was read the article
array:21 [ "pii" => "S0016716915000070" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.006" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "aid" => "6" "copyrightAnyo" => "2015" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:7-20" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1371 "formatos" => array:3 [ "EPUB" => 40 "HTML" => 893 "PDF" => 438 ] ] "itemSiguiente" => array:17 [ "pii" => "S0016716915000021" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.001" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "aid" => "1" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:21-30" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1407 "formatos" => array:3 [ "EPUB" => 35 "HTML" => 943 "PDF" => 429 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Dynamics of internal waves generated by mountain breeze in Alchichica Crater Lake, Mexico" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "21" "paginaFinal" => "30" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1715 "Ancho" => 1966 "Tamanyo" => 324564 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Horizontal wind speed components and vertical deviations of water layers at mooring 1 (horizon 8 m) and mooring 2 (horizon 12.5 m). The numbers of the curves correspond to the buoys 1 and 2. Daily average wind velocity from January to May 2002 in Lake Alchichica is presented in the rectangle in the superior right corner.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Anatoliy Filonov, Iryna Tereshchenko, Javier Alcocer, Cesar Monzón" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Anatoliy" "apellidos" => "Filonov" ] 1 => array:2 [ "nombre" => "Iryna" "apellidos" => "Tereshchenko" ] 2 => array:2 [ "nombre" => "Javier" "apellidos" => "Alcocer" ] 3 => array:2 [ "nombre" => "Cesar" "apellidos" => "Monzón" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000021?idApp=UINPBA00004N" "url" => "/00167169/0000005400000001/v1_201505130244/S0016716915000021/v1_201505130244/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "titulo" => "Two algorithms to compute the electric resistivity response using Green's functions for 3D structures" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "7" "paginaFinal" => "20" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "E. Leticia Flores-Márquez, Andrés Tejero-Andrade, Adrián León-Sánchez, Claudia Arango-Galván, René Chávez-Segura" "autores" => array:5 [ 0 => array:4 [ "nombre" => "E. Leticia" "apellidos" => "Flores-Márquez" "email" => array:1 [ 0 => "leticia@geofisica.unam.mx" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Andrés" "apellidos" => "Tejero-Andrade" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Adrián" "apellidos" => "León-Sánchez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "Claudia" "apellidos" => "Arango-Galván" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "René" "apellidos" => "Chávez-Segura" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Instituto de Geofísica, Universidad Nacional Autónoma de México Circuito Exterior, Cd. Universitaria, 04510 México D.F., México" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "División de Ciencias de la Tierra Facultad de Ingeniería, Universidad Nacional Autónoma de México Circuito Interior, Cd. Universitaria, 04510 México D.F., México" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 4230 "Ancho" => 2714 "Tamanyo" => 1305903 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Third synthetic example constituted by (a) 4 immersed 3D bodies <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span> = 20 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span> in a homogeneous half space, b) The results of the <span class="elsevierStyleItalic">SIM</span> model, c) the results published by <a class="elsevierStyleCrossRef" href="#bib0165">Flores <span class="elsevierStyleItalic">et al.</span> (2001)</a>.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The last three decades have been characterized by an increased use of computerized methods in the interpretation of geoelectrical data, due to the evolution of the computer systems. Most reconstructive algorithms are iterative and need a forward solution, i.e., to compute the electrical response for a given resistivity distribution and a given set array of current injection electrodes. Thus, the electrical potential needs to be calculated at a set of measured points. This forward problem consists on solving an elliptic partial differential equation (PDE): the Poisson equation, with boundary conditions. The formulation leads to solve a system with two kinds of unknown quantities: the electrical potential and a current-related quantity.</p><p id="par0010" class="elsevierStylePara elsevierViewall">The PDE problem is usually solved with finite-difference schemes that specially has been helpful to compute the apparent electrical resistivity in a two-dimensional medium (e.g. <a class="elsevierStyleCrossRefs" href="#bib0270">Forsythe and Wasow, 1960; Mufti, 1976; Dey and Morrison, 1979; Marchuk, 1989; Thomée, 1989; Spitzer, 1995; Zhang <span class="elsevierStyleItalic">et al.</span>, 1995; Loke and Barker, 1996</a>). Another scheme extensively used in solving this PDE problem has been finite-element scheme (e.g. <a class="elsevierStyleCrossRefs" href="#bib0035">Coggon, 1971; Strang and Fix, 1973; Wait, 1977; Fox <span class="elsevierStyleItalic">et al.</span>, 1980; Pridmore <span class="elsevierStyleItalic">et al.</span>, 1980; Johnson, 1987; Ciarlet, 1991; Sasaki, 1994</a>; Tsourlous and Ogilvy; 1999; <a class="elsevierStyleCrossRefs" href="#bib0110">Li and Spitzer, 2002, 2005; Marescot et al., 2008; Ren and Tang, 2010</a>). Finite volume schemes have also produced excellent results in computing electrical resistivity (e.g. <a class="elsevierStyleCrossRefs" href="#bib0220">Snyder, 1976; Baliga and Patankar, 1980; Cai <span class="elsevierStyleItalic">et al.</span>, 1991; Eskola, 1992; Perez-Flores, 1995; Perez-Flores <span class="elsevierStyleItalic">et al.</span>, 2001; León-Sánchez, 2004; Pidlisecky <span class="elsevierStyleItalic">et al.</span>, 2007</a>). The methods based on a finite-element scheme have been widely studied in the past 40 years and give rise to very high-performing techniques as mixed methods (<a class="elsevierStyleCrossRef" href="#bib0105">Lesur <span class="elsevierStyleItalic">et al.</span>, 1999</a>), or h-p methods (<a class="elsevierStyleCrossRef" href="#bib0015">Babuska and Suri, 1994</a>). Nevertheless, the already mentioned methods lead to very large systems of linear equations, which are very demanding even for the supercomputers.</p><p id="par0015" class="elsevierStylePara elsevierViewall">One limitation in integral methods is the heterogeneity of the medium and the geometrical complexity of the bodies immersed in the modeled medium. An alternative to reduce this limitation is to propose a linearization procedure or some hypothesis about the interaction between bodies, as the weak scattering problem (<a class="elsevierStyleCrossRefs" href="#bib0045">Eskola, 1992; Hvozdara and Kaikkonen, 1998</a>). Such alternatives make integral equation method a good option to solve PDE, since this method does not need linearization, even in the case of bodies with complex geometry.</p><p id="par0020" class="elsevierStylePara elsevierViewall">The boundary-element methods (BEM) (<a class="elsevierStyleCrossRefs" href="#bib0155">Okabe, 1981; Nedelec, 1985, 1994; Wendland, 1987</a>) can be thought as a particular version among the finite-element methods. An example of the application of this method to 3-D electrical modeling can be found in <a class="elsevierStyleCrossRef" href="#bib0185">Poirmeur and Vasseur (1988)</a>. In this methodology, only the boundaries between media, of constant resistivity, need to be discretized and integrated. Therefore, unbounded homogeneous media are easily treated, and 3-D problems are solved using only 2-D integrals. Moreover, the boundary- element method can be coupled with standard finite element methods. The modification of the integral equations method with BEM, introduced by <a class="elsevierStyleCrossRef" href="#bib0085">Hvozdara and Kaikkonen (1998)</a>, is physically more meaningful and not so much demanding on computer resources, which made the method more accessible for routine prospecting work.</p><p id="par0025" class="elsevierStylePara elsevierViewall">This work follows the integral solution of the forward DC geoelectrical problem introduced by Hvozdara and Kaikkonen (1998; <a class="elsevierStyleCrossRef" href="#bib0080">Hvozdara, 1982</a>), which consists of interpreting the electric response of three-dimensional disturbing body of non-uniform conductivity, immersed in a planar homogeneous half-space, under the assumption of weak scattering (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>). In this research two algorithms are proposed to solve this forward problem, by introducing the resistivity contrast between bodies and the homogeneous half-space and the concepts of:additive potential sources for immersed bodies and density surface charges, which result in two types of solutions: volume (<span class="elsevierStyleItalic">VIM</span>) and surface integral methods (<span class="elsevierStyleItalic">SIM</span>). <span class="elsevierStyleItalic">SIM</span> and BEM use the same theoretical background but the boundary surfaces in <span class="elsevierStyleItalic">SIM</span> are not discretized and therefore no finite element is employed. <span class="elsevierStyleItalic">SIM</span> and <span class="elsevierStyleItalic">VIM</span> are used to solve the geoelectrical problem, with mixed boundary conditions, by considering a dipole-dipole electrode array to reproduce an electric tomography profile. The results of some synthetic examples are compared with those obtained by alternative methods in solving PDE already published by other authors (e.g. <a class="elsevierStyleCrossRefs" href="#bib0240">Tsourlos and Ogilvy, 1999; Pridmore, 1978; Hvozdara and Kaikkonen, 1998; Perez-Flores <span class="elsevierStyleItalic">et al.</span>, 2001</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Theoretical Setting</span><p id="par0030" class="elsevierStylePara elsevierViewall">For a 3D heterogeneous half-space with a resistivity ρ (r¯), the total electric potential for a point source at the surface <span class="elsevierStyleItalic">z</span> = 0, is expressed by:<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0035" class="elsevierStylePara elsevierViewall">This PDE problem with boundary conditions can be rewritten as:<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0040" class="elsevierStylePara elsevierViewall">One solution for this equation can be expressed for the potential U(r) using the Green's theorems and Green's function method:<elsevierMultimedia ident="eq0015"></elsevierMultimedia>where r→ ′=(<span class="elsevierStyleItalic">x</span> ′, <span class="elsevierStyleItalic">y</span> ′, <span class="elsevierStyleItalic">z</span> ′) is related to <span class="elsevierStyleItalic">local coordinates system</span>, r→<span class="elsevierStyleSup"><span class="elsevierStyleItalic">=</span></span>(<span class="elsevierStyleItalic">x</span>, <span class="elsevierStyleItalic">y</span>, <span class="elsevierStyleItalic">z</span>) related to <span class="elsevierStyleItalic">global coordinates system</span>, and ∮s  denotes the integral over the boundaries <span class="elsevierStyleItalic">s</span>. In particular the integral over all boundaries can be written as:<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0045" class="elsevierStylePara elsevierViewall">Where ∮s <span class="elsevierStyleItalic">U</span> (r→)▿′ <span class="elsevierStyleItalic">G</span>(r→,r→) <span class="elsevierStyleItalic">d</span>S→<span class="elsevierStyleGlyphqbnd"></span>0 if, r→→∞ due to the boundary conditions (<a class="elsevierStyleCrossRef" href="#bib0085">Hvozdara and Kaikkonen, 1998</a>), and G is the Green's function. Green's function, G, is is defined for a half-space problem (eq. 3) for Neumann condition, where ∂G∂Z z=0=0.</p><p id="par0050" class="elsevierStylePara elsevierViewall">∇′<span class="elsevierStyleItalic">U</span>(r→ ′) <span class="elsevierStyleGlyphqbnd"></span> −E→(r→ ′) and by using E→(r→′) <span class="elsevierStyleGlyphqbnd"></span><span class="elsevierStyleItalic">ρ</span>(r→′)J→ (r→′), the expression (3) can be rewritten as<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0055" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleItalic">Volume Integral Method <span class="elsevierStyleBold">(VIM</span>)</span> evaluates U(r) from equation (4), so it is necessary to know the current density function J→(r→) in half-space. The computation of J→(r→) is not an easy task, since there are several types of currents involved, particularly those present in the heterogeneous half-space. The “weak scattering problem” assumes that the primary conduction current is more significant that the secondary, that is J→ 2r→<<J→ pr→ (<a class="elsevierStyleCrossRef" href="#bib0045">Eskola, 1992</a>). Due to the interaction between bodies, we can express J→ p(r→) as:<elsevierMultimedia ident="eq0030"></elsevierMultimedia>where sub-index <span class="elsevierStyleItalic">s</span> represents the location of source electrodes.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The Neumann Green function for half space can be defined, as was done by Kaufman (1992) as:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">r</span>rg2= (<span class="elsevierStyleItalic">x</span> − <span class="elsevierStyleItalic">x</span>′)2 + (<span class="elsevierStyleItalic">y</span> − <span class="elsevierStyleItalic">y</span>′)2. Introducing this definition into eq. 4, and evaluating eq. 5 in <span class="elsevierStyleItalic">z</span>= 0, it becomes:<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0070" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#bib0060">Gómez-Treviño (1987)</a>, Pérez-Flores <span class="elsevierStyleItalic">et al.</span> (2001) and <a class="elsevierStyleCrossRef" href="#bib0100">León-Sánchez (2004)</a> used a similar relation to estimate the apparent resistivity ρ(r→) in a heterogeneous half-space.</p><p id="par0075" class="elsevierStylePara elsevierViewall">Also <span class="elsevierStyleItalic">U</span>(r→) can be expressed as a surface integral, leading to the <span class="elsevierStyleItalic">Surface Integral Method <span class="elsevierStyleBold">(SIM)</span></span>.If <span class="elsevierStyleItalic">ρ</span> (r→) J→ (r→) <span class="elsevierStyleGlyphqbnd"></span>E→ p(r→)=E→ p(r→)+E→ 2(r→) then eq. (4) can be rewritten as<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">Here E→<span class="elsevierStyleInf"><span class="elsevierStyleItalic">p</span></span> (r→) is the primary electrical field due to the point source and E→<span class="elsevierStyleInf"><span class="elsevierStyleItalic">2</span></span> (r→) the secondary electric field due to the heterogeneities of the medium.</p><p id="par0085" class="elsevierStylePara elsevierViewall">The first term of the right hand of equation (7) is equal to the primary source's potential <span class="elsevierStyleItalic">U</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">p</span></span> (r→). The second term implies the whole halfspace volume. This integral could be separated in volumes for each heterogeneous body, for instance if we define:<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0090" class="elsevierStylePara elsevierViewall">Using the next vector property for each <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span>,<elsevierMultimedia ident="eq0055"></elsevierMultimedia>and assuming that the resistivity of each body within the half-space (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>), is constant, then ▿′ <span class="elsevierStyleSup">.</span>E→<span class="elsevierStyleInf">2</span> (r→) <span class="elsevierStyleGlyphqbnd"></span> 0. Thus, we can use the divergence theorem for each <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> and eq. 8 becomes:<elsevierMultimedia ident="eq0060"></elsevierMultimedia></p><p id="par0095" class="elsevierStylePara elsevierViewall">This equation should be applied to the whole surface delimitating each immersed body; in our case, we assume the body as a regular prism. Then, the corresponding integral for the case of two contiguous prismatic bodies (b<span class="elsevierStyleInf">1</span>,b<span class="elsevierStyleInf">2</span>) with a common surface, is:<elsevierMultimedia ident="eq0065"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">Where n→12 is the unit normal vector of the surfaces (1, 2) between the two bodies.</p><p id="par0105" class="elsevierStylePara elsevierViewall">The boundary conditions allow to define:<elsevierMultimedia ident="eq0070"></elsevierMultimedia>where σ<span class="elsevierStyleInf">S</span>(r→′) is the density surface charges and ¿<span class="elsevierStyleInf">0</span> is the free-space electrical permittivity.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Taking into account the equations (10 to 13), the electric potential (eq. 7) is rewritten as:<elsevierMultimedia ident="eq0075"></elsevierMultimedia></p><p id="par0115" class="elsevierStylePara elsevierViewall">Where number 6 denotes the total number of surfaces of one prismatic body and M the number of bodies within the half-space, this eq. constitutes the <span class="elsevierStyleItalic"><span class="elsevierStyleBold">SIM</span>.</span></p><p id="par0120" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#bib0045">Eskola (1992)</a> has obtained an expression similar to equation (14) using different analytical approach, under the same type of hypothesis.</p><p id="par0125" class="elsevierStylePara elsevierViewall">However, a problem to solve is to know σ (r→ ′) (the density surface charges) for each surface of the each <span class="elsevierStyleUnderline">p</span>rismatic body. Kaufman (1992) expressed σ (r→ ′) for two contiguous surfaces as:<elsevierMultimedia ident="eq0080"></elsevierMultimedia>where<elsevierMultimedia ident="eq0085"></elsevierMultimedia></p><p id="par0130" class="elsevierStylePara elsevierViewall">If we neglect the normal electrical secondary field ld in expression (16), <span class="elsevierStyleItalic">i.e.</span>E→n→<span class="elsevierStyleInf">2,b1 (</span>r→<span class="elsevierStyleInf">)</span> and, E→n→<span class="elsevierStyleInf">2,b2 (</span>r→<span class="elsevierStyleInf">)</span> then the equation (15) becomes:<elsevierMultimedia ident="eq0090"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">Where, R<span class="elsevierStyleInf">12</span>, is the reflectivity coefficient between surfaces. This expression is the approximation of the induced surface electric charge and it is equivalent to the so-called “<span class="elsevierStyleItalic">weak scattering problem</span>”.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Numerical Approach</span><p id="par0140" class="elsevierStylePara elsevierViewall">Equations (6 and 14) are expressed in arbitrary coordinate systems with a fixed origin. However, to solve the corresponding integrals we redefine the origin of the coordinate system at the middle point of the prismatic body; that is the “<span class="elsevierStyleItalic">local coordinate system</span>”. The transformation between both coordinate systems will be defined as follows: Assuming <span class="elsevierStyleItalic"><span class="elsevierStyleBold">P</span></span> an arbitrary point in the space, its position vector in terms of the global coordinates system is r→ and r→ ′ is its position vector in terms of the <span class="elsevierStyleItalic">local coordinate system</span>. Consequently, the relationship between the origins for both systems is defined by r→<span class="elsevierStyleInf">a</span> (see <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>), that is:<elsevierMultimedia ident="eq0095"></elsevierMultimedia>where r→′ = (x′, y′,z′), r→<span class="elsevierStyleInf">a</span> = (x<span class="elsevierStyleInf">a</span>, y<span class="elsevierStyleInf">b</span>,z<span class="elsevierStyleInf">c</span>), and r→=(x, y, z.)</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0145" class="elsevierStylePara elsevierViewall">Assuming isolated heterogeneous bodies immersed in a half space, let us introduce the resistivity contrast as <span class="elsevierStyleItalic">ρ</span> = <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>-<span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">m</span></span>, where <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">m</span></span> is the resistivity of the half-space and <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> is the resistivity of the immersed body.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Then, by applying equation (6) for a quadrupole array, that is to a vertical electric sounding (VES) (where electrodes are usually named: A, B, N, M, A and B indicate current electrodes and M and N reception electrodes), the potential UsNM associated with a point source electrode can be expressed as eq. (19). This equation also assumes the concept of additive potential sources (Orellana, 1972):<elsevierMultimedia ident="eq0100"></elsevierMultimedia></p><p id="par0155" class="elsevierStylePara elsevierViewall">This equation allows us to compute the secondary electric potential by the volume integral method, <span class="elsevierStyleItalic"><span class="elsevierStyleBold">VIM</span></span>.</p><p id="par0160" class="elsevierStylePara elsevierViewall">In the eq. 14, <span class="elsevierStyleItalic">SIM</span>, the density surface charges expressed in terms of the <span class="elsevierStyleItalic">local coordinates system</span> is:<elsevierMultimedia ident="eq0105"></elsevierMultimedia></p><p id="par0165" class="elsevierStylePara elsevierViewall">By substituting equation (20) in equation (14), the contribution of each surface of the immersed body, to the secondary potential field for the same quadrupole array, is expressed as:<elsevierMultimedia ident="eq0110"></elsevierMultimedia></p><p id="par0170" class="elsevierStylePara elsevierViewall">Then the apparent resistivity <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">a</span></span> can be expressed as:<elsevierMultimedia ident="eq0115"></elsevierMultimedia></p><p id="par0175" class="elsevierStylePara elsevierViewall">To solve the integrals involved in equations (19 and 21) (<span class="elsevierStyleItalic">VIM</span> and <span class="elsevierStyleItalic">SIM</span>, respectively) we use the Gauss-Legendre Quadrature, by using the subroutines QGAUS and DQDAGI, that are in-cluded in the IMLS Fortran numerical libraries (<a class="elsevierStyleCrossRefs" href="#bib0135">Meissner, 1995; Press <span class="elsevierStyleItalic">et al.</span>, 1992</a>). DQDAGI subroutine makes use of Gauss-Kronrod approximation with 21 points, and by using an e-algorithm (<a class="elsevierStyleCrossRef" href="#bib0180">Piessens <span class="elsevierStyleItalic">et al.</span>, 1983</a>), these integrals can be estimated even when the ending interval is a singularity.</p><p id="par0180" class="elsevierStylePara elsevierViewall">The computational program developed in this work computes the apparent resistivity profile for 3D inmersed bodies, by entering the data listed in <a class="elsevierStyleCrossRef" href="#tbl0005">table 1</a>. The output data are the apparent resistivity values in an array that corresponds to a resistivity pseudo-section cutting the half-space in the input direction.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Synthetic examples</span><p id="par0185" class="elsevierStylePara elsevierViewall">In order to illustrate the validity of the <span class="elsevierStyleItalic">VIM</span> and <span class="elsevierStyleItalic">SIM</span> developed in this work, we studied some synthetic examples and compared them to results obtained by others authors.</p><p id="par0190" class="elsevierStylePara elsevierViewall">A stratified media, with three layers of different resistivities, constitutes the first example (<a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>a). One case considers a middle conductor layer: 100, 10, 100 ohm-m (<a class="elsevierStyleCrossRef" href="#fig0015">Figures 3</a>b); and the other case considers a middle resistive layer: 10, 100, 10 ohm-m (<a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>c). The results of the SIM model for a dipole-dipole array are compared (<a class="elsevierStyleCrossRef" href="#fig0015">Figures 3</a>b and <a class="elsevierStyleCrossRef" href="#fig0015">3</a>c) to those results obtained by applying the algorithm based on the adaptative digital filtering proposed by <a class="elsevierStyleCrossRef" href="#bib0005">Anderson (1979)</a>, which uses Hankel transforms. This comparison shows coincidences in the computed resistivity values at the subsurface assignation points corresponding to an electrodic separation of a = 1m, and until the level <span class="elsevierStyleItalic">n</span> = 14; however, after level <span class="elsevierStyleItalic">n</span> = 15 the results show differences between values (each level n corresponds to 0.5 m), because the computed induced charge by <span class="elsevierStyleItalic">SIM</span> is a poor approximation. It is important to point out that SIM is one method that needs to model closed bodies and the middle layer was considered as a body of 400 by 400 m and thickness of <span class="elsevierStyleItalic">T</span> = 2.5 m, the depth D = 5 m this assumption involves numerical errors that could explain the enlargement of the differences between both methods at depth (for levels n > 15 and depth > 10.5 m). But also it is important to point out the assumption of weak scattering concerns the use of Born approximation (Guozhong and Torres-Verdín, 2006) and this is also a contribution in those discrepancies, as it was signaled by <a class="elsevierStyleCrossRef" href="#bib0255">Zhdanov and Fang (1996)</a>, the Born approximation produces curves of the correct shape but incorrect magnitude. In summary, we can conclude the approximation with SIM is good enough.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0195" class="elsevierStylePara elsevierViewall">The second example consists of a 3D homogeneous half-space, with <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">m</span></span> = 100 ohm-m, and one conductor immersed prismatic body, of <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> = 20 ohm-m (<a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a>). The results of VIM method (<a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>a) shows differences between 3 and 21 ohm-m in the lower values region compared to those computed by <a class="elsevierStyleCrossRef" href="#bib0195">Pridmore (1978)</a>; while the SIM modeling of a dipoledipole array over the prism are compared (<a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>b) to those obtained by <a class="elsevierStyleCrossRef" href="#bib0240">Tsourlos and Ogilvy (1999)</a>. As it is observed, the differences between values are within 1 and 10 ohm-m. In contrast (<a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>d), and only rise up to 14 ohm-m compared to those obtained by <a class="elsevierStyleCrossRef" href="#bib0240">Tsourlos and Ogilvy (1999)</a>, <a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>c. In spite of the differences depicted between the results of SIM and VIM, the results are good enough since the computed resistivity values do not exceed 15 ohm-m (<a class="elsevierStyleCrossRef" href="#fig0025">Figures 5</a>a and <a class="elsevierStyleCrossRef" href="#fig0025">5</a>b). That is about 18% of the resistivity contrast between body and half-space.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0200" class="elsevierStylePara elsevierViewall">The third example showed in <a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a>a, is constituted by the synthetic example published by <a class="elsevierStyleCrossRef" href="#bib0165">Perez-Flores <span class="elsevierStyleItalic">et al.</span> (2001)</a> with 4 immersed bodies of constant resistivity, <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> = 20 ohm-m. This model is based on a volume integral scheme (<a class="elsevierStyleCrossRef" href="#bib0165">Perez-Flores <span class="elsevierStyleItalic">et al.</span>, 2001</a>) and it is similar to the hypothesis of the <span class="elsevierStyleItalic">VIM</span> proposed here. The comparison between SIM and model shows similar results (<a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a>b). Also, the VIM shows quite the same data for this particular case (not showed in figure); however, for general cases, we would expect bigger differences from VIM results. A possible explanation is that the electrode separation is smaller than the dimensions of the bodies.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0205" class="elsevierStylePara elsevierViewall">The fourth example presented consists of two conductive bodies (<a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a>) of <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> = 20 ohm-m, immersed in a homogeneous half-space of <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">m</span></span> = 100 ohm-m. The bodies have the same dimensions, 10 m thick (T, in the z direction), 10 m long (L, in the x direction) and 10 m width (W, in the y direction) and both are located at 2.5 m depth (D). This example is proposed just to show the interaction between bodies by changing the separation between them, with two possibilities: closer and distant (far) bodies, with S equal to 6 m and 40 m respectively. We assume a dipole-dipole array consisting of 31 electrodes, with a 5 m distance between them. <a class="elsevierStyleCrossRef" href="#fig0040">Figure 8</a> shows the results obtained with <span class="elsevierStyleItalic">SIM</span> and <span class="elsevierStyleItalic">VIM</span> for the case with S = 6 m. The apparent resistivity values with <span class="elsevierStyleItalic">SIM</span> are those expected for the bodies. In contrast, <span class="elsevierStyleItalic">VIM's</span> resistivity values are bigger than those expected. It is important to point out that we obtain two minimum resistivities in the location corresponding to the bodies, as we expect, those anomalies in resistivities correspond to the bodies. However, it is also observed a third anomaly at the center of the resistivity image that corresponds to a numerical feature, of a lower resistivity value. <a class="elsevierStyleCrossRef" href="#fig0045">Figure 9</a> shows results for the case S =40 m, they are similar to those obtained for isolate bodies (<a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a>). As well as previous case, it is also observed a third anomaly at the center of the resistivity image that corresponds to a numerical feature.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><elsevierMultimedia ident="fig0040"></elsevierMultimedia><elsevierMultimedia ident="fig0045"></elsevierMultimedia><p id="par0210" class="elsevierStylePara elsevierViewall">In all the studies cases, we can observe, <span class="elsevierStyleItalic">SIM</span> produces better approach than <span class="elsevierStyleItalic">VIM</span> in computing the electrical potential.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Conclusions</span><p id="par0215" class="elsevierStylePara elsevierViewall">This paper introduces two algorithms for the integral solution of the forward DC geoelectrical problem introduced by <a class="elsevierStyleCrossRef" href="#bib0085">Hvozdara and Kaikkonen (1998)</a> with mixed boundary conditions using Green's function. The two types of solutions: volume (VIM) and surface integral methods (SIM) make use of the resistivity contrast between immersed bodies and the homogeneous half- space. These methods also use the concepts of: additive potential sources for immersed bodies, and density surface charges. Both algorithms are not so much demanding on computer time and memory because they do not produce to very large systems of linear equations. This made the methods more accessible for personal computers, quotidian prospecting work and also makes it attractive for educational purposes. In particular could be useful to easily validate the field measurements interpretation.</p><p id="par0220" class="elsevierStylePara elsevierViewall">The algorithms developed here can help in the interpretation of the field data obtained from resistivity profile methods, in two and three dimensions. The advantage of using the integral equation technique is that it is performed for each immersed body in the half space, in contrast to the usual procedure in finite-element and finite-difference methods. In order to find the induced charge, we do not need to define a grid on the surface of the body, due to the fact that we use the density surface charges on each surface.</p><p id="par0225" class="elsevierStylePara elsevierViewall">The conducted tests with synthetic data indicated that both algorithms (SIM and VIM) produced reasonably good results compared to already published results for similar problems, obtained by other algorithms. The synthetic examples allow us to conclude that SIM produces a better approximation of the apparent resistivity values than those based on the volume integral (VIM).</p><p id="par0230" class="elsevierStylePara elsevierViewall">These results are particularly attractive for computation in parallel, because they provide the mode to obtain the forward response for each body in simultaneous way.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres502922" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec524093" "titulo" => "Palabras clave" ] 2 => array:3 [ "identificador" => "xres502923" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec524092" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Theoretical Setting" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Numerical Approach" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Synthetic examples" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "xack163407" "titulo" => "Acknowledgements" ] 10 => array:1 [ "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0065">Further reading</span>" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2013-06-13" "fechaAceptado" => "2014-05-05" "PalabrasClave" => array:2 [ "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec524093" "palabras" => array:1 [ 0 => "Modelo eléctrico 3D, funciones de Green, método integral, teorema de Gauss, condiciones de frontera." ] ] ] "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec524092" "palabras" => array:1 [ 0 => "3D electrical model, Green's functions, integral method, Gauss theorem, Boundary conditions." ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Se introduce una solución integral para el problema directo de la respuesta geoeléctrica DC para cuerpos tri-dimensionales en un semi- espacio, mediante las funciones de Green. El primer algoritmo que se presenta se basa en el método integral de volumen (MIV); aquí, únicamente la corriente eléctrica primaria se utiliza para calcular el potencial eléctrico. El segundo caso emplea el método integral de superficie (MIS), en donde se asume que la carga inducida es debida al campo eléctrico primario. Ambos algoritmos son una combinación de integrales de volumen y de condiciones de frontera. Este artículo muestra la aplicabilidad de estos algoritmos para generar imágenes de perfiles de resistividad que reproducen algunos arreglos de electrodos para ejemplos sintéticos tradicionales, y posteriormente estas imágenes se comparan con resultados ya publicados en la literatura. Finalmente, la comparación entre estos resultados muestra que el concepto de carga inducida utilizada en MIS produce una mejor aproximación, que el esquema MIV en el cálculo del potencial eléctrico.</p></span>" ] "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">An integral solution of the forward DC geoelectric response for three-dimensional target-bodies in a half-space, based on Green's functions, is introduced. The first algorithm presented is based on a volume integral method (<span class="elsevierStyleItalic">VIM</span>); here, only the primary electrical current is involved to compute the electric potential. The second one employs the surface integral method (<span class="elsevierStyleItalic">SIM</span>), and it is assumed the induced charge is due to the primary electrical field. Both algorithms are a combination of boundary and volume integrals. This paper shows the applicability of these algorithms to generate resistivity profile images reproducing some electrode arrays for traditional synthetic examples, and then these images were compared with already published results. Finally, the comparison between results shows the concept of induced charge used in <span class="elsevierStyleItalic">SIM</span> produces a better approach than <span class="elsevierStyleItalic">VIM</span> scheme in computing the electrical potential.</p></span>" ] ] "multimedia" => array:33 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1205 "Ancho" => 2138 "Tamanyo" => 145245 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Conceptual model of a heterogeneous half-space formed by some bodies, with different but constant resistivity values, <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">1</span> ...<span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">6</span>, immersed in a homogeneous medium with a constant resistivity value <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">0</span>.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1641 "Ancho" => 2282 "Tamanyo" => 243635 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Relationship between two coordinate systems: global, refers to the external coordinates a n d local, that it is centered at the origin of the immersed resistive body r→=r→′+r→<span class="elsevierStyleInf">a</span>.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2531 "Ancho" => 2107 "Tamanyo" => 150341 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">a) Synthetic example assuming a stratified half-space of three layers with D = 5 m and T = 2.5 m. The log-log plot shows the comparison between the SIM and the Anderson filter (<a class="elsevierStyleCrossRef" href="#bib0005">Anderson, 1979</a>) using two different contrasts of resistivities: b) a middle conductive layer with <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span> = 100 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>, <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">l</span></span>=10 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span> and c) a middle resistive stratum with <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span> = 10 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>, <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">l</span></span>=100 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1103 "Ancho" => 2496 "Tamanyo" => 96108 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The schematic model shows a 3D body, <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span> = 20 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>, immersed in a homogeneous half-space <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span> = 100 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>. a/2 is the depth to the top of the body, 2a is the longitude of all sides of the cube, and a is the inter-electrode separation. Distance along the profile is x-coordinate (meters) and z-coordinate designates the positive depth (meters).</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2975 "Ancho" => 2322 "Tamanyo" => 653933 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Comparison between results of the second example, constituted by the conductor immersed prismatic body shown in <a class="elsevierStyleCrossRef" href="#fig0020">fig. 4</a>, a) the results of the <span class="elsevierStyleItalic">VIM</span> model, b) the results of the <span class="elsevierStyleItalic">SIM</span> model, and those already published c) <a class="elsevierStyleCrossRef" href="#bib0240">Tsourlos and Ogilvy (1999)</a>, and d) <a class="elsevierStyleCrossRef" href="#bib0195">Pridmore (1978)</a>.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 4230 "Ancho" => 2714 "Tamanyo" => 1305903 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Third synthetic example constituted by (a) 4 immersed 3D bodies <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span> = 20 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span> in a homogeneous half space, b) The results of the <span class="elsevierStyleItalic">SIM</span> model, c) the results published by <a class="elsevierStyleCrossRef" href="#bib0165">Flores <span class="elsevierStyleItalic">et al.</span> (2001)</a>.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1603 "Ancho" => 2952 "Tamanyo" => 103702 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">The schematic model shows a homogeneous half-space (<span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span>) and two immersed bodies of constant resistivity <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span>. D is depth from soil to the top of the bodies (a/2), S is the horizontal distance between bodies, (T) high of bodies, (W) wide in y direction and (L) large in x direction, and a is the inter-electrodic separation.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Figure 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 2241 "Ancho" => 2254 "Tamanyo" => 395324 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Pseudo-section model obtained for the fourth example (<a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>), with <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span> = 20 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span> and <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span> = 100 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>. Simulating a dipole-dipole array of 31 electrodes, with a = 5 m. The apparent resistivities were computed for separation between immerse bodies of S = 6 m. a) <span class="elsevierStyleItalic">SIM</span> and b) <span class="elsevierStyleItalic">VIM</span>.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Figure 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 2174 "Ancho" => 2100 "Tamanyo" => 393055 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Pseudo-section model obtained for the same characteristic of the bodies of the fourth example (<a class="elsevierStyleCrossRef" href="#fig0035">fig. 7</a>), with <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">c</span></span> = 20 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span> and <span class="elsevierStyleItalic">ρ<span class="elsevierStyleInf">m</span></span> = 100 <span class="elsevierStyleItalic">Ω<span class="elsevierStyleInf">m</span></span>, but for separation between immerse bodies of S = 40 m, simulating a dipole-dipole array of 31 electrodes, with a = 5 m, a) <span class="elsevierStyleItalic">SIM</span> and b) <span class="elsevierStyleItalic">VIM</span>.</p>" ] ] 9 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleBold">Input data</span> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Electrode type array \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Number of electrodes \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Spacing between electrodes \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Number of bodies \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Location of bodies \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Resistivity of each body \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Resistivity of the half-space \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Direction of the 2D output section \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab802339.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Required data in the computational program to computes the apparent resistivity.</p>" ] ] 10 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx1.jpeg" "Tamanyo" => 63307 "Alto" => 473 "Ancho" => 1345 ] ] ] ] 11 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx2.jpeg" "Tamanyo" => 34013 "Alto" => 76 "Ancho" => 1330 ] ] ] ] 12 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx3.jpeg" "Tamanyo" => 35310 "Alto" => 134 "Ancho" => 1336 ] ] ] ] 13 => array:5 [ "identificador" => "eq0020" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx4.jpeg" "Tamanyo" => 39221 "Alto" => 114 "Ancho" => 1457 ] ] ] ] 14 => array:6 [ "identificador" => "eq0025" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx5.jpeg" "Tamanyo" => 34653 "Alto" => 165 "Ancho" => 1211 ] ] ] ] 15 => array:6 [ "identificador" => "eq0030" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx6.jpeg" "Tamanyo" => 53616 "Alto" => 363 "Ancho" => 1410 ] ] ] ] 16 => array:6 [ "identificador" => "eq0035" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx7.jpeg" "Tamanyo" => 45622 "Alto" => 300 "Ancho" => 1438 ] ] ] ] 17 => array:6 [ "identificador" => "eq0040" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx8.jpeg" "Tamanyo" => 39061 "Alto" => 148 "Ancho" => 1301 ] ] ] ] 18 => array:6 [ "identificador" => "eq0045" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx9.jpeg" "Tamanyo" => 33024 "Alto" => 119 "Ancho" => 1308 ] ] ] ] 19 => array:6 [ "identificador" => "eq0050" "etiqueta" => "(9)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx10.jpeg" "Tamanyo" => 38947 "Alto" => 169 "Ancho" => 1290 ] ] ] ] 20 => array:6 [ "identificador" => "eq0055" "etiqueta" => "(10)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx11.jpeg" "Tamanyo" => 33517 "Alto" => 91 "Ancho" => 1289 ] ] ] ] 21 => array:6 [ "identificador" => "eq0060" "etiqueta" => "(11)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx12.jpeg" "Tamanyo" => 34040 "Alto" => 104 "Ancho" => 1297 ] ] ] ] 22 => array:6 [ "identificador" => "eq0065" "etiqueta" => "(12)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx13.jpeg" "Tamanyo" => 34573 "Alto" => 170 "Ancho" => 1142 ] ] ] ] 23 => array:6 [ "identificador" => "eq0070" "etiqueta" => "(13)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx14.jpeg" "Tamanyo" => 29888 "Alto" => 188 "Ancho" => 1011 ] ] ] ] 24 => array:6 [ "identificador" => "eq0075" "etiqueta" => "(14)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx15.jpeg" "Tamanyo" => 37867 "Alto" => 174 "Ancho" => 1289 ] ] ] ] 25 => array:6 [ "identificador" => "eq0080" "etiqueta" => "(15)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx16.jpeg" "Tamanyo" => 28674 "Alto" => 161 "Ancho" => 770 ] ] ] ] 26 => array:6 [ "identificador" => "eq0085" "etiqueta" => "(16)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx17.jpeg" "Tamanyo" => 33899 "Alto" => 145 "Ancho" => 1154 ] ] ] ] 27 => array:6 [ "identificador" => "eq0090" "etiqueta" => "(17)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx18.jpeg" "Tamanyo" => 45067 "Alto" => 164 "Ancho" => 1274 ] ] ] ] 28 => array:6 [ "identificador" => "eq0095" "etiqueta" => "(18)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx19.jpeg" "Tamanyo" => 15104 "Alto" => 84 "Ancho" => 307 ] ] ] ] 29 => array:6 [ "identificador" => "eq0100" "etiqueta" => "(19)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx20.jpeg" "Tamanyo" => 175659 "Alto" => 1079 "Ancho" => 1450 ] ] ] ] 30 => array:6 [ "identificador" => "eq0105" "etiqueta" => "(20)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx21.jpeg" "Tamanyo" => 50184 "Alto" => 246 "Ancho" => 1436 ] ] ] ] 31 => array:6 [ "identificador" => "eq0110" "etiqueta" => "(21)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx22.jpeg" "Tamanyo" => 101017 "Alto" => 807 "Ancho" => 1384 ] ] ] ] 32 => array:6 [ "identificador" => "eq0115" "etiqueta" => "(22)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx23.jpeg" "Tamanyo" => 51891 "Alto" => 274 "Ancho" => 1098 ] ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:45 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "Anderson, 1979" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "W.L. Anderson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1979" "volumen" => "44" "paginaInicial" => "1287" "paginaFinal" => "1305" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0015" "etiqueta" => "Babuska and Suri, 1994" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I. Babuska" 1 => "M. Suri" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "The p and h-p versions of the finite element method, basic principle and properties, SIAM Rev" "fecha" => "1994" "volumen" => "36" "paginaInicial" => "578" "paginaFinal" => "632" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0020" "etiqueta" => "Baliga and Patankar, 1980" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new finite-element formulation for convection-diffusion problems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B.R. Baliga" 1 => "S.V. Patankar" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Numer. Heat Transfer" "fecha" => "1980" "volumen" => "3" "paginaInicial" => "393" "paginaFinal" => "409" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0025" "etiqueta" => "Cai et al., 1991" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The finite volume element method for diffusion equations on general triangulations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Z. Cai" 1 => "J. Mandel" 2 => "S. McCormick" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "SIAM J. Numer. Anal." "fecha" => "1991" "volumen" => "28" "paginaInicial" => "392" "paginaFinal" => "402" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0030" "etiqueta" => "Ciarlet, 1991" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "P.G. Ciarlet" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "The finite element method for elliptic problems, In Handbook of numerical analysis (ed. Ciarlet, P.G., and Lions, J.L.) (North-Holland Publishing Co., Amsterdam)" "fecha" => "1991" "paginaInicial" => "17" "paginaFinal" => "351" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0035" "etiqueta" => "Coggon, 1971" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electromagnetic and electrical modelling by the finite element method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.H. Coggon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1971" "volumen" => "36" "paginaInicial" => "132" "paginaFinal" => "155" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0040" "etiqueta" => "Dey and Morrison, 1979" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Resistivity modeling for arbitrarily shaped three-dimensional structures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Dey" 1 => "H.F. Morrison" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1979" "volumen" => "44" "paginaInicial" => "753" "paginaFinal" => "780" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0045" "etiqueta" => "Eskola, 1992" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. Eskola" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Geophysical interpretation using integral equations." "fecha" => "1992" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0270" "etiqueta" => "Forsythe and Wasow, 1960" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Finite difference methods for partial differential equations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.E. Forsythe" 1 => "R. Wasow" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1960" "editorial" => "Wiley" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0055" "etiqueta" => "Fox et al., 1980" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Topographic effects in resistivity and induced-polarization surveys" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.C. Fox" 1 => "G.W. Hohmann" 2 => "T.J. Killpack" 3 => "L. Rijo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1980" "volumen" => "45" "paginaInicial" => "75" "paginaFinal" => "93" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0060" "etiqueta" => "Gómez-Treviño, 1987" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nonlinear integral equations for electromagnetic inverse problems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Gómez-Treviño" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1987" "volumen" => "52" "paginaInicial" => "1297" "paginaFinal" => "1302" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0080" "etiqueta" => "Hvozdara, 1982" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Potential field of a stationary electric courrent in a stratified medium with a three-dimensional perturbing body" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Hvozdara" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Stud. Geophys. Geod." "fecha" => "1982" "volumen" => "26" "paginaInicial" => "161" "paginaFinal" => "172" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0085" "etiqueta" => "Hvozdara and Kaikkonen, 1998" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An integral equation solution of the forward D.C. geoelectric problem for a 3-D body of inhomogeneous conductivity buried in a halfspace" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Hvozdara" 1 => "P. Kaikkonen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. of App. Geophys." "fecha" => "1998" "volumen" => "39" "paginaInicial" => "95" "paginaFinal" => "107" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0090" "etiqueta" => "Johnson, 1987" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C. Johnson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Numerical solution of partial differential equations by finite element method." "fecha" => "1987" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0100" "etiqueta" => "León-Sánchez, 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modelación de la respuesta eléctrica de estructuras 3D en un semiespacio conductor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.M. León-Sánchez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "BSc thesis." "fecha" => "2004" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0105" "etiqueta" => "Lesur et al., 1999" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2-D and 3-D interpretation of electrical tomography measurements - Part 1: The forward problem" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "V. Lesur" 1 => "M. Cuer" 2 => "A. Straub" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1999" "volumen" => "64" "paginaInicial" => "396" "paginaFinal" => "402" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0110" "etiqueta" => "Li and Spitzer, 2002" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "3D direct current resistivity forward modeling using finite-element in comparison with finite-difference solutions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Li" 1 => "K. Spitzer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. J. Int." "fecha" => "2002" "volumen" => "151" "paginaInicial" => "924" "paginaFinal" => "934" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0115" "etiqueta" => "Li and Spitzer, 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Finite-element resistivity modeling for 3D structures with arbitrary anisotropy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Li" 1 => "K. Spitzer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Phys. Earth Planet. Inter." "fecha" => "2005" "volumen" => "150" "paginaInicial" => "15" "paginaFinal" => "27" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0120" "etiqueta" => "Loke and Barker, 1996" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Practical techniques for 3D resistivity surveys and data inversion" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.H. Loke" 1 => "R.D. Barker" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. Prosp." "fecha" => "1996" "volumen" => "44" "paginaInicial" => "499" "paginaFinal" => "523" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0125" "etiqueta" => "Marchuk, 1989" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.I. Marchuk" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Splitting and alternative direction techniques, In Handbook of numerical analysis (ed. Ciarlet, P.G., and Lions, J.L.) (North-Holland Publishing Co., Amsterdam)" "fecha" => "1989" "paginaInicial" => "197" "paginaFinal" => "464" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0130" "etiqueta" => "Marescot et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nonlinear inversion of geoelectric data acquired across 3-D objects using a finite-element approach" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Marescot" 1 => "S.P. Lopes" 2 => "S. Rigobert" 3 => "A.G. Green" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "2008" "volumen" => "73" "paginaInicial" => "F121" "paginaFinal" => "F133" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0135" "etiqueta" => "Meissner, 1995" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L.P. Meissner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Fortran 90." "fecha" => "1995" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0140" "etiqueta" => "Mufti, 1976" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "I.R. Mufti" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1976" "volumen" => "41" "paginaInicial" => "62" "paginaFinal" => "78" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0145" "etiqueta" => "Nedelec, 1985" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Equations integrales associees aux problemes aux limites eliptiques dans les domaines de R3, In Analyse mathematique et calcul numerique pour les sciences et les techniques (ed. Dautray, R., and Lions, J.L.) (Masson" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.C. Nedelec" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Paris 1985) chap. XI, part B" "fecha" => "1985" "paginaInicial" => "645" "paginaFinal" => "702" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0150" "etiqueta" => "Nedelec, 1994" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New trends in the use and analysis of integral equations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.C. Nedelec" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Proc. Sympos. Appl. Math." "fecha" => "1994" "volumen" => "48" "paginaInicial" => "151" "paginaFinal" => "176" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0155" "etiqueta" => "Okabe, 1981" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Boundary element method for the arbitrary inhomogeneities problem in electrical prospecting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Okabe" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. Prosp." "fecha" => "1981" "volumen" => "29" "paginaInicial" => "39" "paginaFinal" => "59" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0165" "etiqueta" => "Perez-Flores et al., 2001" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Imaging low frequency and dc electromagnetic fields using a simple linear approximation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.A. Perez-Flores" 1 => "S. Méndez-Delgado" 2 => "E. Gomez- Treviño" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "2001" "volumen" => "66" "paginaInicial" => "1067" "paginaFinal" => "1081" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0265" "etiqueta" => "Perez-Flores, 1995" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Perez-Flores M.A. Inversión rápida en 2-D de datos de resistividad, magnetotelúricos y electromagnéticos de fuente controlada a bajo número de inducción, PhD thesis.(Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 1995)." ] ] ] 28 => array:3 [ "identificador" => "bib0175" "etiqueta" => "Pidlisecky et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "RESINVM3-D: A MATLAB 3-D resistivity inversion package" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Pidlisecky" 1 => "E. Haber" 2 => "R. Knight" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "2007" "volumen" => "72" "paginaInicial" => "H1" "paginaFinal" => "H10" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0180" "etiqueta" => "Piessens et al., 1983" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Piessens" 1 => "E. deDoncker-Kapenga" 2 => "C. Uberhuber" 3 => "C. Kahaner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Quadpack: a subroutine package for automatic integration." "fecha" => "1983" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0185" "etiqueta" => "Poirmeur and Vasseur, 1988" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional modeling of a hole-to-hole electrical method: Application to the interpretation of a field survey" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Poirmeur" 1 => "G. Vasseur" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1988" "volumen" => "53" "paginaInicial" => "402" "paginaFinal" => "414" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0190" "etiqueta" => "Press et al., 1992" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W.H. Press" 1 => "B.P. Flannery" 2 => "S.A. Teukolsky" 3 => "W.T. Vetterling" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Numerical Recipes in Fortran." "fecha" => "1992" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0195" "etiqueta" => "Pridmore, 1978" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional modelling of electric and electromagnetic data using the finite element method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D. Pridmore" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "PhD thesis." "fecha" => "1978" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0200" "etiqueta" => "Pridmore et al., 1980" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An investigation of finite-element modeling for electrical and electromagnetical data in 3D" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D.F. Pridmore" 1 => "G.W. Hohmann" 2 => "S.H. Ward" 3 => "W.R. Sill" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1980" "volumen" => "46" "paginaInicial" => "1009" "paginaFinal" => "1033" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0205" "etiqueta" => "Ren and Tang, 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Z. Ren" 1 => "J. Tang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "2010" "volumen" => "75" "paginaInicial" => "H7" "paginaFinal" => "H17" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0215" "etiqueta" => "Sasaki, 1994" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "3D resistivity inversion using the finite-element method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Y. Sasaki" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1994" "volumen" => "59" "paginaInicial" => "1839" "paginaFinal" => "1848" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0220" "etiqueta" => "Snyder, 1976" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A method for modeling the resistivity and IP response of two dimensional bodies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D.D. Snyder" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1976" "volumen" => "41" "paginaInicial" => "997" "paginaFinal" => "1015" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0225" "etiqueta" => "Spitzer, 1995" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A 3D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Spitzer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. J. Inter." "fecha" => "1995" "volumen" => "123" "paginaInicial" => "903" "paginaFinal" => "914" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0230" "etiqueta" => "Strang and Fix, 1973" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Strang" 1 => "G.J. Fix" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "An analysis of the finite element method." "fecha" => "1973" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0235" "etiqueta" => "Thomée, 1989" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "V. Thomée" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Finite difference methods for linear parabolic equations, In Handbook of numerical analysis (ed. Ciarlet, P.G., and Lions, J.L.) (North-Holland Publishing Co., Amsterdam)" "fecha" => "1989" "paginaInicial" => "5" "paginaFinal" => "196" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0240" "etiqueta" => "Tsourlos and Ogilvy, 1999" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An algorithm for the 3-D inversion of tomographic resisitivity and induced polarisation data: preliminary results" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.I. Tsourlos" 1 => "R.D. Ogilvy" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Balkan Geophys. Soc." "fecha" => "1999" "volumen" => "2" "paginaInicial" => "30" "paginaFinal" => "45" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0245" "etiqueta" => "Wait, 1977" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Finite element methods for elliptic problems, In The state of the art in numerical analysis (ed. Jacobs, D.) (Academic Press)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "R. Wait" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "St. Louis" "fecha" => "1977" "paginaInicial" => "883" "paginaFinal" => "914" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0250" "etiqueta" => "Wendland, 1987" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Strongly elliptic boundary integral equations, In The state of the art in numerical analysis (ed. Iserles, A., and Powell, M.J.D.) (Clarendon Press)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "W.L. Wendland" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Oxford" "fecha" => "1987" "paginaInicial" => "511" "paginaFinal" => "562" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0255" "etiqueta" => "Zhdanov and Fang, 1996" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quasi-linear approximation in 3-D electromagnetic modeling" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.S. Zhdanov" 1 => "S. Fang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Geophysics, 61-3" "fecha" => "1996" "paginaInicial" => "646" "paginaFinal" => "665" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0260" "etiqueta" => "Zhang et al., 1995" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "3-D resistivity forward modeling and inversion using conjugate gradients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Zhang" 1 => "R.L. Mackie" 2 => "T.R. Madden" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Geophysics 60, 1313-1325." "fecha" => "1995" "paginaInicial" => "0" ] ] ] ] ] ] ] ] ] ] "lecturaRecomendada" => array:1 [ 0 => array:3 [ "vista" => "all" "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0065">Further reading</span>" "seccion" => array:1 [ 0 => array:2 [ "vista" => "all" "bibliografiaReferencia" => array:7 [ 0 => array:3 [ "identificador" => "bib0010" "etiqueta" => "Arfken, 1970" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.B. Arfken" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Mathematical methods for physicists." "fecha" => "1970" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0065" "etiqueta" => "Ghosh, 1971" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The application of linear filter theory to the direct interpretation of Geoelectric Sounding Measurement" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D.P. Ghosh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophys. Prosp." "fecha" => "1971" "volumen" => "19" "paginaInicial" => "192" "paginaFinal" => "217" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0070" "etiqueta" => "Guozhong, 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Torres-Verdín C" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G. Guozhong" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "High-Order Generalized Extended Born Approximation for Electromagnetic Scattering. IEEE Transactions on Antennas and propagation, 54-4, 1243-1256" "fecha" => "2006" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0075" "etiqueta" => "Griffits and Turburllo, 1985" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A multi-electrode array for resistivity surveying" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.H. Griffits" 1 => "J. Turburllo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "First Break" "fecha" => "1985" "volumen" => "3" "paginaInicial" => "16" "paginaFinal" => "20" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0095" "etiqueta" => "Kauffman, 1992" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.A. Kauffman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Geophysical field theory and method: Part A - Gravitational, electric and magnetic fields." "fecha" => "1992" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0160" "etiqueta" => "Oldenburg, 1978" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The interpretation of direct current resistivity measurements" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "W.D. Oldenburg" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geophysics" "fecha" => "1978" "volumen" => "43" "paginaInicial" => "610" "paginaFinal" => "625" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0210" "etiqueta" => "Roach, 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.F. Roach" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Green's functions." "fecha" => "2004" ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack163407" "titulo" => "Acknowledgements" "texto" => "<p id="par0240" class="elsevierStylePara elsevierViewall">This study was financed by the PAPIIT- DGAPA-UNAM research projects IN112906 and IN104006.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/00167169/0000005400000001/v1_201505130244/S0016716915000070/v1_201505130244/en/main.assets" "Apartado" => array:4 [ "identificador" => "40021" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/00167169/0000005400000001/v1_201505130244/S0016716915000070/v1_201505130244/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000070?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 10 | 0 | 10 |
2024 October | 32 | 3 | 35 |
2024 September | 25 | 10 | 35 |
2024 August | 21 | 1 | 22 |
2024 July | 19 | 1 | 20 |
2024 June | 18 | 7 | 25 |
2024 May | 13 | 3 | 16 |
2024 April | 14 | 7 | 21 |
2024 March | 33 | 8 | 41 |
2024 February | 51 | 9 | 60 |
2024 January | 57 | 6 | 63 |
2023 December | 50 | 6 | 56 |
2023 November | 62 | 11 | 73 |
2023 October | 65 | 20 | 85 |
2023 September | 43 | 5 | 48 |
2023 August | 46 | 4 | 50 |
2023 July | 60 | 11 | 71 |
2023 June | 59 | 5 | 64 |
2023 May | 64 | 8 | 72 |
2023 April | 70 | 3 | 73 |
2023 March | 51 | 14 | 65 |
2023 February | 20 | 5 | 25 |
2023 January | 35 | 12 | 47 |
2022 December | 34 | 5 | 39 |
2022 November | 34 | 9 | 43 |
2022 October | 36 | 11 | 47 |
2022 September | 20 | 19 | 39 |
2022 August | 39 | 13 | 52 |
2022 July | 21 | 6 | 27 |
2022 June | 23 | 6 | 29 |
2022 May | 25 | 5 | 30 |
2022 April | 20 | 10 | 30 |
2022 March | 36 | 6 | 42 |
2022 February | 37 | 8 | 45 |
2022 January | 66 | 8 | 74 |
2021 December | 33 | 16 | 49 |
2021 November | 38 | 5 | 43 |
2021 October | 37 | 10 | 47 |
2021 September | 35 | 20 | 55 |
2021 August | 22 | 6 | 28 |
2021 July | 19 | 4 | 23 |
2021 June | 17 | 13 | 30 |
2021 May | 31 | 6 | 37 |
2021 April | 77 | 28 | 105 |
2021 March | 59 | 15 | 74 |
2021 February | 39 | 7 | 46 |
2021 January | 42 | 10 | 52 |
2020 December | 37 | 8 | 45 |
2020 November | 48 | 9 | 57 |
2020 October | 43 | 6 | 49 |
2020 September | 15 | 8 | 23 |
2020 August | 20 | 6 | 26 |
2020 July | 26 | 5 | 31 |
2020 June | 20 | 2 | 22 |
2020 May | 20 | 5 | 25 |
2020 April | 19 | 4 | 23 |
2020 March | 13 | 6 | 19 |
2020 February | 19 | 3 | 22 |
2020 January | 25 | 8 | 33 |
2019 December | 27 | 5 | 32 |
2019 November | 17 | 0 | 17 |
2019 October | 13 | 3 | 16 |
2019 September | 16 | 1 | 17 |
2019 August | 19 | 2 | 21 |
2019 July | 18 | 4 | 22 |
2019 June | 38 | 12 | 50 |
2019 May | 87 | 41 | 128 |
2019 April | 35 | 20 | 55 |
2019 March | 9 | 6 | 15 |
2019 February | 8 | 3 | 11 |
2019 January | 9 | 2 | 11 |
2018 December | 8 | 3 | 11 |
2018 November | 11 | 4 | 15 |
2018 October | 12 | 8 | 20 |
2018 September | 9 | 3 | 12 |
2018 August | 27 | 1 | 28 |
2018 July | 10 | 1 | 11 |
2018 June | 9 | 2 | 11 |
2018 May | 3 | 5 | 8 |
2018 April | 8 | 8 | 16 |
2018 March | 6 | 1 | 7 |
2018 February | 6 | 2 | 8 |
2018 January | 3 | 1 | 4 |
2017 December | 9 | 2 | 11 |
2017 November | 5 | 3 | 8 |
2017 October | 10 | 5 | 15 |
2017 September | 11 | 7 | 18 |
2017 August | 10 | 4 | 14 |
2017 July | 8 | 3 | 11 |
2017 June | 23 | 5 | 28 |
2017 May | 15 | 5 | 20 |
2017 April | 11 | 34 | 45 |
2017 March | 17 | 36 | 53 |
2017 February | 7 | 2 | 9 |
2017 January | 18 | 1 | 19 |
2016 December | 26 | 4 | 30 |
2016 November | 19 | 0 | 19 |
2016 October | 17 | 5 | 22 |
2016 September | 17 | 1 | 18 |
2016 August | 15 | 2 | 17 |
2016 July | 14 | 5 | 19 |
2016 June | 12 | 11 | 23 |
2016 May | 18 | 12 | 30 |
2016 April | 14 | 12 | 26 |
2016 March | 17 | 14 | 31 |
2016 February | 11 | 12 | 23 |
2016 January | 21 | 17 | 38 |
2015 December | 18 | 21 | 39 |
2015 November | 15 | 13 | 28 |
2015 October | 17 | 7 | 24 |
2015 September | 13 | 7 | 20 |
2015 August | 9 | 7 | 16 |
2015 July | 9 | 8 | 17 |
2015 June | 6 | 15 | 21 |
2015 May | 14 | 9 | 23 |