covid
Buscar en
Infectio
Toda la web
Inicio Infectio Caracterización genómica de la integración in vitro del VIH-1 en células mon...
Journal Information
Vol. 14. Issue 1.
Pages 20-30 (March 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 1.
Pages 20-30 (March 2010)
Open Access
Caracterización genómica de la integración in vitro del VIH-1 en células mononucleares de sangre periférica, macrófagos y células T de Jurkat
Genomic Characterization of HIV-1 in vitro Integration in Peripheral Blood Mononuclear Cells, Macrophages and Jurkat T Cells
Visits
2337
Juliana Soto1, Ángela Peña1, Mercedes Salcedo1, Martha C. Domínguez1, Adalberto Sánchez1, Felipe García-Vallejo1,
Corresponding author
labiomol@gmail.com

Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Aparta do aéreo 25360, Cali, Colombia.
1 Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
This item has received

Under a Creative Commons license
Article information
Resumen
Introducción

La mayor parte del genoma celular es accesible a la integración retroviral; sin embargo, se propone que este proceso no es aleatorio y es dependiente de cada retrovirus.

Objetivos

Identificar y caracterizar las regiones del genoma humano en donde ocurre la integración del virus de la inmunodeficiencia humana de tipo 1 (VIH-1) en células mononucleares de sangre periférica, macrófagos y células T de Jurkat infectadas.

Materiales y métodos

Se seleccionaron 300 secuencias de ADN humano obtenidas por el método de ligación mediada por PCR, previamente depositadas en el GenBank. Utilizando el programa BLAST, sólo 264 de ellas se incluyeron en el estudio, pues se pudo obtener información sobre localización cromosómica, genes anotados, secuencias repetidas, número de islas CpG y tiempo medio de replicación, entre otras variables genómicas. Estas secuencias se exportaron a otras bases de datos.

Resultados

El 53% (140/264) de las integraciones se registraron en bandas G. El 70,45% de los provirus se localizaron en los genes humanos anotados, mientras que el restante lo hizo en elementos repetidos. En general, la selección del sitio de integración se relacionó con las características locales genómicas y estructurales de la cromatina, entre las que se incluyen secuencias Alu-Sx y L1, densidad génica y de islas CpG, remodelación de la cromatina y tiempo de replicación. Éstas influenciarían la interacción eficiente del complejo de preintegración con los genomas celulares.

Conclusión

Se determinó que la integración del VIH-1 en los genomas celulares estudiados estaría condicionada por características diferenciales de la cromatina y por procesos epigenéticos que influirían la selección del sitio blanco de integración.

Palabras clave:
virus de la inmunodeficiencia humana 1
integración retroviral
bioinformática
genoma humano.
Abstract
Introduction

Most of the infected host cell genome is available for retroviral integration; however, it has been proposed that this process does not occur at random and depends upon each type of retrovirus.

Objective

The objective is to identify and characterize differences in human genome regions of peripheral blood mononuclear cells, macrophages and Jurkat T cells in which integration of HIV-1 occurs.

Material and Methods

Three hundred human DNA genome sequences, previously deposited in the GenBank, were selected at random. Using program BLAST, only 264 of them were included in the study because relevant information about chromosomal position, associated genes, repetitive sequences, number of CpG islands and average replication time was available; these sequences were exported to other data bases for analysis.

Results

53% (140/264) of integrations were located on G bands. 70.45% of provirus was located in human genes and the rest was located in repetitive elements. In general the integration site selection was correlated with genomics and structural characteristics of cell chromatin including Alu-Sx and L1 sequences, gene and CpG island densities, remodeling of chromatin, and replication time. All of them would influence the efficient interaction between the pre-integration complex and target cell genomes.

Conclusion

It was determined that HIV-1 integration in target cellular genomes would be conditioned by differential characteristics of associated chromatin and by epigenetic processes that would influence the selection of integration sites.

Key words:
Human Immunodeficiency Virus 1
retroviral integration
bioinformatics
human genome
Full text is only aviable in PDF
Referencias
[1.]
F. Barre-Sinoussi, J.C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, et al.
Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).
Science, 220 (1983), pp. 868-871
[2.]
Z.F. Rosenberg, A.S. Fauci.
The immunophatogenesis of HIV Infection.
Adv Immunology, 47 (1989), pp. 377-431
[3.]
J.A. Levy.
Pathogenesis of human immunodeficiency virus infection.
Microbiol Review, 57 (1993), pp. 183-289
[4.]
C. Vink, R. Lutzke, R. Plasterk.
Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA.
Nucleic Acids Res, 22 (1994), pp. 4103-4110
[5.]
B. van Maele, K. Busschots, L. Vandekerckhove, F. Christ, Z. Debyser.
Cellular co-factors of HIV-1 integration.
Trends Biochem Sci, 31 (2006), pp. 98-105
[6.]
P. Cherepanov, G. Maertens, P. Proost, B. Devreese, J. Beeumen.
HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells.
J Biol Chem, 278 (2003), pp. 372-381
[7.]
A. Ciuffi, F.D. Bushman.
Retroviral DNA integration. HIV and the role of LEDGF/p75.
Trends in Genetics, 22 (2006), pp. 388-395
[8.]
D. Grandgenett.
Symmetrical recognition of cellular DNA target sequences during retroviral integration.
Proc Natl Acad Sci USA, 102 (2005), pp. 5903-5904
[9.]
M. Karczewski, K. Strebel.
Cytoskeletal association and virion incorporation of the human immunodeficiency virus type 1 Vif protein.
J Virol, 70 (1996), pp. 494-507
[10.]
E. Le Rouzic, A. David, J. Mazzolini, J. Bouchet, S. Bouaziz, F. Niedergang, et al.
Localization of HIV-1 Vpr to the nuclear envelope: impact on Vpr functions and virus replication in macrophages.
Retrovirology, 4 (2007), pp. 84-98
[11.]
M.I. Bukrinsky, N. Sharova, M.P. Dempsey, T.L. Stanwick, A.G. Bukrinskaya, S. Haggerty, et al.
Active nuclear import of human immunodeficiency virus type 1 ipreintegration complexes.
Proc Natl Acad Sci USA, 89 (1992), pp. 6580-6584
[12.]
U. von Schwedler, R. Kornbluth, D. Trono.
The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes.
Proc Natl Acad Sci USA, 91 (1994), pp. 6992-6996
[13.]
P. Gallay, S. Swingler, J. Song, F. Bushman, D. Trono.
HIV-1 infection of nondividing cells; C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator.
Cell, 83 (1995), pp. 569-576
[14.]
L. Pemberton, G. Blobel, J. Rosenblum.
Transport routes through the nuclear pore complex.
Curr Opin Cell Biol, 10 (1998), pp. 392-399
[15.]
M. Bukrinsky, O. Haffar.
HIV-1 nuclear import: in search of a leader.
Front Biosci, 2 (1997), pp. d578
[16.]
A. Levin, A. Armor-Omer, J. Rosenbluh, N. Melamed-Book, A. Graessmann, E. Waigman, et al.
Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal.
Retrovirology, 6 (2009), pp. 112
[17.]
M.K. Lewinski, D. Bisgrove, P. Shinn, H. Chen, C. Hoffmann, S. Hannenhalli, et al.
Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription.
[18.]
D. Bisgrove, M. Lewinski, F.D. Bushman, E. Verdin.
Molecular mechanisms of HIV-1 proviral latency.
Expert Rev Anti Infect Ther, 3 (2005), pp. 805-814
[19.]
S.M. Rick, B.F. Beitzel, A.R. Schroder, P. Shinn, H. Chen, C.C. Berry, et al.
Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
Plos Biology, 2 (2004), pp. 1127-1137
[20.]
C.W. Arendt, D.R. Littman.
HIV: master of the host cell.
Genome Biol, 2 (2001), pp. 1030.1
[21.]
D. Derse, B. Crise, Y. Li, G. Princler, C. Stewart, F. Connor, et al.
HTLV-1 integration target sites in the human genome: comparison with other retroviruses.
J Virol, 81 (2007), pp. 6731-6741
[22.]
A. Albanese, D. Arosio, M. Terreni, A. Cereseto.
HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery.
Plos One, 3 (2008), pp. 1-9
[23.]
A.R. Schroder, P. Shinn, H. Chen, C. Berry, J.R. Ecker, F. Bushman.
HIV-1 integration in the human genome favors active genes and local hotspots.
Cell, 110 (2002), pp. 521-529
[24.]
K.J. Meaburn, T. Misteli.
Cell biology: chromosome territories.
Nature, 445 (2007), pp. 379-381
[25.]
A. Rosa, R. Everaers.
Structure and dynamics of interphase chromosomes.
PLoS Comput Biol, 4 (2008), pp. e1000153
[26.]
S. Barr, A. Ciuffi, J. Leipzig, P. Shinn, J. Ecker, F. Bushman.
HIV Integration site selection: targeting in macrophages and the effects of different routes of viral entry.
Molecular Therapy, 14 (2006), pp. 218-225
[27.]
C.C. Berry, J.R. Ecker, F.D. Bushman.
Retroviral DNA integration: ASLV HIV, and MLV show distinct target site preferences.
[28.]
G.P. Wang, A. Ciuffi, J. Leipzig, C.C. Berry, F.D. Bushman.
HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications.
Genome Res, 17 (2007), pp. 1186-1194
[29.]
K.D. Pruitt, T. Tatusova, D.R. Maglott.
NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Res, 33 (2005), pp. D501-D504
[30.]
D.L. Wheeler, T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, V. Chetvernin, et al.
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res, 34 (2006), pp. D173-D180
[31.]
Paris Conference 1971.
Supplement standardization in human cytogenetics.
Cytogenetic Cell Genet, 15 (1975), pp. 203-238
[32.]
K. Woodfine, H. Fiegler, D. Beare, J. Collins, O. Mccann, B. Young, et al.
Replication timing of the human genome.
Hum Mol Genet, 13 (2004), pp. 191-202
[33.]
F.S. Collins, M. Morgan, A. Patrinos.
The Human Genome Project: lessons from large-scale biology.
Science, 300 (2003), pp. 286-290
[34.]
J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, et al.
The sequence of the human genome.
Science, 291 (2001), pp. 1304-1351
[35.]
H. Liu, E.C. Dow, A. Reetakshi, J.T. Kimata, L.M. Bull, R.C. Arduino, et al.
Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes.
J Virol, 80 (2006), pp. 7765-7768
[36.]
B. Crise, Y. Li, C. Yuan, D.R. Morcock, D. Whitby, D.J. Munroe, et al.
Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1.
[37.]
X. Wu, Y. Li, B. Crise, S.M. Burgess.
Transcription start regions in the human genome are favored targets for MLV integration.
Science, 300 (2003), pp. 1749-1751
[38.]
G.D. Trobridge, D.G. Miller, M.A. Jacobs, J.M. Allen, H.P. Kiem, R. Kaul, et al.
Foamy virus vector integration sites in normal human cells.
Proc Natl Academy Science USA, 103 (2006), pp. 1498-1503
[39.]
Y. Kang, C. Moressi, T. Scheetz, L. Xie, D. Thi-Tran, T. Casavant, et al.
Integration site choice of a feline immunodeficiency virus vector.
J Virol, 80 (2003), pp. 8820-8823
[40.]
H. Nakada, M. Inoue, N. Tanaka, N. Wakamiya, I. Yamashina.
Expression of the T antigen on a T-lymphoid cell line, supT1.
Glycoconj J, 12 (1995), pp. 356-359
[41.]
R.B. Effros, R. Allsopp, C.P. Chiu, M.A. Hausner, K. Hirji, L. Wang, et al.
Shortened telomeres in the expanded CD28- CD8- cell subset in HIV disease implicate replicative senescence in HIV pathogenesis.
AIDS, 10 (1996), pp. F17
[42.]
M. Dagarag, T. Evazyan, N. Rao, R.B. Effros.
Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization.
J Immunol, 15 (2004), pp. 6303-6311
[43.]
J. Flint, G.P. Bates, K. Clark, A. Dorman, D. Willingham, B.A. Roe, et al.
Sequence comparison of human and yeast telomeres identities structurally distinct subtelomeric domains.
Hum Mol Genet, 6 (1997), pp. 1305-1313
[44.]
Riethman H. Human telomere structure and biology.
Annu Rev Genomics Hum Genet, 9 (2008), pp. 1-19
[45.]
P.P. Kumar, S. Mehta, P.K. Purbey, D.N. Ranveer, S. Jayani, H.J. Purohit, et al.
ATB1-binding sequences and Alu-like motifs define a unique chromatin context in the vicinity of human immunodeficiency virus type 1 integration sites.
J Virol, 81 (2007), pp. 5617-5627
[46.]
M.A. Batzer, P.L. Deininger.
Alu repeats and human genomic diversity.
Nat Rev Genet, 3 (2002), pp. 370-379
[47.]
C.D. Eller, M. Regelson, B. Merriman, S. Nelson, S. Horvath, Y. Marahrens.
Gene.
Repetitive sequence environment distinguishes housekeeping genes, 390 (2007), pp. 153-165
[48.]
M.S. Giri, M. Nebozhyn, L. Showe, L.J. Montaner.
Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006.
J Leukoc Biol, 80 (2006), pp. 1031-1043
Copyright © 2010. Asociación Colombiana de Infectología (ACIN)
Download PDF
Article options