covid
Buscar en
Infectio
Toda la web
Inicio Infectio Actividad inmunomoduladora y anti-VIH de las estatinas
Journal Information
Vol. 15. Issue 2.
Pages 108-117 (June 2011)
Share
Share
Download PDF
More article options
Vol. 15. Issue 2.
Pages 108-117 (June 2011)
Open Access
Actividad inmunomoduladora y anti-VIH de las estatinas
Immunomodulatory and anti-HIV activity of statins
Visits
3069
Edwin Andrés Higuita1,
Corresponding author
andreshiguitad@gmail.com

Correspondencia Calle 62 N° 52-59, Torre 2, Laboratorio 532, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia. Tel.:éfono: (4) 219- 6482.
, María Teresa Rugeles1, Carlos Julio Montoya1
1 Grupo de Inmunovirología, Universidad de Antioquia, Medellín, Colombia
This item has received

Under a Creative Commons license
Article information
Resumen

Las estatinas son fármacos hipolipemiantes usados para controlar la aterogénesis y las enfermedades cardiovasculares originadas por hipercolesterolemia. Recientemente, se describieron varios efectos pleótropos de las estatinas, dependientes e independientes de la inhibición de la síntesis del colesterol, que van desde la regulación de la respuesta inmunitaria hasta la inhibición de la infección y la replicación viral. El tratamiento antirretroviral contra el VIH inhibe su replicación en las células infectadas, disminuyendo hasta niveles indetectables las copias del ARN viral en el plasma. Esto se asocia al incremento de los linfocitos T CD4+ circulantes y la disminución en la incidencia de infecciones oportunistas y en la mortalidad. Sin embargo, el costo y la complejidad del esquema antirretroviral, además de los efectos colaterales y la aparición de cepas resistentes, indican la necesidad de nuevos tratamientos para la infección por VIH. Como el VIH requiere del colesterol y las balsas de lípidos de la membrana celular para infectar las células blanco y cumplir su ciclo de replicación, se postula que las estatinas pueden ser una alternativa efectiva para ayudar al control de esta infección. La actividad anti-VIH de las estatinas no va dirigida contra las proteínas virales, muy variables por la mutabilidad del virus, sino que se centra en las células afectadas, bloqueando la infección por VIH y modulando su respuesta funcional; desde esta perspectiva, las estatinas evitarían la resistencia por mutaciones virales e intervendrían modulando la respuesta inmunitaria ampliamente alterada por el VIH.

Palabras clave:
estatinas
inmunomodulación
actividad antiviral
virus de inmunodeficiencia humana.
Abstract

Statins are hypolipemiant drugs used for controlling atherogenesis and cardiovascular diseases caused by hypercholesterolemia. Recently, several pleiotropic effects of statins have been reported, whereas dependent or independent of downregulating cholesterol synthesis; these effects range from immune response modulation to inhibition of the infection and viral replication. The antiretroviral therapy against HIV inhibits viral replication in infected cells, decreasing to undetectable levels the number of viral RNA copies in plasma. Consequently, there is an increase in circulating CD4+ T-cell count, and a decrease in the incidence of opportunistic infections and mortality. However, the cost and complexity of antiretroviral regimens, the frequent side effects and the emergence of resistant strains, indicate the need of new approaches for HIV infection. Since HIV virions require of cholesterol in their envelope and the integrity of host membrane lipid rafts, in order to infect target cells and to perform several steps of their replication cycle, it has been proposed that the use of statins in HIV-1 infected patients can be an effective alternative to help control this infection. The anti-HIV activity of statins is not directed against viral proteins, which are highly variable due to viral mutations, but instead it focuses on cellular targets blocking their infection and regulating their functional responses. From this point of view, statins could avoid the emergence of resistant viral strains and intervene in the modulation of the highly altered immune responses.

Keywords:
Statins
immunomodulation
antiviral activity
human immunodeficiency virus.
Full text is only aviable in PDF
Referencias
[1.]
L. Calza, R. Manfredi, F. Chiodo.
Hyperlipidaemia in patients with HIV-1 infection receiving highly active antiretroviral therapy: Epidemiology, pathogenesis, clinical course and management.
Int J Antimicrob Agents, 22 (2003), pp. 89-99
[2.]
L. Calza, R. Manfredi, F. Chiodo.
Statins and fibrates for the treatment of hyperlipidaemia in HIV-infected patients receiving HAART.
[3.]
D.R. Illingworth, J.A. Tobert.
HMG-CoA reductase inhibitors.
Adv Protein Chem, 56 (2001), pp. 77-114
[4.]
J.R. Downs, M. Clearfield, S. Weis, E. Whitney, D.R. Shapiro, P.A. Beere, et al.
Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS Air Force/Texas Coronary Atherosclerosis Prevention Study.
JAMA, 279 (1998), pp. 1615-1622
[5.]
E.C. Jury, F. Flores-Borja, P.S. Kabouridis.
Lipid rafts in T cell signalling and disease.
Semin Cell Dev Biol, 18 (2007), pp. 608-615
[6.]
E.C. Jury, D.A. Isenberg, C. Mauri, M.R. Ehrenstein.
Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus.
J Immunol, 177 (2006), pp. 7416-7422
[7.]
R. Rao, B. Logan, K. Forrest, T.L. Roszman, J. Goebel.
Lipids rafts in cytokine signaling.
Cytok Growth Fact Rev, 15 (2004), pp. 103-110
[8.]
J.A. Aberg, R.A. Zackin, S.W. Brobst, S.R. Evans, B.L. Alston, W.K. Henry, et al.
A randomized trial of the efficacy and safety of fenofibrate versus pravastatin in HIV-infected subjects with lipid abnormalities: AIDS Clinical Trials Group Study 5087.
AIDS Res Hum Retroviruses, 21 (2005), pp. 757-767
[9.]
T. Fehr, C. Kahlert, W. Fierz, H.I. Joller-Jemelka, W.F. Riesen, H. Rickli, et al.
Statin-induced immunomodulatory effects on human T cells in vivo.
Atherosclerosis, 175 (2004), pp. 83-90
[10.]
B. Kwak, F. Mulhaupt, N. Veillard, G. Pelli, F. Mach.
The HMG-CoA reductase inhibitor simvastatin inhibits IFN-gamma induced MHC class II expression in human vascular endothelial cells.
Swiss Med Wkly, 131 (2001), pp. 41-46
[11.]
A. Yilmaz, C. Reiss, O. Tantawi, A. Weng, C. Stumpf, D. Raaz, et al.
HMGCoA reductase inhibitors suppress maturation of human dendritic cells: New implications for atherosclerosis.
Atherosclerosis, 172 (2004), pp. 85-93
[12.]
B. Kwak, F. Mulhaupt, S. Myit, F. Mach.
Statins as a newly recognized type of immunomodulator.
Nat Med, 6 (2000), pp. 1399-1402
[13.]
P.J. García.
Pleiotropic effects of statins: Moving beyond cholesterol control.
Curr Atheroscler Rep, 7 (2005), pp. 34-39
[14.]
E. Groves, A.E. Dart, V. Covarelli, E. Caron.
Molecular mechanisms of phagocytic uptake in mammalian cells.
Cell Mol Life Sci, 65 (2008), pp. 1957-1976
[15.]
S.J. Heasman, A.J. Ridley.
Mammalian Rho GTPases: New insights into their functions from in vivo studies.
Nature Rev, 9 (2008), pp. 690-701
[16.]
J.S. Scheele, R.E. Marks, G.R. Boss.
Signaling by small GTPases in the immune system.
Immunol Rev, 218 (2007), pp. 92-101
[17.]
G. del Real, S. Jiménez-Baranda, E. Mira, R.A. Lacalle, P. Lucas, C. Gómez- Mouton, et al.
Statins inhibit HIV-1 infection by down-regulating Rho activity.
J Exp Med, 200 (2004), pp. 541-547
[18.]
T.B. Issekutz.
Inhibition of lymphocyte endothelial adhesion and in vivo lymphocyte migration to cutaneous inflammation by TA-3, a new monoclonal antibody to rat LFA-1.
J Immunol, 149 (1992), pp. 3394-3402
[19.]
J. Kallen, K. Welzenbach, P. Ramage, D. Geyl, R. Kriwacki, G. Legge, et al.
Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain.
J Mol Biol, 292 (1999), pp. 1-9
[20.]
G. Wallays, J.L. Ceuppens.
Ligation of leukocyte function-associated (LFA) molecule–1 provides an accessory signal for T-cell activation with pokeweed mitogen.
Scand J Immunol, 39 (1994), pp. 137-143
[21.]
G. Weitz-Schmidt, K. Welzenbach, V. Brinkmann, T. Kamata, J. Kallen, C. Bruns, et al.
Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site.
Nat Med, 7 (2001), pp. 687-692
[22.]
L.M. Blanco-Colio, J. Tunon, J.L. Martín-Ventura, J. Egido.
Anti-inflammatory and immunomodulatory effects of statins.
[23.]
J.M. Campistol.
Advances in transplantation and immunosuppression.
Drug News Perspect, 11 (1998), pp. 372-375
[24.]
A. McKay, B.P. Leung, I.B. McInnes, N.C. Thomson, F.Y. Liew.
A novel antiinflammatory role of simvastatin in a murine model of allergic asthma.
J Immunol, 172 (2004), pp. 2903-2908
[25.]
C.J. Vaughan, N. Delanty.
Neuroprotective properties of statins in cerebral ischemia and stroke.
Stroke, 30 (1999), pp. 1969-1973
[26.]
O. Larsson, W. Engstrom.
The role of N-linked glycosylation in the regulation of activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and proliferation of SV40-transformed 3T3 cells.
Biochem J, 260 (1989), pp. 597-600
[27.]
O. Larsson, C. Barrios, C. Latham, J. Ruiz, A. Zetterberg, P. Zickert, et al.
Abolition of mevinolin-induced growth inhibition in human fibroblasts following transformation by simian virus 40.
Cancer Res, 49 (1989), pp. 5605-5610
[28.]
J.H. Overmeyer, W.A. Maltese.
Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein.
J Biol Chem, 267 (1992), pp. 22686-22692
[29.]
T.L. Gower, B.S. Graham.
Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro.
Antimicrob Agents Chemother, 45 (2001), pp. 1231-1237
[30.]
R. Carrillo-Esper.
Statins in influenza: Time for a controlled clinical study.
Cirugía y Cirujanos, 77 (2009), pp. 351-352
[31.]
Y.L. Lin, M.S. Shiao, C. Mettling, C.K. Chou.
Cholesterol requirement of hepatitis B surface antigen (HBsAg) secretion.
Virology, 314 (2003), pp. 253-260
[32.]
L. Potena, G. Frascaroli, F. Grigioni, T. Lazzarotto, G. Magnani, L. Tomasi, et al.
Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells.
Circulation, 109 (2004), pp. 532-536
[33.]
C. Rothwell, A. Lebreton, C. Young Ng, J.Y. Lim, W. Liu, S. Vasudevan, et al.
Cholesterol biosynthesis modulation regulates dengue viral replication.
[34.]
R. Saladino, U. Ciambecchini, L. Nencioni, A.T. Palamara.
Recent advances in the chemistry of parainfluenza-1 (Sendai) virus inhibitors.
Med Res Rev, 23 (2003), pp. 427-455
[35.]
M. Ikeda, K. Abe, M. Yamada, H. Dansako, K. Naka, N. Kato.
Different anti-HCV profiles of statins and their potential for combination therapy with interferon.
Hepatology, 44 (2006), pp. 117-125
[36.]
R. Mihaila, L. Nedelcu, O. Fratila, E.C. Rezi, C. Domnariu, R. Ciuca, et al.
Lovastatin and fluvastatin reduce viremia and the pro-inflammatory cytokines in the patients with chronic hepatitis C.
Hepato-Gastroenterology, 56 (2009), pp. 1704-1709
[37.]
J. Ye, C. Wang, R. Sumpter Jr., M.S. Brown, J.L. Goldstein, M. Gale Jr..
Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation.
Proc Natl Acad Sci USA, 100 (2003), pp. 15865-15870
[38.]
L. Delang, J. Paeshuyse, I. Vliegen, P. Leyssen, S. Obeid, D. Durantel, et al.
Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development.
Hepatology, 50 (2009), pp. 6-16
[39.]
S.A. Harrison, L. Rossaro, K.Q. Hu, K. Patel, H. Tillmann, S. Dhaliwal, et al.
Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy.
Hepatology, 52 (2010), pp. 864-874
[40.]
M.R. Goldstein, L. Mascitelli, F. Pezzetta.
Statins and hepatitis C virus: More caution and less enthusiasm.
The American Journal of Gastroenterology, 103 (2008), pp. 3207-3208
[41.]
S. Khorashadi, N.K. Hasson, R.C. Cheung.
Incidence of statin hepatotoxicity in patients with hepatitis C.
Clin Gastroenterol Hepatol, 4 (2006), pp. 902-907
[42.]
A. Lonardo, P. Loria, M. Bertolotti, N. Carulli.
Statins and HCV: A complex issue.
Hepatology, 45 (2007), pp. 257
[43.]
S. Tandra, R. Vuppalanchi.
Use of statins in patients with liver disease.
Current treatment options in cardiovascular medicine, 11 (2009), pp. 272-278
[44.]
C.J. Montoya, M.E. Moreno, M.T. Rugeles.
Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1.
Infectio, 10 (2006), pp. 250-265
[45.]
D.E. Cohen, B.D. Walker.
Human immunodeficiency virus pathogenesis and prospects for immune control in patients with established infection.
Clin Infect Dis, 32 (2001), pp. 1756-1768
[46.]
J.V. Giorgi, Z. Liu, L.E. Hultin, W.G. Cumberland, K. Hennessey, R. Detels.
Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: Results of 6 years of follow-up.
J Acquir Immune Defic Syndr, 6 (1993), pp. 904-912
[47.]
M.D. Hazenberg, S.A. Otto, B.H.B. van Benthem, M.T.L. Roos, R.A. Coutinho, J.M.A. Lange, et al.
Persistent immune activation in HIV-1 infection is associated with progression to AIDS.
[48.]
F.J. Palella, K.M. Delaney, A.C. Moorman, M.O. Loveless, J. Fuhrer, G.A. Satten, et al.
Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection.
N Engl J Med, 338 (1998), pp. 853-860
[49.]
D. Finzi, M. Hermankova, T. Pierson, L.M. Carruth, C. Buck, R.E. Chaisson, et al.
Identification of a reservoir for HIV-1 in patients on highly active retroviral therapy.
Science, 278 (1997), pp. 1295-1300
[50.]
T. Amet, M. Nonaka, M.Z. Dewan, Y. Saitoh, X. Qi, S. Ichinose, et al.
Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replica tion.
Microbes and Infection/Institut Pasteur, 10 (2008), pp. 471-480
[51.]
S.M. Campbell, S.M. Crowe, J. Mak.
Virion associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity.
AIDS, 16 (2002), pp. 2253-2261
[52.]
G.C. Carter, L. Bernstone, D. Sangani, J.W. Bee, T. Harder, W. James.
HIV entry in macrophages is dependent on intact lipid rafts.
Virology, 386 (2009), pp. 192-202
[53.]
V.F. Corrales-Medina, F. Del Carpio, R. Concha, S. Symes.
Statins and HIV: Beyond the metabolic and cardiovascular benefit.
J Acquir Immune Defic Syndr, 39 (2005), pp. 503-504
[54.]
M. Guyader, E. Kiyokawa, L. Abrami, P. Turelli, D. Trono.
Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization.
J Virol, 76 (2002), pp. 10356-10364
[55.]
Z. Liao, L.M. Cimakasky, R. Hampton, D.H. Nguyen, J.E. Hildreth.
Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1.
AIDS Res, 17 (2001), pp. 1009-1019
[56.]
G. del Real, S. Jiménez-Baranda, R.A. Lacalle, E. Mira, P. Lucas, C. Gómez- Mouton, et al.
Blocking of HIV-1 infection by targeting CD4 to nonraft membrane domains.
J Exp Med, 196 (2002), pp. 293-301
[57.]
A.A. Waheed, E.O. Freed.
The role of lipids in retrovirus replication.
Viruses, 2 (2010), pp. 1146-1180
[58.]
S. Manes, G. del Real, R.A. Lacalle, P. Lucas, C. Gómez-Mouton, S. Sánchez- Palomino, et al.
Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection.
EMBO Rep, 1 (2000), pp. 190-196
[59.]
A. Alfsen, P. Iniguez, E. Bouguyon, M. Bomsel.
Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1.
J Immunol, 166 (2001), pp. 6257-6265
[60.]
Y.H. Zheng, A. Plemenitas, C.J. Fielding, B.M. Peterlin.
Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions.
Proc Natl Acad Sci USA, 1000 (2003), pp. 8460-8465
[61.]
J.K. Wang, E. Kiyokawa, E. Verdin, D. Trono.
The Nef protein of HIV- 1 associates with rafts and primes T cells for activation.
Proc Natl Acad Sci USA, 97 (2000), pp. 394-399
[62.]
L. Bastiani, D. Cecilia, E.M. Fenyo, S. Laal, S. Zolla-Pazner.
HIV phenotype correlates with the relative amounts of lymphocyte functionrelated molecule 1 (LFA-1) and major histocompatibility complex (MHC) class II in the virion envelope.
AIDS, 14 (2000), pp. 1523-1531
[63.]
F.G. van der Goot, T. Harder.
Raft membrane domains: From a liquidordered membrane phase to a site of pathogen attack.
Semin Immunol, 13 (2001), pp. 89-97
[64.]
M. Viard, I. Parolini, M. Sargiacomo, K. Fecchi, C. Ramoni, S. Ablan, et al.
Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells.
J Virol, 76 (2002), pp. 11584-11595
[65.]
N. Vincent, C. Genin, E. Malvoisin.
Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups.
Biochim Biophys, 1567 (2002), pp. 157-164
[66.]
A. Saez-Cirion, S. Nir, M. Lorizate, A. Agirre, A. Cruz, J. Pérez-Gil, et al.
Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring.
J Biol Chem, 277 (2002), pp. 21776-21785
[67.]
Z. Liao, D.R. Graham, J.E. Hildreth.
Lipid rafts and HIV pathogenesis: Virion-associated cholesterol is required for fusion and infection of susceptible cells.
AIDS Res Hum Retroviruses, 19 (2003), pp. 675-687
[68.]
Y.M. Lee, B. Liu, X.F. Yu.
Formation of virus assembly intermediate complexes in the cytoplasm by wild-type and assembly-defective mutant human immunodeficiency virus type 1 and their association with membranes.
J Virol, 73 (1999), pp. 5654-5662
[69.]
O.W. Lindwasser, M.D. Resh.
Human immunodeficiency virus type 1 Gag contains a dileucine-like motif that regulates association with multivesicular bodies.
[70.]
J.F. Fortin, R. Cantin, G. Lamontagne, M. Tremblay.
Host-derived ICAM- 1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity.
J Virol, 71 (1997), pp. 3588-3596
[71.]
L. Butini, A.R. De Fougerolles, M. Vaccarezza, C. Graziosi, D.I. Cohen, M. Montroni, et al.
Intercellular adhesion molecules (ICAM)–1 ICAM-2, and ICAM-3 function as counter-receptors for lymphocyte function-associated molecule 1 in human immunodeficiency virus– mediated syncytia formation.
Eur J Immunol, 24 (1994), pp. 2191-2195
[72.]
M.J. Tremblay, J.F. Fortin, R. Cantin.
The acquisition of host-encoded proteins by nascent HIV-1.
Immunol Today, 19 (1998), pp. 346-351
[73.]
S.W. Park, W. Royal, R.D. Semba, G.W. Wiegand, D.E. Griffin.
Expression of adhesion molecules and CD28 on T lymphocytes during human immunodeficiency virus infection.
Clin Diagn Lab Immunol, 5 (1998), pp. 583-587
[74.]
M. Bolomini-Vittori, A. Montresor, C. Giagulli, D. Staunton, B. Rossi, M. Martinello, et al.
Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module.
Nature immunology, 10 (2009), pp. 185-194
[75.]
A. Mor, M.L. Dustin, M.R. Philips.
Small GTPases and LFA-1 reciprocally modulate adhesion and signaling.
Immunological reviews, 218 (2007), pp. 114-125
[76.]
M. Nishibori, H.K. Takahashi, S. Mori.
The regulation of ICAM-1 and LFA-1 interaction by autacoids and statins: A novel strategy for controlling inflammation and immune responses.
J Pharmacol Sci, 92 (2003), pp. 7-12
[77.]
A. Smith, M. Bracke, B. Leitinger, J.C. Porter, N. Hogg.
LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment.
Journal of Cell Science, 116 (2003), pp. 3123-3133
[78.]
J.E. Hildreth, R.J. Orentas.
Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation.
Science, 244 (1989), pp. 1075-1078
[79.]
R. Pearce-Pratt, D.M. Phillips.
Studies of adhesion of lymphocytic cells: Implications for sexual transmission of human immunodeficiency virus.
Biol Reprod, 48 (1993), pp. 431-445
[80.]
V. Varthakavi, R.M. Smith, K.L. Martin, A. Derdowski, L.A. Lapierre, J.R. Goldenring, et al.
The pericentriolar recycling endosome plays a key role in Vpu-mediated enhancement of HIV-1 particle release.
[81.]
G. Vidricaire, M.J. Tremblay.
Rab5 and Rab7, but not ARF6, govern the early events of HIV-1 infection in polarized human placental cells.
J Immunol, 175 (2005), pp. 6517-6530
[82.]
A.M. Booth, Y. Fang, J.K. Fallon, J.M. Yang, J.E. Hildreth, S.J. Gould.
Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane.
J Cell Biol, 172 (2006), pp. 923-935
[83.]
N. Izquierdo-Useros, M. Naranjo-Gómez, I. Erkizia, M.C. Puertas, F.E. Borras, J. Blanco, et al.
HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?.
PLoS Pathogens, 6 (2010), pp. e1000740
[84.]
A.A. Nabatov, G. Pollakis, T. Linnemann, W.A. Paxton, M.P. de Baar.
Statins disrupt CCR5 and RANTES expression levels in CD4+ T lymphocytes in vitro and preferentially decrease infection of R5 versus X4 HIV-1.
[85.]
J.C. Probasco, S.S. Spudich, J. Critchfield, E. Lee, N. Lollo, S.G. Deeks, et al.
Failure of atorvastatin to modulate CSF HIV-1 infection: Results of a pilot study.
[86.]
L. Waters, J. Stebbing, R. Jones, S. Mandalia, M. Bower, M. Stefanovic, et al.
The effect of statins on HIV rebound and blips.
J Acquir Immune Defic Syndr, 39 (2005), pp. 637-638
[87.]
P.A. Sklar, H. Masur, J.R. Grubb, J. Voell, J. Witek, A. Ono, et al.
Pravastatin does not have a consistent antiviral effect in chronically HIV-infected individuals on antiretroviral therapy.
AIDS, 19 (2005), pp. 1109-1111
[88.]
D.M. Aboulafia, R. Johnston.
Simvastatin-induced rhabdomyolysis in an HIV-infected patient with coronary artery disease.
AIDS Patient Care STDS, 14 (2000), pp. 13-18
[89.]
A. Benesic, M. Zilly, F. Kluge, B. Weissbrich, R. Winzer, H. Klinker, et al.
Lipid lowering therapy with fluvastatin and pravastatin in patients with HIV infection and antiretroviral therapy: Comparison of efficacy and interaction with indinavir.
Infection, 32 (2004), pp. 229-233
[90.]
F. Bonnet, E. Balestre, R. Thiebaut, P. Mercie, M. Dupon, P. Morlat, et al.
Fibrates or statins and lipid plasma levels in 245 patients treated with highly active antiretroviral therapy. Aquitaine Cohort, France, 1999-2001.
[91.]
D. Hurlimann, R. Chenevard, F. Ruschitzka, M. Flepp, F. Enseleit, M. Bechir, et al.
Effects of statins on endothelial function and lipid profile in HIV infected persons receiving protease inhibitor-containing antiretroviral combination therapy: A randomized double blind crossover trial.
Heart, 92 (2006), pp. 110-112
[92.]
E. Martínez, M. Tuset, A. Milinkovic, J.M. Miro, J.M. Gatell.
Management of dyslipidaemia in HIV-infected patients receiving antiretroviral therapy.
Antivir Ther, 9 (2004), pp. 649-663
[93.]
S.R. Penzak, S.K. Chuck, G.V. Stajich.
Safety and efficacy of HMG-CoA reductase inhibitors for treatment of hyperlipidemia in patients with HIV infection.
Pharmacotherapy, 20 (2000), pp. 1066-1071
[94.]
P.A. Sklar, H. Masur, J.R. Grubb, J. Voell, J. Witek, A. Ono, et al.
Pravastatin does not have a consistent antiviral effect in chronically HIV-infected individuals on antiretroviral therapy.
AIDS, 19 (2005), pp. 1109-1111
Copyright © 2011. Asociación Colombiana de Infectología (ACIN)
Article options