= 215 − 220 <span class="elsevierStyleItalic">m</span>/<span class="elsevierStyleItalic">s</span> soils with 5% fines.</p></li></ul></p><p id="par0085" class="elsevierStylePara elsevierViewall">The overburden stress correction is<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0090" class="elsevierStylePara elsevierViewall">where Vs is the measured shear wave velocity, (m/s); P<span class="elsevierStyleInf">a</span> is a reference stress (atmospheric pressure); σ<span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> is initial effective overburden stress, (kPa).</p><p id="par0280" class="elsevierStylePara elsevierViewall">The magnitude scale factor MSF is used to translate the CRR vertically depending on the magnitude of the design or expected earthquake, i.e. MSF moves up or down the threshold for the occurrence of liquefaction given by CRR according to the size of the earthquake. It is given by:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0285" class="elsevierStylePara elsevierViewall">where M<span class="elsevierStyleInf">W</span> is the earthquake moment magnitude.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Field Tests</span><p id="par0095" class="elsevierStylePara elsevierViewall">The field work presented in this paper forms part of geological and geophysical studies commissioned by local authorities after the April 4, 2010 event (<a class="elsevierStyleCrossRef" href="#bib0005">Acosta Chang <span class="elsevierStyleItalic">et al.</span>, 2010</a>). They obtained thirty seismic profiles from MAM and MASW tests during May and June 2010 at the Solidaridad Social Township. The fieldwork also included four geotechnical soundings to carry out SPT tests down to a depth of 11 m at the sites indicated in <a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>. We used the seven seismic profiles closest to the SPT tests to compare and correlate the liquefaction potential estimated from both SPT blow counts (N<span class="elsevierStyleInf">1</span>)<span class="elsevierStyleInf">60</span> and shear wave velocity (V<span class="elsevierStyleInf">s1</span>). Stratigraphic profiles were made at each SPT site to define the local geotechnical conditions and as a support for the geophysical interpretation. These field studies did not address the issue of assessing liquefaction potential.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">MASW and MAM surveys were performed deploying twenty-four 2.5<span class="elsevierStyleHsp" style=""></span>Hz geophones along a linear array. Receivers were separated 1.5 m and were all connected to a multi-channel recording device.</p><p id="par0105" class="elsevierStylePara elsevierViewall">The wave fields for MASW surveys were generated by vertical impacts of a 4.5<span class="elsevierStyleHsp" style=""></span>kg sledgehammer on a steel plate coupled to the ground. Sampling rate in the MASW surveys was 0.00125 s and records had a duration of 1 s. Seismic sources (impacts) were located at three positions collinear to the geophone array. The source positions are related to the position of the first geophone. For tests L2T1, L3T7, L5T3 and L6T1, the seismic source was located at the center of the line and the other two sources at both endes with a 1.5 m offset.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Three impacts were applied in succession at each position; records were collected, stacked and stored in a PC. Stacked records were used to achieve a single record associated with each position of the source to minimize the noise- signal ratio. In the case of seismic lines L3T4, L5T1 and L9T2 the spacing between geophones was 2.0 m.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Processing and partial results</span><p id="par0115" class="elsevierStylePara elsevierViewall">MAM records were processed using Spatial Autocorrelation (SPAC), a well known technique to deduce a phase-velocity dispersion curve from microtremors recorded by a seismic array (<a class="elsevierStyleCrossRefs" href="#bib0010">Aki, 1957, 1965</a>). The essence of the method is that, having records from seismic stations spaced at a constant distance and forming pairs of stations along different azimuths, it is possible to compute an estimate of the phase velocity of the waves crossing the array, without regard to the direction of propagation of the waves present.</p><p id="par0120" class="elsevierStylePara elsevierViewall">If the duration of the MAM records obtained along a linear array is long enough, the recorded motion can be expected to include waves propagating along many different directions. Under this hypothesis, the equations and results that <a class="elsevierStyleCrossRef" href="#bib0010">Aki (1957)</a> obtained using the azimuthal average of the spatial cross- correlation coefficients can be applied (<a class="elsevierStyleCrossRef" href="#bib0030">Chavez <span class="elsevierStyleItalic">et al.</span>, 2006</a>). Having a linear array is also convenient because it allows for the collection of data using the same setup as in MASW, thus avoiding re-positioning of the geophones, a task that often requires significant additional field effort.</p><p id="par0125" class="elsevierStylePara elsevierViewall">MAM data were acquired along the same linear array as in the MASW tests. The sampling interval was 2<span class="elsevierStyleHsp" style=""></span>ms and the duration of the records was 30 s. At least 30 background noise measurements were made at each seismic profile.</p><p id="par0130" class="elsevierStylePara elsevierViewall">SPAC functions, ρ(<span class="elsevierStyleItalic">r</span>, <span class="elsevierStyleItalic">ω</span>) were defined by <a class="elsevierStyleCrossRef" href="#bib0010">Aki (1957)</a> in terms of the spatial autocorrelation of ground motion records separated a distance, <span class="elsevierStyleItalic">r</span>, represented as:<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">c</span>(<span class="elsevierStyleItalic">ω</span>) is the phase velocity associated to the frequency ω; <span class="elsevierStyleItalic">J</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">0</span></span> is the Bessel function of first class and zero order.</p><p id="par0140" class="elsevierStylePara elsevierViewall">SPAC functions were estimated in this study as the average value of the real part of the coherence function calculated between each pair of records obtained with the same spacing between geophones. Thus, the above process renders a SPAC function for each geophone spacing, 23 separations in this case. As an example we show <a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a> that displays the real part of coherence function between all possible pairs of geophones in line L5T1, with an array size of 46 m. The separation between each geophone pair is plotted on the y-axis as distance and the SPAC functions on the x-axis.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0145" class="elsevierStylePara elsevierViewall">SPAC functions contain information of seismic surface wave dispersion in which phase velocity can be measured as a function of frequency. The broken line in the figure joins the frequencies, Fpcc, associated to the first zero crossings of each calculated SPAC function. The value of Fpcc decreases as the separation between pairs of stations increases, up to a separation of 25 m, approximately.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Making reference to <a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a>, in the SPAC function associated with the separation of 2 m, one can measure the frequency associated with the first zero crossing, approximately 26<span class="elsevierStyleHsp" style=""></span>Hz. Because the argument of the Bessel function is, a phase velocity for 26<span class="elsevierStyleHsp" style=""></span>Hz is about 136 m/s, and 220 m/s for 3<span class="elsevierStyleHsp" style=""></span>Hz. This exemplifies how a different phase velocity is associated to each frequency.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Records from MAM surveys were transformed into the frequency-phase velocity space to form a dispersion image, using the <a class="elsevierStyleCrossRef" href="#bib0060">Park <span class="elsevierStyleItalic">et al.</span>, (1999)</a> method. The above process is equivalent to the application of a ‘slant stack’ to the time signal. Dispersion curves from MASW surveys are obtained applying the same procedure except for the fact that they don’t use spatial autocorrelation. The graph in <a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a> is a typical image that corresponds to line L5T1, with data collected for both MAM and MASW surveys.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0160" class="elsevierStylePara elsevierViewall">The fundamental mode of surface waves for MAM records can be readily identified in <a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a> in the 2-15<span class="elsevierStyleHsp" style=""></span>Hz frequency range and 6-29<span class="elsevierStyleHsp" style=""></span>Hz for the MASW records. The range of validity for both curves (passive and active) is limited by two straight lines having a constant wave length, 8 and 150 m as seen in <a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a>a. The Rayleigh wave fundamental mode of propagation is identified inside this range as a smooth curve formed by the maximum spectral energy with phase velocity decreasing with frequency (<a class="elsevierStyleCrossRef" href="#bib0060">Park <span class="elsevierStyleItalic">et al.</span>, 1999</a>).</p><p id="par0165" class="elsevierStylePara elsevierViewall">The dispersion curves from the active and passive methods (MASW and MAM respectively) were combined to obtain a single dispersion curve covering a wider frequency range (2.5 to 29<span class="elsevierStyleHsp" style=""></span>Hz). As seen in <a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a>c, phase velocity reduces sharply in going from 3 to 7<span class="elsevierStyleHsp" style=""></span>Hz and thereafter it reaches a constant value equal to 130 m/s. Both curves have approximately the same shape and actually overlap between 6 and 16<span class="elsevierStyleHsp" style=""></span>Hz.</p><p id="par0170" class="elsevierStylePara elsevierViewall">Dispersion curves (phase velocity- frequency) and the inversion of shear wave velocity (V<span class="elsevierStyleInf">s</span>) profiles were obtained using the procedure described in the SeisImager/ SW software manual (Geometrics, 2006). The SeisImager inversion technique is a deterministic method that depends on an initial model in which shear velocity increases with depth and in which the least square inversion is then applied (Xia, 1999b).</p><p id="par0175" class="elsevierStylePara elsevierViewall">The initial shear wave velocity model is generated from the information provided by the phase velocity curve assuming that penetration depth is about one third of the wave length associated to each of the measured phase velocities. The procedure considers <span class="elsevierStyleItalic">n-1</span> layers with a constant thickness; the <span class="elsevierStyleItalic">nth</span> layer is twice as thick. In our calculations we used seven layers and, starting from the initial model, proceeded on to the nonlinear iterative inversion procedure.</p><p id="par0180" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0040">Figure 8</a> shows the dispersion curves combining the results of MASW and MAM surveys for the Solidaridad Social Township. We estimated shear wave velocity (V) profiles at depths varying from 1.8 up to 30 m (<a class="elsevierStyleCrossRef" href="#fig0045">figure 9</a>), approximately. In this specific case the method stops being reliable at depths larger than 30 m.</p><elsevierMultimedia ident="fig0040"></elsevierMultimedia><elsevierMultimedia ident="fig0045"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Results</span><p id="par0185" class="elsevierStylePara elsevierViewall">The graphs in <a class="elsevierStyleCrossRef" href="#fig0045">Figure 9</a> show the shear wave velocity profiles obtained from the MASW and MAM dispersion curves. This information has been summarized in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. Regarding liquefaction potential, there are four significant seismic units:</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0190" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Unit 1</span>. It goes from about 3.5 to 10 m in depth. Shear wave velocities vary from 125 to about 174 m/s; lowest values were found in L5t1 and L3T4, located close to the location of soundings SPT 3 and SPT 2, respectively (see <a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>). Shear wave velocities en line L6T1, close to SPT 5, were about 162 m/s. Values in the remaining three lines, L9T2, L3T7 and L5T3 average 170 m/s.</p><p id="par0195" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Unit 2.</span> It goes from 10 to 17 m in depth. Shear wave velocities in lines L9T2, L3T7, L5T1 and L6T1 are about 160 m/s and around 185 m/s in lines L5T3 and L2T1 and slightly larger in line L3T4.</p><p id="par0200" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Unit 3</span>. Shear wave velocity values in this unit are scattered within the 189 to 241 m/s range, in depths that go from 17 to 26 m.</p><p id="par0205" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Unit 4.</span> Shear wave velocity is more widely scattered in this unit, varying from 218 to 312 m/ s at depths that go from 26 m down to the maximum depth monitored with our dispersion curves, 30 m.</p><p id="par0210" class="elsevierStylePara elsevierViewall">The shallowest strata cannot be identified from MAM/MASW measurements, as the dispersion curve cannot be reliably estimated for frequencies above 1.9<span class="elsevierStyleHsp" style=""></span>Hz due to the spatial aliasing limit. As seen in <a class="elsevierStyleCrossRef" href="#fig0050">figure 10</a>, the upper most strata are clayey soils reaching depths of as much as 2 m. These clays are not liquefiable; their presence hinders the dissipation of pore pressures and enhances the formation of sand boils when the underlying sandy soils liquefy. Water table was located about 10 m below the surface at sounding SPT1 but is much shallower at the other sites, 3 to 5 m.</p><elsevierMultimedia ident="fig0050"></elsevierMultimedia><p id="par0215" class="elsevierStylePara elsevierViewall">Penetration resistance of these sandy soils is seldom larger than 20 blows and applying the simplified method (equations 1 to 3) from the blow counts obtained from soundings SPT 1, SPT 2, SPT 3 and SPT 5, their high potential for liquefying was ratified. In applying equation 1, the value of a<span class="elsevierStyleInf">max</span> = 0.23<span class="elsevierStyleHsp" style=""></span>g was taken from the maximum ground acceleration recorded at the Tamaulipas station during the El Mayor-Cucapah event. The epicentral distance between our study site and the Taumalipas station is approximately the same for the El Mayor-Cucapah earthquake. The clean sand CRR curve in <a class="elsevierStyleCrossRef" href="#fig0010">figure 2</a> [CRR-(N1)60] applies only for earthquakes with a magnitude equal to 7.5. We used the I.M Idriss (1997) correction factors to scale down the CRR curve to magnitude 7.2 as in the April 4, 2010 earthquake, following the recommendations of the NCEER workshop (Youd, et al., 2001). We also performed analyses assigning a larger amax value (=0.45 g), as recommended in the Civil Engineering Design Manual from the Mexican electricity board (CFE, 2008) and also included a complementary analysis with amax= 0.35<span class="elsevierStyleHsp" style=""></span>g. <a class="elsevierStyleCrossRef" href="#fig0055">Figure 11</a>, show that the ground below the water level is potentially liquefiable for the three maximum accelerations used in the al analyses to the maximum depth explored with the SPT soundings.</p><elsevierMultimedia ident="fig0055"></elsevierMultimedia><p id="par0220" class="elsevierStylePara elsevierViewall">Liquefaction potential was also assessed from the shear wave velocity profiles shown in <a class="elsevierStyleCrossRef" href="#fig0060">Figure 12</a> and obtained from the MAM and MASW surveys. Maximum ground acceleration values and correction factors to scale down the CRR curve of <a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a> to a 7.2 magnitude were the same as those used in the SPT analyses.</p><elsevierMultimedia ident="fig0060"></elsevierMultimedia><p id="par0225" class="elsevierStylePara elsevierViewall">The stratigraphical interpretation of the seismic profiles can only be done down to the maximum explored depth in the SPT soundings, 11 m, as shown in <a class="elsevierStyleCrossRef" href="#fig0050">Figure 10</a>. It is to be expected that deeper strata are also sands or sandy non plastic soils, as can be inferred from the shear wave velocity values obtained form MAM and MASW surveys and from the geological and physiographical conditions at the Solidaridad township (<a class="elsevierStyleCrossRef" href="#bib0040">Jaime A., 1980</a>). These sandy soils having shear wave velocities of less than about 200 m/s are also liquefiable, according to our analyses. However, a vast number of past experiences have shown that liquefaction seldom occurs at depths larger than about 20 m (<a class="elsevierStyleCrossRefs" href="#bib0085">Seed and Idriss, 1971; Ovando and Segovia, 1996</a>; YU S., Tamura M. and Kouichi H., 2008).</p><p id="par0230" class="elsevierStylePara elsevierViewall">Shear velocity profiles obtained from all the MAM and MASW measurements were plotted in a single graph, <a class="elsevierStyleCrossRef" href="#fig0065">Figure 13</a> (see also <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). Results show that the lowest shear wave velocities in sandy soils were obtained in lines L3T4 and L5T1, which have the highest risk of liquefaction. Overall, sand strata between depths 5 and 17m are highly prone to liquefy again for earthquakes inducing peak ground accelerations of at least 0.23<span class="elsevierStyleHsp" style=""></span>g and M<span class="elsevierStyleInf">w</span> magnitudes of 7.2. Strata between 17 and 25 m may also liquefy but are not as susceptible. Liquefaction potential analyses using SPT blow counts and Vs are equivalent in that both yielded the same results.</p><elsevierMultimedia ident="fig0065"></elsevierMultimedia><p id="par0235" class="elsevierStylePara elsevierViewall">Having established CRR, a factor of safety against liquefaction can be determined for each CRR value at any depth, as a function of V<span class="elsevierStyleInf">s1</span>.</p><p id="par0240" class="elsevierStylePara elsevierViewall">According to this, liquefaction will occur whenever that factor is less than unity. Making it equal to 1 and substituting values in equations 1 to 6, we estimated the minimum values of shear wave velocity (critical shear wave velocity, V<span class="elsevierStyleInf">sc</span>) required to bring about liquefaction, for different peak ground accelerations, amax, assuming the same earthquake magnitude, M<span class="elsevierStyleInf">w</span> = 7.2.</p><p id="par0245" class="elsevierStylePara elsevierViewall">The plots of <a class="elsevierStyleCrossRef" href="#fig0070">Figure 14</a>, a<span class="elsevierStyleInf">max</span>, against V<span class="elsevierStyleInf">sc</span>, define two trend lines that characterize two zones in the Solidaridad Social Township. The first one represents data obtained from seismic profiles L9T2, L3T7 and L5T3, that are all clustered around the geotechnical sounding SPT 1 in a zone where the water table is rather low (9.6 m). The second trend line includes the rest of the seismic profiles at locations near the standard penetration tests SPT 2, SPT 3 and SPT 5. Water table in these sites is higher, between 3.4 to 4.8 m, since they are closer to the riverbank. Data in the figure demonstrate that, given a value of V sites near the riverbank will liquefy with lower a, values than the sites clustered around SPT-1. This illustrates the manner in which groundwater influences liquefaction susceptibility, it decreases with increasing water table depth, that means under these conditions no liquefaction will take place in the superficial layers as they dry out or become partially saturated. Groundwater level is not stationary; so seasonal variations can alter the vulnerability of sand strata to liquefaction, especially in the uppermost soil layers.</p><elsevierMultimedia ident="fig0070"></elsevierMultimedia></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Conclusions</span><p id="par0250" class="elsevierStylePara elsevierViewall">Results presented in this paper showed that the combination of active and passive methods (MAM and MASW) is a viable and low cost procedure to obtain reliable shear wave velocity profiles in urban environments. Our shear wave velocity profiles were derived from 30 m deep seismic lines that were utilized to obtain shear wave velocity profiles form MAM and MASW records and then to evaluate the liquefaction potential of the sandy soils at a site in the Solidaridad Social Township, 5<span class="elsevierStyleHsp" style=""></span>km south of the city of Mexicali.</p><p id="par0255" class="elsevierStylePara elsevierViewall">Liquefaction potential was estimated for the April 4, 2010 earthquake using a well known simplified empirical procedure adapted to be used in terms of shear wave velocity values. In our simplified liquefaction analyses we used an a<span class="elsevierStyleInf">max</span>, value recorded at a nearby station and the actual Mw magnitude of the 2010 event. We also performed complementary analyses with two other a<span class="elsevierStyleInf">max</span> values.</p><p id="par0260" class="elsevierStylePara elsevierViewall">Geotechnical soundings were also performed after the El Mayor-Cucapah event and we also used the results of SPT sounding to assess liquefaction potential; we compared these results with those obtained applying the simplified empirical procedure from the seismic profiles we obtained with the MAM/MASW shear wave velocity profiles. Our results showed that both analyses are equivalent.</p><p id="par0265" class="elsevierStylePara elsevierViewall">The procedure we presented and discussed has evident advantages over traditional methods for assessing the potential for sand liquefaction as it does not require geotechnical boreholes (SPT or CPT soundings) nor does it need drilling of boreholes to carry out field tests to obtain shear wave velocity profiles from conventional geophysical profiling methods (up-hole, down-hole or cross-hole tests). The instruments for measuring vibrations in MAM or MASW surveys are standard geophones and analysis of vibration records is relatively simple.</p><p id="par0270" class="elsevierStylePara elsevierViewall">The liquefaction potential analyses presented here pointed out that the soils will liquefy again, should another large earthquake hit the region. Successive liquefaction events in the same site have been known to occur in the past and are not uncommon.</p><p id="par0275" class="elsevierStylePara elsevierViewall">Finally, it must be emphasized that effective characterization of soil deposits may require the use of several seismic profiling methods in order to obtain suitable information to suffi understand relevant subsurface conditions for a particular project or situation.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:13 [ 0 => array:3 [ "identificador" => "xres502927" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec524097" "titulo" => "Palabras clave" ] 2 => array:3 [ "identificador" => "xres502926" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec524096" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Study area" "secciones" => array:1 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Location" ] ] ] 6 => array:2 [ "identificador" => "sec0020" "titulo" => "Liquefaction potential: simplified empirical analysis" ] 7 => array:2 [ "identificador" => "sec0040" "titulo" => "Field Tests" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Processing and partial results" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Results" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Conclusions" ] 11 => array:1 [ "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0070">Further reading</span>" ] 12 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2014-03-31" "fechaAceptado" => "2014-05-21" "PalabrasClave" => array:2 [ "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec524097" "palabras" => array:2 [ 0 => "Método pasivo de análisis de microtremores (MAM)" 1 => "Método de Análisis Multicanal de Ondas Superficiales." ] ] ] "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec524096" "palabras" => array:4 [ 0 => "Microtremor Analysis Method (MAM)" 1 => "active Multichannel Analysis of Surface Waves (MASW)" 2 => "sand liquefaction" 3 => "liquefaction potential" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">En este artículo describimos cómo estimar el potencial licuable de arenas con algunas técnicas para estimar perfiles de velocidad de onda de corte obtenidos midiendo vibraciones ambientales y a partir de ondas generadas artificialmente. Las mediciones se realizan con facilidad, consumen poco tiempo y además resultan más baratas que otras técnicas. El método pasivo de Análisis de Microtremores (MAM) y el activo de Análisis Multicanal de Ondas Superficiales (MASW) se comenzaron a usar recientemente en estudios de licuación de arenas. En el trabajo se describe un método que se empleó en el Valle de Mexicali para caracterizar el suelo en términos de su velocidad de onda de corte con el fin de evaluar el potencial de licuación. Nuestros resultados demuestran las ventajas del método propuesto.</p></span>" ] "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">In this paper we describe how some techniques for estimating shallow shear wave velocity profilesobtainedfrommeasurementsofambient vibrations and from artificially generated waves can be used to assess sand liquefaction potential. The measurements are easy, quick and more economical than most other methods. The passive Microtremor Analysis Method (MAM) and the active Multichannel Analysis of Surface Waves (MASW) have only recently been adopted for liquefaction studies. We propose a method that was applied in the valley of Mexicali to characterize soil in terms of shear wave velocity to assess liquefaction potential; our results display its advantages.</p></span>" ] ] "multimedia" => array:22 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1668 "Ancho" => 2226 "Tamanyo" => 710783 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Solidaridad Social township location.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1611 "Ancho" => 2454 "Tamanyo" => 983533 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Superficial cracks and fractures.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2319 "Ancho" => 1935 "Tamanyo" => 321031 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">SPT Clean Sand base curve for magnitude 7.5 earthquakes with data from liquefaction case histories (<a class="elsevierStyleCrossRef" href="#bib0080">Seed <span class="elsevierStyleItalic">et al.</span>, 1985</a>).</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2124 "Ancho" => 1911 "Tamanyo" => 304054 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Liquefaction resistance curves by <a class="elsevierStyleCrossRef" href="#bib0025">Andrus and Stokoe (2000)</a> for magnitude 7.5 earthquakes and uncemented soils of Holocene age with case history data.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1560 "Ancho" => 2494 "Tamanyo" => 979491 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Location of seismic profiles and standards penetration tests (SPT) at the Solidaridad Social Township.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2710 "Ancho" => 1859 "Tamanyo" => 534070 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">SPAC functions calculated for different separation distances between possible pairs of geophones. Dots represent the frequencies at the first zero crossing of each SPAC function.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 4472 "Ancho" => 2303 "Tamanyo" => 606834 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">(a) The phase velocity-frequency image of MAM records. (b) The phase velocity-frequency image of MASW records and (c) Dispersion curves for active MASW and for passive MAM corresponds to the line L5T1.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Figure 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 1641 "Ancho" => 2248 "Tamanyo" => 239478 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Dispersion curves combining MASW and MAM techniques.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Figure 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 1569 "Ancho" => 2102 "Tamanyo" => 204038 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Shear Wave Velocity Profiles.</p>" ] ] 9 => array:7 [ "identificador" => "fig0050" "etiqueta" => "Figure 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 2759 "Ancho" => 2215 "Tamanyo" => 1240962 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Stratigraphy of the Solidaridad Social Township.</p>" ] ] 10 => array:7 [ "identificador" => "fig0055" "etiqueta" => "Figure 11" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr11.jpeg" "Alto" => 1663 "Ancho" => 2046 "Tamanyo" => 207229 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Curve for calculation of CRR versus (N<span class="elsevierStyleInf">1</span>)<span class="elsevierStyleInf">60</span>.</p>" ] ] 11 => array:7 [ "identificador" => "fig0060" "etiqueta" => "Figure 12" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr12.jpeg" "Alto" => 1672 "Ancho" => 2100 "Tamanyo" => 219055 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Curve for calculation CRR versus V<span class="elsevierStyleInf">s1</span>.</p>" ] ] 12 => array:7 [ "identificador" => "fig0065" "etiqueta" => "Figure 13" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr13.jpeg" "Alto" => 1762 "Ancho" => 2349 "Tamanyo" => 224777 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Geotechnical characterization of the subsoil at Solidaridad Social Township.</p>" ] ] 13 => array:7 [ "identificador" => "fig0070" "etiqueta" => "Figure 14" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr14.jpeg" "Alto" => 1643 "Ancho" => 2380 "Tamanyo" => 201927 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Trend lines of the Solidaridad Social Township.</p>" ] ] 14 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col">Seismic Units \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col">Seismic Profiles (m/s) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L9T2 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L3T7 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L5T3 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L2T1 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L3T4 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L5T1 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">L6T1 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">1(3.5 -10 m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">174 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">170 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">165 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">125 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">135 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">162 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">2 (10- 17 m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">164 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">164 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">189 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">188 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">196 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">157 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">161 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">3 (17- 26 m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">212 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">212 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">229 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">198 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">189 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">208 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">241 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">4 (26- 30 m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">268 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">312 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">312 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">278 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">226 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">241 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">218 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab802343.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">Seismic Units.</p>" ] ] 15 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx1.jpeg" "Tamanyo" => 29012 "Alto" => 181 "Ancho" => 701 ] ] ] ] 16 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx2.jpeg" "Tamanyo" => 28633 "Alto" => 86 "Ancho" => 1120 ] ] ] ] 17 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx3.jpeg" "Tamanyo" => 88285 "Alto" => 86 "Ancho" => 1426 ] ] ] ] 18 => array:6 [ "identificador" => "eq0020" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx4.jpeg" "Tamanyo" => 46642 "Alto" => 212 "Ancho" => 1373 ] ] ] ] 19 => array:6 [ "identificador" => "eq0025" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx5.jpeg" "Tamanyo" => 26182 "Alto" => 248 "Ancho" => 596 ] ] ] ] 20 => array:6 [ "identificador" => "eq0035" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx6.jpeg" "Tamanyo" => 83543 "Alto" => 220 "Ancho" => 634 ] ] ] ] 21 => array:6 [ "identificador" => "eq0030" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx7.jpeg" "Tamanyo" => 84977 "Alto" => 200 "Ancho" => 737 ] ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:19 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "Acosta Chang et al., 2010" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Acosta Chang J.G., Vásquez S., Mendoza L.H., Hernández F., Salas J., Ruiz e., Arellano g., R. Reyes R., Granados O., 2010, Estudio geofísico y geológico en la colonia Solidaridad Social, Mexicali Baja California. Informe técnico para el Ayuntamiento de Mexicali. pp. 107 (Registro CICESE PA: 101086)." ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "Aki, 1957" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Space and time spectra of stationary stochastic waves, with special reference to microtremors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Aki" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bulletin of the Earthquake Research Institute" "fecha" => "1957" "volumen" => "35" "paginaInicial" => "415" "paginaFinal" => "456" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "Aki, 1965" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A note on the use of microseisms in determining the shallow structures of the earth's crust" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Aki" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1965" "volumen" => "30" "paginaInicial" => "665" "paginaFinal" => "666" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "Andrus and Stokoe, 1997" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Andrus R.D., Stokoe K.H., 1997, Liquefaction resistance based on shear wave velocity”, NCEER Workshop on evaluation of liquefaction resistance of soils. Technical Report NCEER-97-0022, T.L. Youd and I. M. Idriss, Eds., held 4-5 January 1996, Salt Lake City, UT, National Center for Earthquake Engineering Research, Buffalo, NY, 89-128." ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "Andrus and Stokoe, 2000" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Liquefaction resistance of soils from shear-wave velocity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.D. Andrus" 1 => "K.H. Stokoe" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Geotechnical and Geoenvironmental Engineering ASCE" "fecha" => "2000" "volumen" => "126" "numero" => "11" "paginaInicial" => "1015" "paginaFinal" => "1025" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "Chavez et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Subsoil Structure Using SPAC Measurements along a Line" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F.J. Chavez-Garcia" 1 => "M. Rodriguez" 2 => "W.R. Stephenson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bulletin of the Seismological Society of America" "fecha" => "2006" "volumen" => "96" "numero" => "2" "paginaInicial" => "729" "paginaFinal" => "736" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "Ishihara, 1993" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Liquefaction and flow failure during earthquakes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Ishihara" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Geotechnique" "fecha" => "1993" "volumen" => "43" "numero" => "3" "paginaInicial" => "351" "paginaFinal" => "415" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "Jaime, 1980" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Jaime A., 1980, Comportamiento dinámico de suelos, X Reunión Nacional de Mecánica de Suelos, 92-94, Morelia, Michoacán." ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "Liao et al., 1988" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regression models for evaluating liquefaction probability" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Liao" 1 => "D. Veneziano" 2 => "R. Whitman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Geotechnical Engineering ASCE" "fecha" => "1988" "volumen" => "114" "numero" => "4" "paginaInicial" => "389" "paginaFinal" => "409" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "Marcuson, 1978" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Definition of Terms Related to Liquefaction, Journal of Geotech- nical Engineering Division" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "W.F. Marcuson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "ASCE" "fecha" => "1978" "volumen" => "104" "numero" => "9" "paginaInicial" => "1197" "paginaFinal" => "1200" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "Ovando and Segovia, 1996" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Ovando E. y Segovia P., 1996. Licuación de arenas. TGC Geotécnia S.A. de C.V." ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "Park et al., 1999" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multichannel analysis of surface waves" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C. Park" 1 => "R. Miller" 2 => "J. Xia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1999" "volumen" => "64" "paginaInicial" => "800" "paginaFinal" => "808" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "Park et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multichannel analysis of surface waves (MASW)-active and passive methods" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C.B. Park" 1 => "R.D. Miller" 2 => "J. Xia" 3 => "J. Ivanov" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "The Leading Edge (TLE)" "fecha" => "2007" "volumen" => "26" "numero" => "1" "paginaInicial" => "60" "paginaFinal" => "64" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "Poulos et al., 1985" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Liquefaction evaluation procedure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.J. Poulos" 1 => "G. Castro" 2 => "W. France" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Geotechnical Engineering Division ASCE" "fecha" => "1985" "volumen" => "1" "numero" => "6" "paginaInicial" => "772" "paginaFinal" => "792" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "Robertson and Wride, 1998" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluating cyclic liquefaction potential using the Cone Penetration Test" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.K. Robertson" 1 => "C.E. Wride" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Canadian Geotechnical Journal" "fecha" => "1998" "volumen" => "35" "numero" => "3" "paginaInicial" => "442" "paginaFinal" => "459" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "Seed et al., 1985" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of SPT procedures in soil liquefaction resistance evaluations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.B. Seed" 1 => "K. Tokimatsu" 2 => "L.F. Harder" 3 => "R.M. Chung" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Geotechnical Engineering ASCE" "fecha" => "1985" "volumen" => "111" "numero" => "12" "paginaInicial" => "1425" "paginaFinal" => "1445" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "Seed and Idriss, 1971" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Simplified procedure for evaluating soil liquefaction potential" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H.B. Seed" 1 => "I.M. Idriss" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of the Soil Mechanics and Foundation Division ASCE" "fecha" => "1971" "volumen" => "97" "numero" => "9" "paginaInicial" => "1249" "paginaFinal" => "1273" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "Stokoe and Narzian, 1985" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Stokoe K.H, Narzian S., 1985, Use of Rayleigh waves in liquefaction studies, Measurements and use of shear wave velocity for evaluating dynamic soil properties. Geotechnical Engineering Division, ASCE, 1-17." ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "Yu Shizhou et al., 2008" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "YU S., Tamura M., Kouichi H., 2008, Evaluation of liquefaction potencial in terms of surface wave method, The 14 <span class="elsevierStyleSup">th</span> Worl Conference on Earthquake Engineering, Beijing, China." ] ] ] ] ] ] ] "lecturaRecomendada" => array:1 [ 0 => array:3 [ "vista" => "all" "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0070">Further reading</span>" "seccion" => array:1 [ 0 => array:2 [ "vista" => "all" "bibliografiaReferencia" => array:11 [ 0 => array:3 [ "identificador" => "bib0100" "etiqueta" => "Centro, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Centro de Investigación Científica y de Educación Superior de Ensenada B.C, http://ranm.cicese.mx/, consulta noviembre 2013." ] ] ] 1 => array:3 [ "identificador" => "bib0105" "etiqueta" => "Kayen et al., 1992" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Kayen R., Mitchel J., Seed R., Lodge A., Nishio S., Coutinho R., 1992, Evaluation of SPT- CPT and shear wave-based methods for liquefaction potential assessment using Loma Prieta data, Proceeding 4th Japan- US workshop on Earthquake, 177-204, Honolulu, HI, May 27-29." ] ] ] 2 => array:3 [ "identificador" => "bib0110" "etiqueta" => "Ludwig et al., 1970" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Ludwig W.J., Nafe J.E., Drake, C.L., 1970, Seismic refraction, in The Sea. Wiley- Interscience, New York, 53-84 pp." ] ] ] 3 => array:3 [ "identificador" => "bib0115" "etiqueta" => "Manual design of civil works, 2008" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Manual design of civil works, 2008, Design by earthquake. Recommendations and Comments, Federal Electricity Commission (CFE), Distrito Federal, Mexico." ] ] ] 4 => array:3 [ "identificador" => "bib0120" "etiqueta" => "Marchetti et al., 2001" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Marchetti S., Monaco P., Totani G., Calbrese M., 2001, The flat dilatometer test (DMT) in soil investigations”, A report by the ISSMGE committee TC16, Proceedings IN SITU 2001, International Conference on in situ measurement of soil properties, 44, Bali, Indonesia." ] ] ] 5 => array:3 [ "identificador" => "bib0125" "etiqueta" => "Seed, 1979" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "H.B. Seed" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Journal Geotechnical Engineering Division, ASCE" "fecha" => "1979" "volumen" => "105" "paginaInicial" => "210" "paginaFinal" => "255" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0130" "etiqueta" => "Seed and Idriss, 1982" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Seed H.B., Idriss I.M., 1982, Ground motions and soils liquefaction during Earthquakes. Earthquake Engineering Research Institute Monograph, Oakland, California." ] ] ] 7 => array:3 [ "identificador" => "bib0135" "etiqueta" => "Seed et al., 1983" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of liquefaction potential using field performance data" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H.B. Seed" 1 => "I.M. Idriss" 2 => "I. Arango" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Geotechnical Engineering ASCE" "fecha" => "1983" "volumen" => "109" "numero" => "3" "paginaInicial" => "458" "paginaFinal" => "482" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0140" "etiqueta" => "Tokimatsu and Uchida, 1990" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correlation between liquefaction resistance and shear wave velocity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. Tokimatsu" 1 => "A. Uchida" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Soils and foundations, Japanese Society of Soil Mechanics and Foundation Engineering" "fecha" => "1990" "volumen" => "30" "numero" => "2" "paginaInicial" => "33" "paginaFinal" => "42" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0145" "etiqueta" => "Xia et al., 1999b" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Xia" 1 => "R.D. Miller" 2 => "C.B. Park" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1999" "volumen" => "64" "paginaInicial" => "691" "paginaFinal" => "700" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0150" "etiqueta" => "Youd and Idriss, 2001" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Youd T.L., Idriss I.M., 2001, Liquefaction resistance of soils: Summary Report from the 1996 and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127, N(AISSN 1090-0241." ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/00167169/0000005400000001/v1_201505130244/S0016716915000069/v1_201505130244/en/main.assets" "Apartado" => array:4 [ "identificador" => "40021" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/00167169/0000005400000001/v1_201505130244/S0016716915000069/v1_201505130244/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000069?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 25 | 1 | 26 |
2024 October | 111 | 22 | 133 |
2024 September | 155 | 21 | 176 |
2024 August | 128 | 26 | 154 |
2024 July | 147 | 13 | 160 |
2024 June | 127 | 18 | 145 |
2024 May | 123 | 22 | 145 |
2024 April | 204 | 38 | 242 |
2024 March | 192 | 25 | 217 |
2024 February | 191 | 19 | 210 |
2024 January | 225 | 50 | 275 |
2023 December | 206 | 36 | 242 |
2023 November | 232 | 66 | 298 |
2023 October | 275 | 66 | 341 |
2023 September | 218 | 24 | 242 |
2023 August | 157 | 31 | 188 |
2023 July | 187 | 20 | 207 |
2023 June | 151 | 43 | 194 |
2023 May | 200 | 37 | 237 |
2023 April | 159 | 20 | 179 |
2023 March | 182 | 34 | 216 |
2023 February | 121 | 22 | 143 |
2023 January | 99 | 22 | 121 |
2022 December | 113 | 27 | 140 |
2022 November | 132 | 20 | 152 |
2022 October | 121 | 26 | 147 |
2022 September | 161 | 28 | 189 |
2022 August | 104 | 19 | 123 |
2022 July | 132 | 15 | 147 |
2022 June | 77 | 21 | 98 |
2022 May | 181 | 7 | 188 |
2022 April | 114 | 33 | 147 |
2022 March | 102 | 27 | 129 |
2022 February | 98 | 20 | 118 |
2022 January | 134 | 18 | 152 |
2021 December | 114 | 25 | 139 |
2021 November | 156 | 23 | 179 |
2021 October | 181 | 23 | 204 |
2021 September | 126 | 37 | 163 |
2021 August | 115 | 35 | 150 |
2021 July | 68 | 20 | 88 |
2021 June | 69 | 29 | 98 |
2021 May | 102 | 31 | 133 |
2021 April | 232 | 36 | 268 |
2021 March | 140 | 18 | 158 |
2021 February | 104 | 27 | 131 |
2021 January | 98 | 23 | 121 |
2020 December | 103 | 35 | 138 |
2020 November | 105 | 23 | 128 |
2020 October | 71 | 21 | 92 |
2020 September | 60 | 11 | 71 |
2020 August | 76 | 19 | 95 |
2020 July | 59 | 8 | 67 |
2020 June | 51 | 15 | 66 |
2020 May | 52 | 23 | 75 |
2020 April | 58 | 12 | 70 |
2020 March | 60 | 12 | 72 |
2020 February | 79 | 19 | 98 |
2020 January | 66 | 25 | 91 |
2019 December | 76 | 12 | 88 |
2019 November | 63 | 14 | 77 |
2019 October | 61 | 13 | 74 |
2019 September | 63 | 5 | 68 |
2019 August | 60 | 16 | 76 |
2019 July | 52 | 14 | 66 |
2019 June | 140 | 44 | 184 |
2019 May | 212 | 88 | 300 |
2019 April | 124 | 34 | 158 |
2019 March | 51 | 15 | 66 |
2019 February | 45 | 9 | 54 |
2019 January | 37 | 5 | 42 |
2018 December | 40 | 3 | 43 |
2018 November | 50 | 11 | 61 |
2018 October | 117 | 5 | 122 |
2018 September | 92 | 10 | 102 |
2018 August | 49 | 0 | 49 |
2018 July | 37 | 11 | 48 |
2018 June | 35 | 3 | 38 |
2018 May | 58 | 12 | 70 |
2018 April | 39 | 1 | 40 |
2018 March | 33 | 2 | 35 |
2018 February | 26 | 4 | 30 |
2018 January | 48 | 1 | 49 |
2017 December | 42 | 1 | 43 |
2017 November | 48 | 7 | 55 |
2017 October | 38 | 10 | 48 |
2017 September | 30 | 20 | 50 |
2017 August | 39 | 3 | 42 |
2017 July | 63 | 7 | 70 |
2017 June | 53 | 19 | 72 |
2017 May | 50 | 14 | 64 |
2017 April | 41 | 24 | 65 |
2017 March | 38 | 40 | 78 |
2017 February | 80 | 7 | 87 |
2017 January | 37 | 2 | 39 |
2016 December | 42 | 9 | 51 |
2016 November | 55 | 9 | 64 |
2016 October | 63 | 8 | 71 |
2016 September | 183 | 5 | 188 |
2016 August | 57 | 4 | 61 |
2016 July | 35 | 1 | 36 |
2016 June | 54 | 10 | 64 |
2016 May | 30 | 13 | 43 |
2016 April | 42 | 16 | 58 |
2016 March | 32 | 14 | 46 |
2016 February | 36 | 21 | 57 |
2016 January | 38 | 29 | 67 |
2015 December | 33 | 18 | 51 |
2015 November | 44 | 16 | 60 |
2015 October | 40 | 17 | 57 |
2015 September | 28 | 7 | 35 |
2015 August | 43 | 8 | 51 |
2015 July | 60 | 6 | 66 |
2015 June | 10 | 5 | 15 |
2015 May | 8 | 5 | 13 |