was read the article
array:23 [ "pii" => "S0016716915000148" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.013" "estado" => "S300" "fechaPublicacion" => "2015-04-01" "aid" => "13" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:179-90" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1378 "formatos" => array:3 [ "EPUB" => 32 "HTML" => 865 "PDF" => 481 ] ] "itemSiguiente" => array:18 [ "pii" => "S001671691500015X" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.014" "estado" => "S300" "fechaPublicacion" => "2015-04-01" "aid" => "14" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:e1" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 838 "formatos" => array:3 [ "EPUB" => 36 "HTML" => 505 "PDF" => 297 ] ] "en" => array:8 [ "idiomaDefecto" => true "titulo" => "The 6 September 1997 (M<span class="elsevierStyleInf">w</span> 4.5) Coatzacoalcos-Minatitlan, Veracruz, Mexico earthquake: implications for tectonics and seismic hazard of the region" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "e1" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Shri Krishna Singh, José Francisco Pacheco, Xyoli Pérez-Campos, Mario Ordaz, Eduardo Reinoso" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Shri Krishna" "apellidos" => "Singh" ] 1 => array:2 [ "nombre" => "José Francisco" "apellidos" => "Pacheco" ] 2 => array:2 [ "nombre" => "Xyoli" "apellidos" => "Pérez-Campos" ] 3 => array:2 [ "nombre" => "Mario" "apellidos" => "Ordaz" ] 4 => array:2 [ "nombre" => "Eduardo" "apellidos" => "Reinoso" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S001671691500015X?idApp=UINPBA00004N" "url" => "/00167169/0000005400000002/v2_201509120115/S001671691500015X/v2_201509120115/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0016716915000136" "issn" => "00167169" "doi" => "10.1016/j.gi.2015.04.012" "estado" => "S300" "fechaPublicacion" => "2015-04-01" "aid" => "12" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Geofisica Internacional. 2015;54:167-78" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1318 "formatos" => array:3 [ "EPUB" => 31 "HTML" => 860 "PDF" => 427 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL PAPER</span>" "titulo" => "Paleomagnetic Pole Positions and Geomagnetic Secular Variation from the Cretaceous Ponta Grossa Dike Swarm (Brazil)" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "167" "paginaFinal" => "178" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1461 "Ancho" => 3136 "Tamanyo" => 235435 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">a) Susceptibility versus temperature (in air) curve of representative samples. b) Typical examples of hysteresis loop (corrected for dia/paramagnetism) of small chip samples from the studied volcanic units and associated IRM (isothermal remanent magnetization) curve.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Miguel Cervantes Solano, Avto Goguitchaichvili, Mabel Mena, Luis Alva-Valdivia, Juan Morales Contreras, Ruben Cejudo Ruiz, Héctor López Loera, Ana María Soler, Jaime Urrutia-Fucugauchi" "autores" => array:9 [ 0 => array:2 [ "nombre" => "Miguel Cervantes" "apellidos" => "Solano" ] 1 => array:2 [ "nombre" => "Avto" "apellidos" => "Goguitchaichvili" ] 2 => array:2 [ "nombre" => "Mabel" "apellidos" => "Mena" ] 3 => array:2 [ "nombre" => "Luis" "apellidos" => "Alva-Valdivia" ] 4 => array:2 [ "nombre" => "Juan Morales" "apellidos" => "Contreras" ] 5 => array:2 [ "nombre" => "Ruben Cejudo" "apellidos" => "Ruiz" ] 6 => array:2 [ "nombre" => "Héctor López" "apellidos" => "Loera" ] 7 => array:2 [ "nombre" => "Ana María" "apellidos" => "Soler" ] 8 => array:2 [ "nombre" => "Jaime" "apellidos" => "Urrutia-Fucugauchi" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000136?idApp=UINPBA00004N" "url" => "/00167169/0000005400000002/v2_201509120115/S0016716915000136/v2_201509120115/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL PAPER</span>" "titulo" => "Modeling sea-level change, inundation scenarios, and their effect on the Colola Beach Reserve – a nesting-habitat of the black sea turtle, Michoacán, Mexico" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "179" "paginaFinal" => "190" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Yuritzi Calvillo García, María Teresa Ramírez-Herrera, Carlos Delgado-Trejo, Gabriel Legorreta-Paulin, Néstor Corona" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Yuritzi Calvillo" "apellidos" => "García" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0030" ] ] ] 1 => array:4 [ "nombre" => "María Teresa" "apellidos" => "Ramírez-Herrera" "email" => array:1 [ 0 => "tramirez@igg.unam.mx" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "Carlos" "apellidos" => "Delgado-Trejo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Gabriel" "apellidos" => "Legorreta-Paulin" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0020" ] ] ] 4 => array:3 [ "nombre" => "Néstor" "apellidos" => "Corona" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">f</span>" "identificador" => "aff0025" ] ] ] ] "afiliaciones" => array:6 [ 0 => array:3 [ "entidad" => "Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Laboratorio Universitario de Geofísica Ambiental Centro de Investigaciones en Geografía Ambiental Universidad Nacional Autónoma de México Circuito exterior, Cd. Universitaria 04510 México D.F., México" "etiqueta" => "b" "identificador" => "aff0030" ] 2 => array:3 [ "entidad" => "Laboratorio Universitario de Geofísica Ambiental and Instituto de Geografía Universidad Nacional Autónoma de México Ciudad Universitaria Delegación Coyoacán, 04510 México D.F., México" "etiqueta" => "c" "identificador" => "aff0010" ] 3 => array:3 [ "entidad" => "Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo" "etiqueta" => "d" "identificador" => "aff0015" ] 4 => array:3 [ "entidad" => "Instituto de Geografía Universidad Nacional Autónoma de México Ciudad Universitaria Delegación Coyoacán, 04510 México D.F., México" "etiqueta" => "e" "identificador" => "aff0020" ] 5 => array:3 [ "entidad" => "Centro de Estudios de Geografía Humana El Colegio de Michoacán La Piedad Michoacán, México" "etiqueta" => "f" "identificador" => "aff0025" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author. ." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1715 "Ancho" => 3130 "Tamanyo" => 458307 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Model shows a sea-level rise scenario of 0.50 m at Colola Beach, Michoacán, Mexico, as predicted within 50 years. Inundated areas are shown in red color.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">It is expected that climate change will directly affect individual organisms, populations, species distribution and ecosystem function (<a class="elsevierStyleCrossRef" href="#bib0115">IPCC, 2002</a>). The rise in sea level is probably the most important anthropogenic effect of climate change in the present century (<a class="elsevierStyleCrossRef" href="#bib0105">Grinsted <span class="elsevierStyleItalic">et al</span>., 2009</a>). It threatens to inundate and erode beaches, i.e. the principal nesting areas of sea turtles, where infrastructure or natural obstacles hinder the landward retreat of the beaches (<a class="elsevierStyleCrossRef" href="#bib0075">Drews and Fonseca, 2009</a>).</p><p id="par0010" class="elsevierStylePara elsevierViewall">The life cycle and biology of sea turtles are closely linked to their terrestrial environment. Changing conditions in nesting and foraging beach areas, which can limit their potential for growth and reproduction, are severe threats for populations that are already under pressure at the global level owing to high mortality as a result of fisheries, over-exploitation and habitat modification (<a class="elsevierStyleCrossRef" href="#bib0140">Lutcavage <span class="elsevierStyleItalic">et al</span>., 1997</a>).</p><p id="par0015" class="elsevierStylePara elsevierViewall">Sea turtles are an ancient species group whose adaptive capacity is determined by the speed and geographic scale at which their environment changes. True, they survived the four great glaciations of the Pleistocene and many other, albeit lesser, events that caused the extinction of the great mammals, and they have retained physiological mechanisms that have allowed them to mitigate the effect of events whose cycles are of short or medium term. However, the likely effects of processes associated with the present accelerated increase in temperature are unknown.</p><p id="par0020" class="elsevierStylePara elsevierViewall">In all sea turtle species, reproductive success depends mainly on the availability of terrestrial habitat. Sea turtles can emerge onto the beaches to deposit several batches of eggs during the course of a nesting season (<a class="elsevierStyleCrossRef" href="#bib0150">Miller, 1997</a>). The loss of beach nesting habitat up to 2080 through a sea level rise of 4.2<span class="elsevierStyleHsp" style=""></span>mm per year suggests potentially adverse effects on their reproductive success and hence on their survival (<a class="elsevierStyleCrossRefs" href="#bib0055">Church <span class="elsevierStyleItalic">et al</span>., 2001; IPCC, 2007</a>).</p><p id="par0025" class="elsevierStylePara elsevierViewall">Sea turtle species are of interest for conservation and they are increasingly seen to be affected by a series of natural and anthropogenic hazards. However, despite the many efforts in the past two decades to understand and mitigate the threats to these turtles (<a class="elsevierStyleCrossRefs" href="#bib0140">Lutcavage <span class="elsevierStyleItalic">et al</span>., 1997; Watson <span class="elsevierStyleItalic">et al</span>., 2005</a>), until recently little attention has been paid to the threat posed to this group by climate change (<a class="elsevierStyleCrossRefs" href="#bib0160">Mrosovsky <span class="elsevierStyleItalic">et al</span>., 1984; Davenport, 1989</a>).</p><p id="par0030" class="elsevierStylePara elsevierViewall">The place where the turtles make their nests can affect their reproductive success: the fitness for survival and the success of their progeny (<a class="elsevierStyleCrossRef" href="#bib0040">Bjordal and Bolten, 1992</a>). Although it is not entirely clear why some beaches are favored by turtles for egg-laying, <a class="elsevierStyleCrossRef" href="#bib0155">Mortimer (1982)</a> identifies the following general requirements for a nesting beach.<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1.</span><p id="par0035" class="elsevierStylePara elsevierViewall">The beach must be accessible from the sea.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2.</span><p id="par0040" class="elsevierStylePara elsevierViewall">The beach must be high enough to prevent the inundation of the eggs through wave action or through a rise in the water table.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3.</span><p id="par0045" class="elsevierStylePara elsevierViewall">The substratum must allow the diffusion of gases.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">4.</span><p id="par0050" class="elsevierStylePara elsevierViewall">The substratum must be humid and sufficiently fine-grained to prevent the collapse of the nest chamber during its construction.</p></li></ul></p><p id="par0055" class="elsevierStylePara elsevierViewall">The slope of the beach is a function of various factors that include the geomorphology of the zone, wave action, storms and the grain size of the sand (<a class="elsevierStyleCrossRef" href="#bib0035">Bird, 1996</a>). The rise in sea level and an increase in the frequency and intensity of hurricanes will increasingly affect beaches.</p><p id="par0060" class="elsevierStylePara elsevierViewall">Studies of changes in sea level through global warming predict a range of scenarios. Rises of 0.18 to 0.59 m are expected by the end of the 21st century (<a class="elsevierStyleCrossRef" href="#bib0120">IPCC, 2007</a>). A rise in temperature of between 1.5° and 5<span class="elsevierStyleHsp" style=""></span>°C will bring a possible rise of 0.20 to1.65 m in sea level (<a class="elsevierStyleCrossRef" href="#bib0135">Lara, 2008</a>). Predictions have included a rise of 0.75 to1.90 m for the period of 1990 to 2100, (<a class="elsevierStyleCrossRef" href="#bib0200">Vermeer and Rahmstorf, 2009</a>), of 0.26 to 0.39 m by 2025, and of 0.91 to 1.36 m by 2075 (<a class="elsevierStyleCrossRef" href="#bib0110">Hoffman <span class="elsevierStyleItalic">et al.</span>, 1983</a>).</p><p id="par0065" class="elsevierStylePara elsevierViewall">The World Wildlife Fund (<a class="elsevierStyleCrossRef" href="#bib0090">Fish and Drews, 2009</a>) estimates that climate change will adversely affect marine turtle populations as follows:<ul class="elsevierStyleList" id="lis0010"><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">1.</span><p id="par0070" class="elsevierStylePara elsevierViewall">Mortality of the young through desiccation or flooding of the incubatory substratum through a rise in the water table.</p></li><li class="elsevierStyleListItem" id="lsti0030"><span class="elsevierStyleLabel">2.</span><p id="par0075" class="elsevierStylePara elsevierViewall">Loss of the nesting habitat through erosion and sea inundation of the beaches.</p></li><li class="elsevierStyleListItem" id="lsti0035"><span class="elsevierStyleLabel">3.</span><p id="par0080" class="elsevierStylePara elsevierViewall">Distortion in the sex ratio of the young, through failure to produce males.</p></li></ul></p><p id="par0085" class="elsevierStylePara elsevierViewall">Studies of sea-level rises on beaches used for nesting by marine turtles (<a class="elsevierStyleCrossRef" href="#bib0070">Delgado and Alvarado, 2005</a>) have shown a loss of ∼70% of the reproductive population of the black sea-turtle (<span class="elsevierStyleItalic">Chelonia agassizi =Chelonia mydas agassizi</span>), also referred to as Eastern Pacific green turtle, a species classified as endangered (<a class="elsevierStyleCrossRef" href="#bib0215">World Conservation Union, 2001</a>). The Official Mexican Norm NOM-59-SEMARNAT (Official memorandum 6 March 2002) lists it in the category “in danger of extinction”. Sea turtles are of great tourist economic value and are highly vulnerable to human activity, at least during nesting. Their inclusion in most lists of threatened species or those in danger of extinction reflects their over-exploitation by humans (<a class="elsevierStyleCrossRef" href="#bib0185">Pritchard, 1997</a>).</p><p id="par0090" class="elsevierStylePara elsevierViewall">In Mexico, the loss of nesting habitat through rises in mean sea level has not been evaluated. Models of local beach inundation by sea-level rise are important in determining the risk; the present study is one of the first attempts to test it in Mexico. This study considers a range of scenarios involving sea-level rise caused by global warming, and evaluates the likely effects of the loss of beach nesting habitat in Colola Beach, Michoacán, Mexico.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Study area</span><p id="par0095" class="elsevierStylePara elsevierViewall">Colola Beach (18°17¿47” N, 103°24¿3” W) is the principal nesting area of the black turtle (<span class="elsevierStyleItalic">Chelonia mydas agassizii</span>). It is located along the Pacific coast of Mexico, a tectonically active coast. The Pacific coast in Michoacán is bordered inland by rough topography of the folded and fault-blocked mountains of the Sierra Madre del Sur and by narrow beaches (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>). Colola beach is 4.8<span class="elsevierStyleHsp" style=""></span>km long and an average 150 m wide, reaching more than 200 m width in some sectors. It extends in NW-SE direction, with two minor rivers (arroyos) flowing to the east and west of the beach, and a rocky granite outcrop defines its western end, while the village of Colola is at its eastern end. The beach sand here is relatively coarse grained and the most abundant minerals include biotite, magnetite and zircon (<a class="elsevierStyleCrossRef" href="#bib0015">Alvarado and Figueroa, 1989</a>). The Colola beach morphology is characterized by a steep slope (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>). Although the beach morphology is highly dynamic and its characteristics change seasonally, we summarize here the general characteristics of this beach. The lower and seaward sector of the beach, the beach face, is steep and shows variable slope, ranging from 10° to 30°; it remains wet because of the influence of waves depending on the month of the year, when wave conditions, wind direction and intensity change. Landwards and up-profile, the backshore, shows a berm, characterized by a gentle slope, and marks the boundary between beach face and the beach mid-platform. The beach mid platform is flat and is the most extensive area barren of vegetation. Above the mid platform, there is an area with gentle slope and patches of vegetation (<span class="elsevierStyleItalic">Distichlis spicata</span> and <span class="elsevierStyleItalic">Ipomoea pes-caprae</span>) (<a class="elsevierStyleCrossRef" href="#bib0180">Perez, 2008</a>). The higher area of the beach is the upper beach limiting with the vegetation. The predominant vegetation is low deciduous forest, medium semi-evergreen forest, mangrove, bushy scrub of coastal dunes, and palms (<a class="elsevierStyleCrossRef" href="#bib0020">Alvarado and Huacuz, 1996</a>). Climate is warm humid with storms and strong winds and rainfall during July-October, and a prolonged dry period from November to July (<a class="elsevierStyleCrossRef" href="#bib0020">Alvarado and Huacuz, 1996</a>). Major hurricane and tropical storm activity prevails during June to November in the Eastern North Pacific (<a class="elsevierStyleCrossRef" href="#bib0165">NHC, 2013</a>). The black sea-turtle breeding season coincides from August to March, with the hurricane and tropical storm activity, which suggests that morphologic changes along-beach and on the beach profile occur seasonally. Two zones are favored for turtle nesting: the middle zone of the beach profile, around100 m from the beach tide front, and alongshore on the western and central sectors of Colola beach (<a class="elsevierStyleCrossRef" href="#bib0095">Fuentes <span class="elsevierStyleItalic">et al</span>., 2010</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Methods</span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Digital elevation model</span><p id="par0100" class="elsevierStylePara elsevierViewall">The elevation of the terrain was determined by surveying the topography of Colola Beach with a SOKKIA total station SET 630RK. Data were recorded with vertical and horizontal accuracy of 3<span class="elsevierStyleHsp" style=""></span>mm from equidistant points at >11 m and maxima of <40 m distance, and random points with known elevations (<a class="elsevierStyleCrossRef" href="#bib0210">Weibel and Heller, 1991</a>). The coastline was plotted by visual interpretation from a Google Earth satellite image for October 31, 2005 (<a class="elsevierStyleCrossRef" href="#bib0100">Google Earth, 2011</a>).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Interpolation</span><p id="par0105" class="elsevierStylePara elsevierViewall">The collected three-dimensional coordinates were imported in the ArcGIS environment (<a class="elsevierStyleCrossRef" href="#bib0010">ArcGIS, 2013</a>) and plotted to a ground control points shape file. The ground control points were used as sample points to generate a 20<span class="elsevierStyleHsp" style=""></span>cm pixel size digital elevation model (DEM). The DEM was generated by the interpolation method known as inverse distance weighting (IDW) using the Topo to Raster tool in ArcGis. This is a local deterministic interpolation technique that has been found to be good for interpolation of geomorphologically smooth areas and is as accurate as other interpolation techniques (<a class="elsevierStyleCrossRefs" href="#bib0005">Aguilar <span class="elsevierStyleItalic">et al</span>., 2005; Arun, 2013</a>). This interpolator assumes that each point in the data set has a local influence that decreases with distance, and hence the values of the points near the node that is processed have more importance or weight in the estimation of the value that will be assigned to it, than have the points that are further away (<a class="elsevierStyleCrossRef" href="#bib0045">Burrough and Mcdonnell, 1998</a>). Normally, the search is made considering a number of points or a radius (in a circle around the cell under consideration).</p><p id="par0110" class="elsevierStylePara elsevierViewall">Once the digital elevation model had been obtained, we simulated possible sea inundation of Colola Beach under three different scenarios of sea-level rise (0.50 m, 1.40 m and 5.0 m) based on present predictions of 0.5 m within the next 50 years and of 1.40 m in 100 years (<a class="elsevierStyleCrossRef" href="#bib0200">Vermeer and Rahmstorf, 2009</a>). The 5.0 m sea level rise is a hypothetical scenario with no precise date of when it might happen.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Position of individual nesting sites</span><p id="par0115" class="elsevierStylePara elsevierViewall">The black sea-turtles nest mainly in the mid platform of the beach, which is a warm area far from the high tide mark and free of vegetation (Pérez, 2008). To plot the spatial distribution of the turtle nests, we sampled 300 nests with a portable global positioning system (GPS Garmin) along the length of the beach and across its width. The positioning of these points was superimposed on the inundation models to determine the probable impact of sea-level rise under the different scenarios proposed. Topographic profiles across the Colola Beach and the beach areas lost due to possible inundation scenarios were measured using the DTM.</p></span></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Results</span><p id="par0120" class="elsevierStylePara elsevierViewall">The DEM, topographic profiles, and plot of nesting sites in the Colola Beach show that most of the nesting sites are located in the mid-and high-beach. The beach slope although variable alongshore, tends to be steep (10° to 30°) in the beach front facing the sea (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>). The effects of different sea-level rise scenarios and inundation of the beach are illustrated on six crossed beach profiles traced from west to east on Colola beach (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>). It is evident that the effect of a 0.5 m sea level rise is apparently smaller along shore. While a sea level rise of 1.4 m would affect mostly the foreshore along the Colola beach. Instead, a sea level rise scenario of 5 m would have a significant flooding effect in the beachfront and mid-platform of most of Colola beach, with more dramatic effect on the westernmost and easternmost sectors of this beach (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0125" class="elsevierStylePara elsevierViewall">The simulations of beach inundation in Colola suggest that a rise of 0.50 m in sea level, predicted to occur within 50 years (<a class="elsevierStyleCrossRef" href="#bib0200">Vermeer and Rahmstorf, 2009</a>), would affected the beachfront and produce 2% of area lost (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). Although variable, the steep beach profile (10° to 30°) in the lower and seaward sector of the beach, the beach face, prevents from a larger damage and loss of the sea-turtle nesting area (<a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0130" class="elsevierStylePara elsevierViewall">Modeling of a rise in sea level of 1.40 m, predicted for the next 100 years, suggests a significant loss of beach area (9%). Since the black sea-turtle tends to nest in the mid-and high-beach, the steep slope of the beachfront aids in preventing a major loss of nesting area (<a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a>, <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0180" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a></p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0135" class="elsevierStylePara elsevierViewall">The model of beach inundation by sea-level rise of 5 m shows a considerable loss of beach, sparing only isolated patches. Two rivers reach the sea at Colola Beach, and the rising seawater would encroach on their channels and thereby leave the turtles with practically half of the current nesting area (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a> and 5). The projected loss of beach area is about 54% (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). Although in this scenario some nesting individual sites would not be affected, the main nesting area, in the mid platform of the beach, would be completely lost (<a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a>). Since Colola is a wide beach (150 m average width), only those areas landwards and near the vegetation would be the least affected, but high tides and the proximity of the coastline would result in deleterious effects in these areas also (<a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>).</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Discussion and Conclusions</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Tectonic uplift vs. sea level rise</span><p id="par0140" class="elsevierStylePara elsevierViewall">The Michoacán coast is located in a tectonically active margin. This coast is subject to tectonic uplift (<a class="elsevierStyleCrossRef" href="#bib0190">Ramirez-Herrera and Urrutia-Fucugauchi, 1999</a>, <a class="elsevierStyleCrossRef" href="#bib0195">Ramirez-Herrera <span class="elsevierStyleItalic">et al</span>., 2011</a>). The estimated rate of coastal uplift, based on marine terrace ages, for the neighbor areas in Michoacan-Guerrero coast is ca. 6.6 +/- 2 m/ka (<a class="elsevierStyleCrossRef" href="#bib0195">Ramirez-Herrera <span class="elsevierStyleItalic">et al</span>., 2011</a>). We extrapolated this uplift rate to compare with our modeled sea level flooding scenarios at the Colola beach. The scenario for next 100-year indicates a 1.4 m sea level rise, with an estimated uplift rate of 0.6 +/-2 m, i.e. a value considerably lower than the projected sea level rise. In this scenario, even when considering tectonic uplift of this coast, the beach areas where turtles nest are foreseen to be inundated by sea level rise. In the second scenario, in 50 years, 0.5 m sea level rise compared with estimated uplift rates of 0.3 +/-2 m/50 yr, again the sea level rise value is still higher than tectonic uplift. Thus, even in this tectonically active coast, sea level rise scenarios suggest inundation of beach areas where sea-turtles nest.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Sea-level rise modeling</span><p id="par0145" class="elsevierStylePara elsevierViewall">Models that simulate sea-level rises in nesting areas of marine turtles are of great importance in establishing mitigation procedures for the conservation of these species. Our models indicate that an increase in sea level by 0.50 m or 1.40 m would affect the Colola Beach, reducing significantly the beach in 2% and 9% of area loss. Sea turtles prefer to nest in the warm middle platform of the beach; due to the steep profile of the Colola beach the nesting area is apparently affected in a lower extent. <a class="elsevierStyleCrossRef" href="#bib0155">Mortimer (1982)</a> and <a class="elsevierStyleCrossRef" href="#bib0175">Pereira (2002)</a> consider the selection of nesting area to arise from the biology of the species and the patterns of behavior that have evolved from this. At Colola the selection may also be attributable to a preference for areas that are free from vegetation and that have humidity that favors nest construction. Extreme humidity or dryness in the sand can lead to a collapse of the nest during construction with failure of the nesting operation. Turtles avoid sites low on the beach because of the high humidity and salinity that impede nest building, and also because of inundation produced by tides.</p><p id="par0150" class="elsevierStylePara elsevierViewall">While the impacts of sea level rise scenarios under 0.50 and 1.40 m appear to be less significant in relation to the loss of nesting Colola area, <a class="elsevierStyleCrossRef" href="#bib0095">Fuentes <span class="elsevierStyleItalic">et al</span>. (2010)</a> mentions that the salt intrusion into the water table in beaches can be a significant factor, product of the increment of the average sea level. Saline intrusion into the water table at the beach can be a significant threat then to the black turtle because the females lay their nests at a depth of between 0.70 and 1.0 m deep, which can be reached by the water table under storms and high waves conditions. Moreover, the Bruun Rule (<a class="elsevierStyleCrossRef" href="#bib0050">Bruun, 1988</a>) predicts that by the year 2100 the shoreline would be horizontally retracted 50 to 100-fold relative to the vertical sea level rise, then the regression of the beaches, such as in Autralia can mean between 4.5 to 88 m (<a class="elsevierStyleCrossRef" href="#bib0060">CSIRO, 2002</a>). Consequently, climate change may accelerate the current global trend of beaches receding. This may to some extent affect beach ecosystems if the retraction of the beaches is just the only change, however, if this is accompanied by changes in habitat (such as dunes, grain size, area of beach and slope) or loss of habitat (narrowing of beaches), great ecological changes may occur in a particular beach (<a class="elsevierStyleCrossRef" href="#bib0130">Jones, 2012</a>). These would have dire consequences for the turtle population. For instance, neighbor beaches to the Colola beach Reserve, that are habitats to other species of marine turtles, though might suffer a more dramatic effect due to their low slope (e.g. La Llorona beach).</p><p id="par0155" class="elsevierStylePara elsevierViewall">Remarkably, the simulation of a 5 m rise in sea level suggests a significant loss of beach area (54%). With the rise in sea level, the sea water would probably fl up the river channels, since these are lower than the surrounding sand; this scenario would leave only patches of beach above water level and consequently sea turtles would be left with virtually no nesting areas. Moreover, beach erosion, a concomitant effect of sea-level rise, is a potential threat that might increase the loss of beach and consequently the nesting habitat for the black sea-turtle.</p><p id="par0160" class="elsevierStylePara elsevierViewall">Another consideration is that the differential distribution of nesting females on a beach may reflect the strong philopatry of marine turtles; if a larger number of offspring are produced in a certain site on the beach, it is probable that in those sites the high percentages of survival of the nesting females and of the young that are produced there determine future differential selection of nesting sites. If nesting sites do not have the characteristics necessary for success, this may result in a reduction of the population size.</p><p id="par0165" class="elsevierStylePara elsevierViewall">At the global level, a rise in sea level has the potential to endanger the availability of nesting beaches in low beaches, island beaches (<a class="elsevierStyleCrossRefs" href="#bib0170">Nicholls, 1998; Fish <span class="elsevierStyleItalic">et al</span>., 2005; Baker <span class="elsevierStyleItalic">et al</span>., 2006; Jones <span class="elsevierStyleItalic">et al</span>., 2007</a>: <a class="elsevierStyleCrossRef" href="#bib0145">Mazaris <span class="elsevierStyleItalic">et al</span>., 2009</a>). A sea level rise of 0.9 m could flood up to 40% of the nesting beaches of the green turtle (<span class="elsevierStyleItalic">Chelonia mydas</span>) on the north-eastern island of Hawaii (<a class="elsevierStyleCrossRef" href="#bib0030">Baker <span class="elsevierStyleItalic">et al</span>., 2006</a>), and 50% of those of the hawksbill turtle (<span class="elsevierStyleItalic">Eretmochelysimbricata</span>) in Barbados (<a class="elsevierStyleCrossRef" href="#bib0085">Fish <span class="elsevierStyleItalic">et al</span>., 2008</a>) and 51% in Bonaire (<a class="elsevierStyleCrossRef" href="#bib0085">Fish <span class="elsevierStyleItalic">et al</span>., 2008</a>). On Colola Beach a rise of 5 m could flood 25% of the nesting area. Other nesting areas must also be studied, in view of the migratory nature of marine turtles.</p><p id="par0170" class="elsevierStylePara elsevierViewall">Different models of possible rises in sea level and concomitant sea inundation of the beach must be considered to manage adequately turtle nesting areas. Owing to the physical characteristics of Colola Beach, the nesting areas are likely to be affected within the next 100 years by sea-level rise. Even more, a rise of 5 m would reduce the beach to isolated patches and leave the turtles virtually with few nesting areas, depending on the ability of the beach to recede as sea level rises. Strategies of adaptation to climate change may allow the preservation of nesting areas of the marine turtle population.</p></span></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres551850" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec569247" "titulo" => "Palabras clave" ] 2 => array:3 [ "identificador" => "xres551851" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec569248" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Study area" ] 6 => array:3 [ "identificador" => "sec0015" "titulo" => "Methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0020" "titulo" => "Digital elevation model" ] 1 => array:2 [ "identificador" => "sec0025" "titulo" => "Interpolation" ] 2 => array:2 [ "identificador" => "sec0030" "titulo" => "Position of individual nesting sites" ] ] ] 7 => array:2 [ "identificador" => "sec0035" "titulo" => "Results" ] 8 => array:3 [ "identificador" => "sec0040" "titulo" => "Discussion and Conclusions" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Tectonic uplift vs. sea level rise" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "Sea-level rise modeling" ] ] ] 9 => array:2 [ "identificador" => "xack186092" "titulo" => "Acknowledgements" ] 10 => array:1 [ "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0085">Further reading</span>" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2014-04-01" "fechaAceptado" => "2014-12-02" "PalabrasClave" => array:2 [ "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec569247" "palabras" => array:6 [ 0 => "Cambio climático" 1 => "aumento del nivel del mar" 2 => "inundación de la playa" 3 => "modelación SIG" 4 => "tortuga marina" 5 => "<span class="elsevierStyleItalic">Cheloniamydas agassizii</span>." ] ] ] "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec569248" "palabras" => array:6 [ 0 => "Climate change" 1 => "sea-level rise" 2 => "beach inundation" 3 => "GIS modeling" 4 => "sea turtle" 5 => "<span class="elsevierStyleItalic">Cheloniamydas agassizii</span>." ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Los efectos del cambio climático variarán regionalmente. Sin embargo, la temperatura media aumentará en todo el mundo, y el consiguiente aumento del nivel del mar afectará a la mayoría de las playas de la costa y en consecuencia a todas las poblaciones de tortugas marinas en el corto, mediano y largo plazo. Se necesitan modelos de la inundación esperada en la playa y de la pérdida del hábitat de anidación debido al aumento del nivel del mar para evaluar los cambios costeros y la conservación de las áreas de anidación de las tortugas marinas. La playa de Colola en Michoacán, México, es la principal zona de anidación de la tortuga marina negra (<span class="elsevierStyleItalic">Chelonia mydas agassizii</span>), también conocida como la tortuga verde del Pacífico Oriental, una especie incluida en la lista de peligro de extinción. Aquí evaluamos los efectos del cambio del nivel del mar en esta playa con tres escenarios diferentes. Con este fin, realizamos un levantamiento topográfico en detalle de la playa de Colola para producir un modelo de elevación digital (DEM) y el modelo de inundación esperada en la playa que acompaña a aumentos del nivel del mar de 0,5 m, 1,40 my 5 m; registramos los sitios de anidación de la tortugas marinas y sus áreas utilizando sistemas de posicionamiento global (GPS), y finalmente modelamos estos escenarios usando sistemas de información geográfica (SIG), imágenes de satélite y un modelo de elevación digital. Los modelos producidos sugieren que los aumentos de 0,5 m y 1,40 m afectarían a la zona de la playa Colola reduciéndola. Mientras que un aumento del nivel del mar de 5 m tendría un efecto dramático, con la pérdida del 54% de la playa y zona de anidación. Este enfoque y escenarios previstos a través de levantamiento topográfico detallado y modelado con SIG deben ayudar en la creación de estrategias para la conservación de las poblaciones de tortugas marinas en esta reserva y en otros lugares.</p></span>" ] "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The effects of climate change will vary regionally. However, the mean temperature will rise worldwide, and the concomitant rise in sea level will affect most coastal beaches and consequently all populations of sea turtles in the short, medium and long term. Models of expected beach inundation and loss of nesting habitat due to sea-level rises are required to assess coastal changes and the conservation of the sea-turtle nesting areas. Colola Beach in Michocán, Mexico, is the main nesting area of the black sea-turtle (<span class="elsevierStyleItalic">Chelonia mydas agassizii</span>), also referred as Eastern Pacific green turtle, a species listed as being in danger of extinction. We assessed the effects of sea-level change in this beach using three different scenarios. With this purpose, we surveyed the topography of Colola Beach in detail to produce a digital elevation model (DEM) and modeled beach inundation expected to accompany sea-level rises of 0.5 m, 1.40 m and 5 m; recorded sea-turtle nesting sites and areas using global positioning systems (GPS), and finally modeled using geographic information systems (GIS), satellite images and a digital elevation model. The produced models suggest that rises of 0.5 m or 1.40 m would affect the Colola beach area by reducing it. Most significantly, a sea-level rise of 5 m would have a dramatic effect, with the loss of 54% of the beach and nesting area. This approach and predicted scenarios through detailed topographic survey and GIS modeling should assist in creating strategies for the conservation of the sea turtle populations in this beach reserve and elsewhere.</p></span>" ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2159 "Ancho" => 3132 "Tamanyo" => 520906 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Location of Colola Beach, Michoacán, Mexico.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2959 "Ancho" => 3132 "Tamanyo" => 715213 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Topographic profiles of Colola Beach. Symbols: mamsl-meters above mean sea level; V.E. - vertical exageration.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1715 "Ancho" => 3130 "Tamanyo" => 458307 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Model shows a sea-level rise scenario of 0.50 m at Colola Beach, Michoacán, Mexico, as predicted within 50 years. Inundated areas are shown in red color.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1731 "Ancho" => 3129 "Tamanyo" => 442491 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Model shows a sea-level rise scenario of 1.40 m at Colola Beach, Michoacán, Mexico, as predicted within 100 years. Inundated areas are shown in red color.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1725 "Ancho" => 3132 "Tamanyo" => 467130 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Model shows a sea-level rise scenario of 5 m at Colola Beach, Michoacán, Mexico. Inundated areas are shown in red color.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1717 "Ancho" => 3135 "Tamanyo" => 561163 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Model of Colola Beach showing a 5 m rise in sea level (inundated areas shown in red) and the positions of turtle nests (black dots). Insert shows 3D perspective.</p>" ] ] 6 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Sea-level rise scenarios (m) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">0.50 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">1.40 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">5.0 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Predicted loss of beach area \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Area (ha) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">5.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">31.95 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Percentage (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">54 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab890680.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Predicted loss of nesting area with different rise in sea level scenarios.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:43 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "Aguilar et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F.J. Aguilar" 1 => "M.A. Agüera Güera" 2 => "F. Aguilar Carvajal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/1556-4029.12915" "Revista" => array:6 [ "tituloSerie" => "Photogrammetric Engineering & Remote Sensing" "fecha" => "2005" "volumen" => "71" "paginaInicial" => "805" "paginaFinal" => "816" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26224147" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "ArcGIS, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "ArcGIS, 2013, Online data available at: http://www.arcgis.com/home/(accessed 30.01.14)." ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "Alvarado and Figueroa, 1989" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Alvarado J., Figueroa A., 1989, Ecología y Conservación de las Tortugas Marinas en Michoacán, México (segunda parte), Cuadernos de Investigación, U.M.S.N.H, 5, 68 pp." ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "Alvarado and Huacuz, 1996" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Alvarado J., Huacuz D., 1996, Guía ilustrada de los anfibios y reptiles más comunes de la reserva Colola-Maruata en la costa de Michoacán, México. U.M.S.N.H. Facultad de Biología. Morelia, Michoacán, 90 pp." ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "Arun, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Arun P.V., 2013, A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Sciences, 6, p. 133-139." ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "Baker et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna in the Northwestern Hawaiian Islands" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.D. Baker" 1 => "C.L. Littnan" 2 => "D.W. Johnston" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Endangere Species Research" "fecha" => "2006" "volumen" => "2" "paginaInicial" => "21" "paginaFinal" => "30" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "Bird, 1996" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Beach management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E.C. Bird" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "fecha" => "1996" "paginaInicial" => "281" "editorial" => "John Wiley & Sons, Ltd" "editorialLocalizacion" => "Chichester" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "Bjorndal and Bolten, 1992" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial Distribution of Green turtle (Chelonia mydas) Nest at tortuguero, Costa Rica" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.K. Bjorndal" 1 => "B.A. Bolten" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Copeia" "fecha" => "1992" "volumen" => "1" "paginaInicial" => "45" "paginaFinal" => "53" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "Burrough and Mcdonnell, 1998" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Principles of Geographical Information Systems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.A. Burrough" 1 => "R.A. Mcdonnell" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "fecha" => "1998" "paginaInicial" => "333" "paginaFinal" => "335" "editorial" => "Oxford University Press" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "Brunn, 1988" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Brunn Rule of erosion by sea level rise? A discussion of large-scale two and three-dimension usages" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "P. Brunn" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Journal Coastal Research" "fecha" => "1988" "volumen" => "4" "paginaInicial" => "627" "paginaFinal" => "648" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "Church et al., 2001" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Changes in sea level" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "J. Church" 1 => "J.M. Gregory" 2 => "P. Huybrechts" 3 => "M. Kuhn" 4 => "K. Lambeck" 5 => "M.T. Nhuan" 6 => "D. Qin" 7 => "P.L. Woodworth" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "Climate change 2001. The scientific basis. Contribution of Working Gro*up I to the Third Assessment Report of the Intergovernmental Panel on Climate Change." "paginaInicial" => "639" "paginaFinal" => "694" "serieFecha" => "2001" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "CSIRO, 2002" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2002, Climate Change and Australia¿s Coastal Communities. www.dar.CSIRO-au/pulications/coastalbroch." ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "Davenport, 1989" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sea turtles and the greenhouse effect" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Davenport" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "British Herpetological Society Bulletin" "fecha" => "1989" "volumen" => "29" "paginaInicial" => "11" "paginaFinal" => "15" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "Delgado and Alvarado, 2005" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Delgado C., Alvarado J., 2005, Tortugas marinas de Michoacán<span class="elsevierStyleItalic">.</span> Historia Natural y Conservación, México, 152 pp." ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "Drews and Fonseca, 2009" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Drews C., Fonseca A., 2009, Aumento del nivel del mar por cambio climático en Playa Grande, Parque Nacional Las Baulas, Costa Rica. Simulación de inundación basada en un modelo de elevación digital de alta resolución e implicaciones para el manejo del parque. Informe técnico, WWF /Stereocarto, San José, Costa Rica, 20 pp." ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "Fish et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.R. Fish" 1 => "I.M. Cote" 2 => "J.A. Gill" 3 => "A.P. Jones" 4 => "S. Renshoff" 5 => "A.R. Watkinson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Conservation Biology" "fecha" => "2005" "volumen" => "19" "paginaInicial" => "482" "paginaFinal" => "491" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "Fish et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Construction setback regulations and sea level rise: mitigating sea turtle nesting beach loss" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.R. Fish" 1 => "I.M. Cote" 2 => "J.A. Horrocks" 3 => "B. Mulligan" 4 => "A.R. Watkinson" 5 => "A.P. Jones" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1109/TVCG.2015.2467411" "Revista" => array:6 [ "tituloSerie" => "Ocean & Coast Management" "fecha" => "2008" "volumen" => "51" "paginaInicial" => "330" "paginaFinal" => "341" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26353372" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "Fish and Drews, 2009" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Fish M.R., Drews C., 2009, Adaptación al cambio climatico: opciones para las tortugas marinas. Informe de WWF, San José, Costa Rica. 20 pp." ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "Fuentes et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Potential impacts of projected sea-level rise on sea turtle rookeries" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Fuentes" 1 => "C.J. Limpus" 2 => "M. Hamann" 3 => "J. Dawson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Aquatic Conservation-Marine and Freshwater Ecosystems" "fecha" => "2010" "volumen" => "20" "paginaInicial" => "132" "paginaFinal" => "139" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "Google Earth, 2011" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Google Earth, 2011, “Playa Colola”. 18 18’ 01-19” N and 103 25’ 32.25” W. Google Earth. 31 October 2005. (Retrieved 21 December 2011)." ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "Grinsted et al., 2009" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Grinsted A., Moore J.C., Jevrejeva S., 2009, Reconstructing sea level from paleo and projected temperatures 200 to 2100AD. Climate, Dynamics. http://dx.doi. org/10.1007/s00382-008-0507-2. 461-472." ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "Hoffman et al., 1983" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Hoffman J.S., Keyes D., Titus J.G., 1983, Projecting Future Sea Level Rise; Methodology, Estimates to the Year 2100, and Research Needs, Environmental Protection Agency, Washington. p. 115-121." ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "IPCC, 2002" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Intergovernmental Panel on Climate Change (IPCC) 2002, Cambio Climático y biodiversidad. Documento técnico del Grupo Intergubernamental de Expertos sobre el Cambio Climático, Ginebra, Suiza, 84 pp." ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "IPCC, 2007" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Intergovernmental Panel on Climate Change (IPCC), 2007, Cambio climático. Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático, Ginebra, Suiza, 104 pp." ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "Jones et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Australian sandy beach ecosystems and climate change: ecology and management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.R. Jones" 1 => "W. Gladstone" 2 => "N.J. Hacking" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Australian Zoologist" "fecha" => "2007" "volumen" => "34" "paginaInicial" => "190" "paginaFinal" => "202" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "Jones, 2012" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Jones A.R., 2012, Higher-level Ecological Relationships to Climate Change.In Ecological Consecuences of Climate Changes. Erick a. Beever and Jerrold L. Belant editors.CRC press 2012." ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "Lara, 2008" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Lara L.R., 2008, Los cambios ambientales globales y la vulnerabilidad de los sectores de México. En: Azuz Adeath, I.A., (Eds.), Infra estructura y Desarrollo Sustentable. Gobierno del Estado de B.C. CETYS Universidad, 15 pp." ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "Lutcavage et al., 1997" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Lutcavage M.E., Plotkin P., Witherington B., Lutz P.L., 1997, Human impacts on sea turtle survival. In: Lutz, P.L., Musick, J.A. (Eds.), The Biology of Sea Turtles. CRC Press, Boca Raton, Florida, p. 387-409." ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "Mazaris et al., 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluating the impacts of coastal squeeze on sea turtle nesting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.D. Mazaris" 1 => "G. Mastinos" 2 => "J.D. Pantis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ocean and Coast Management" "fecha" => "2009" "volumen" => "52" "paginaInicial" => "139" "paginaFinal" => "145" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "Miller, 1997" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Miller J.D., 1997, Reproduction in sea turtles. In: Lutz PL, Musick JA (Eds.) The biology of sea turtles. CRC Press, Boca Raton, Florida, 1, p. 51-81." ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "Mortimer, 1982" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Factors influencing beach selection by nesting sea turtle" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.A. Mortimer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "Smithsonian Institution" "paginaInicial" => "45" "paginaFinal" => "52" "serieFecha" => "1982" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "Mrosovsky et al., 1984" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sex rations of two species of sea turtle nesting in Suriname" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N. Mrosovsky" 1 => "P.H. Dutton" 2 => "C.P. Whitmore" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Canadian Journal of Zoology" "fecha" => "1984" "volumen" => "67" "paginaInicial" => "2227" "paginaFinal" => "2239" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "NHC, 2013" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "National Hurricane Center (NHC), Hurricane Research Division; Central Pacific Hurricane Center. The Northeast and North Central Pacific hurricane database 1949-2012. United States National Oceanic and Atmospheric Administration's National Weather Service. (Retrieved August 21, 2013)." ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "Nicholls, 1998" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Nicholls R.J., 1998, Coastal vulnerability assessment for sea level rise: evaluation and selection of methodologies for implementation. Technical Report R098002, Caribbean Planning for Adaption to Global Climate Change, 44 pp." ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "Pereira, 2002" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Pereira Y., 2002, Proceso de anidamiento de <span class="elsevierStyleItalic">Chelonia mydas</span> en Cayo Real, Archipiélago de los Canarreos, Cuba. Universidad de la Habana, Centro de Investigaciones Marinas, Trabajo de diplomado, 48 pp." ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "Perez, 2008" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Perez C.A., 2008, Éxito de anidación de tortuga negra (Chelonia agassizii, Bocourt 1868) en la playa de Colola, Michoacán, México. Tesis de licenciatura. UMSNH. Morelia, México. 42 pp." ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "Pritchard, 1997" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Pritchard P.C.H., 1997, Evolution, Phylogeny and Current Status, in: The biology of sea turtles. CRC Marine Sciences Serie, CRC Press, Inc, p.1-28." ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "Ramírez-Herrera and Urrutia-Fucugauchi, 1999" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.T. Ramírez-Herrera" 1 => "J. Urrutia-Fucugauchi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Geomorphology" "fecha" => "1999" "volumen" => "28" "paginaInicial" => "237" "paginaFinal" => "250" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "Ramírez-Herrera et al., 2011" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Ramírez-Herrera M.T., Kostoglodov V., Urrutia-Fucugauchi J., 2011, Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone, Pure and Applied Geophysics, DOI 10.1007/s00024-010-0205-y." ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "Vermeer and Rahmstorf, 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global sea level linked to global temperature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Vermeer" 1 => "S. Rahmstorf" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Proceedings of the National Academy of Science of the United States" "fecha" => "2009" "volumen" => "51" "paginaInicial" => "21527" "paginaFinal" => "21532" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "Watson et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fishing methods to reduce sea turtle mortality associated with pelagic longlines" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.W. Watson" 1 => "S.P. Epperly" 2 => "A.K. Shah" 3 => "D.G. Foster" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Canadian Journal of Fisheries and Aquatic Sciences" "fecha" => "2005" "volumen" => "62" "paginaInicial" => "965" "paginaFinal" => "981" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "Weibel and Heller, 1991" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Weibel R., Heller M., 1991, Digital terrain modeling. In: Maguire, D.J. (In:) Godchild, M.F. y Rhind, D.W. (Eds.), Geographical Information Systems. Longman, Scientific & Technical, 1, p. 45-54." ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "World Conservation Union, 2001" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "World Conservation Union, 2001, Ruling of the IUCN red list standards and petitions subcommittee on petitions against the 1996 listings of four marine turtle Species. Newsletter of the species survival commission, 36, p. 31-34." ] ] ] ] ] ] ] "lecturaRecomendada" => array:1 [ 0 => array:3 [ "vista" => "all" "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0085">Further reading</span>" "seccion" => array:1 [ 0 => array:2 [ "vista" => "all" "bibliografiaReferencia" => array:1 [ 0 => array:3 [ "identificador" => "bib0220" "etiqueta" => "Norma Oficial Mexicana, 2002" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Norma Oficial Mexicana NOM-059-ECOL-2001, 2002, Protección ambiental-especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Miércoles 6 de marzo de 2012, DIARIO OFICIAL, Segunda Sección, 153 pp." ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack186092" "titulo" => "Acknowledgements" "texto" => "<p id="par0175" class="elsevierStylePara elsevierViewall">We thank J. A. Navarrete-Pacheco and A.D. Flores Domínguez for help with GIS, and A. Grant for English editing. We thank three anonymous reviewers and the editor Professor Cinna Lomnitz for a thorough review and valuable comments that help improving this manuscript. Ramirez-Herrera acknowledges CONACYT-SEP grant No. SEP-CONACYT-129456.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/00167169/0000005400000002/v2_201509120115/S0016716915000148/v2_201509120115/en/main.assets" "Apartado" => array:4 [ "identificador" => "40021" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/00167169/0000005400000002/v2_201509120115/S0016716915000148/v2_201509120115/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0016716915000148?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 0 | 4 |
2024 October | 17 | 2 | 19 |
2024 September | 7 | 2 | 9 |
2024 August | 14 | 1 | 15 |
2024 July | 13 | 3 | 16 |
2024 June | 9 | 1 | 10 |
2024 May | 9 | 3 | 12 |
2024 April | 12 | 1 | 13 |
2024 March | 19 | 2 | 21 |
2024 February | 21 | 4 | 25 |
2024 January | 16 | 2 | 18 |
2023 December | 12 | 8 | 20 |
2023 November | 11 | 2 | 13 |
2023 October | 24 | 2 | 26 |
2023 September | 15 | 2 | 17 |
2023 August | 14 | 3 | 17 |
2023 July | 12 | 7 | 19 |
2023 June | 9 | 5 | 14 |
2023 May | 13 | 2 | 15 |
2023 April | 8 | 0 | 8 |
2023 March | 7 | 2 | 9 |
2023 February | 12 | 4 | 16 |
2023 January | 20 | 3 | 23 |
2022 December | 17 | 6 | 23 |
2022 November | 10 | 11 | 21 |
2022 October | 9 | 9 | 18 |
2022 September | 12 | 7 | 19 |
2022 August | 17 | 6 | 23 |
2022 July | 16 | 7 | 23 |
2022 June | 29 | 6 | 35 |
2022 May | 38 | 7 | 45 |
2022 April | 57 | 3 | 60 |
2022 March | 123 | 9 | 132 |
2022 February | 120 | 3 | 123 |
2022 January | 97 | 4 | 101 |
2021 December | 44 | 11 | 55 |
2021 November | 72 | 9 | 81 |
2021 October | 17 | 9 | 26 |
2021 September | 15 | 8 | 23 |
2021 August | 7 | 5 | 12 |
2021 July | 10 | 7 | 17 |
2021 June | 12 | 7 | 19 |
2021 May | 10 | 8 | 18 |
2021 April | 39 | 10 | 49 |
2021 March | 15 | 10 | 25 |
2021 February | 12 | 12 | 24 |
2021 January | 13 | 9 | 22 |
2020 December | 11 | 8 | 19 |
2020 November | 7 | 7 | 14 |
2020 October | 7 | 9 | 16 |
2020 September | 11 | 11 | 22 |
2020 August | 14 | 17 | 31 |
2020 July | 17 | 8 | 25 |
2020 June | 12 | 4 | 16 |
2020 May | 7 | 4 | 11 |
2020 April | 11 | 3 | 14 |
2020 March | 13 | 4 | 17 |
2020 February | 15 | 6 | 21 |
2020 January | 3 | 0 | 3 |
2019 December | 9 | 8 | 17 |
2019 November | 8 | 9 | 17 |
2019 October | 14 | 6 | 20 |
2019 September | 19 | 10 | 29 |
2019 August | 4 | 3 | 7 |
2019 July | 13 | 9 | 22 |
2019 June | 24 | 16 | 40 |
2019 May | 62 | 38 | 100 |
2019 April | 34 | 12 | 46 |
2019 March | 12 | 5 | 17 |
2019 February | 25 | 8 | 33 |
2019 January | 27 | 0 | 27 |
2018 December | 16 | 4 | 20 |
2018 November | 38 | 2 | 40 |
2018 October | 44 | 15 | 59 |
2018 September | 43 | 3 | 46 |
2018 August | 16 | 3 | 19 |
2018 July | 12 | 2 | 14 |
2018 June | 10 | 3 | 13 |
2018 May | 20 | 10 | 30 |
2018 April | 10 | 10 | 20 |
2018 March | 9 | 0 | 9 |
2018 February | 6 | 3 | 9 |
2018 January | 15 | 3 | 18 |
2017 December | 5 | 1 | 6 |
2017 November | 12 | 6 | 18 |
2017 October | 9 | 3 | 12 |
2017 September | 7 | 3 | 10 |
2017 August | 9 | 9 | 18 |
2017 July | 8 | 0 | 8 |
2017 June | 11 | 31 | 42 |
2017 May | 8 | 7 | 15 |
2017 April | 8 | 2 | 10 |
2017 March | 8 | 87 | 95 |
2017 February | 18 | 2 | 20 |
2017 January | 9 | 1 | 10 |
2016 December | 11 | 9 | 20 |
2016 November | 15 | 6 | 21 |
2016 October | 24 | 6 | 30 |
2016 September | 21 | 2 | 23 |
2016 August | 10 | 4 | 14 |
2016 July | 14 | 2 | 16 |
2016 June | 15 | 8 | 23 |
2016 May | 10 | 6 | 16 |
2016 April | 14 | 6 | 20 |
2016 March | 11 | 13 | 24 |
2016 February | 12 | 12 | 24 |
2016 January | 11 | 9 | 20 |
2015 December | 13 | 12 | 25 |
2015 November | 19 | 9 | 28 |
2015 October | 17 | 12 | 29 |
2015 September | 12 | 5 | 17 |
2015 August | 14 | 11 | 25 |
2015 July | 10 | 10 | 20 |