covid
Buscar en
Infectio
Toda la web
Inicio Infectio Mutación en el gen gyrA de aislamientos hospitalarios de Acinetobacter baumanni...
Journal Information
Vol. 14. Issue 2.
Pages 97-104 (June 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 2.
Pages 97-104 (June 2010)
Open Access
Mutación en el gen gyrA de aislamientos hospitalarios de Acinetobacter baumannii en Montería, Colombia
Mutation of the gyrA Gen in Acinetobacter Baumannii Nosocomial Isolates in Monteria, Colombia
Visits
4004
Pedro Martínez1, Salim Máttar1,
Corresponding author
mattarsalim@hotmail.com

Correspondencia: Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Montería, Colombia Telefax: (574) 756-0710 http://www.unicordoba.edu.co/institutos/iibt/.
1 Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Montería, Colombia
This item has received

Under a Creative Commons license
Article information
Resumen
Objetivo

Determinar las mutaciones del gen gyrA asociadas con la resistencia a fluoroquinolonas en Acinetobacter baumannii.

Materiales y métodos

Entre agosto de 2005 y febrero de 2007 se recolectaron 23 aislamientos de A. baumannii de una clínica privada de tercer nivel de Montería. Se investigaron los genes gyrA, parC y adeB; este último codifica para la bomba de salida. Se realizó secuenciación del ADN y, para el análisis de las secuencias, se usaron la base de datos GenBank y el motor de búsqueda BLASTX.

Resultados

La amplificación del gen gyrA en aislamientos de A. baumannii generó un fragmento de 343 pb, el cual presentó pérdida del sitio de restricción con la enzima Hinfl en 12/23 (52,1%) de los aislamientos resistentes a fluoroquinolonas. La secuenciación del fragmento mostró mutación puntual conel cambio de Ser-83 a Leu, código de acceso GenBank EU886740. No se encontraron mutaciones en el gen parC, ni la presencia de la bomba de salida Ade.

Conclusión

Los aislamientos de A. baumannii resistentes a fluoroquinolonas sugieren que la mutación del gen gyrA que codifica el cambio del aminoácido serina a leucina en el codón 83 de estos aislamientos, es responsable o, al menos, contribuye con la resistencia expresada a las fluoroquinolonas.

Palabras clave:
Acinetobacter baumannii
fluoroquinolonas
gyrA
parC
adeB
Colombia
Abstract
Objective

Determine mutations in the gyrA gene associated to resistance to fluoroquinolones in A. baumannii.

Materials and methods

From August, 2005 to February, 2007, 23 A. baumannii isolates were collected in a third level private clinic in Monteria. Research on gyrA, parC and AdeB genes was carried out, and the latter encodes for the efflux pump. DNA sequencing was performed, and the GenBank database and BLASTX search engine were used for sequence analysis.

Results

Amplification of the gyrA gene in A. baumannii isolates generated a 343pb fragment which presented loss of restriction site with the enzyme HinfI in 12/23 (52.1%) of the isolates resistant to fluoroquinolones. The fragment sequencing showed mutation characterized by the change of Ser-83 to Leu GenBank acces code EU886740. None of the isolates showed mutations in the parC gene or presence of the AdeB efflux pump.

Conclusion

The A. baumannii isolates resistant to fluoroquinolones suggest that mutation of the gyrA gene encoding the serine amino acid change to leucine at codon 83 of these isolates is responsible or at least contributes to the mentioned resistance to fluoroquinolones.

Key words:
A. baumannii
fluoroquinolones
resistance
gyrA
parC
AdeB
Colombia
Full text is only aviable in PDF
Referencias
[1.]
J. Adams-Haduch, D. Paterson, H. Sidjabat, A. Pasculle, B. Potoski, C. Muto, et al.
Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania.
Antimicrobl Agents Chemother., 52 (2008), pp. 3837-3843
[2.]
Munoz-Price, R. Weinstein.
Acinetobacter infection.
N Engl J Med., 358 (2008), pp. 1271-1281
[3.]
J. Karlowsky, D. Draghi, M. Jones, C. Thornsberry, I. Friedland, D. Sahm.
Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001.
Antimicrob Agents Chemother., 47 (2003), pp. 1681-1688
[4.]
J. Alós.
Quinolonas.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 261-268
[5.]
A. Diomedis.
Infecciones por A. baumannii pan-resistentes Consideraciones epidemiológicas y manejo antimicrobiano actualizado.
Rev Chil Infect, 22 (2005), pp. 298-320
[6.]
P. Martínez, M. Mercado, S. Máttar.
Determinación de blactamasas de espectro extendido en gérmenes nosocomiales del Hospital San Jerónimo.
Montería. Colomb Med, 34 (2003), pp. 196-205
[7.]
K. Hujer, A. Hujer, A. Endimiani, J. Thomson, M. Adams, K. Goglin, et al.
Rapid determination of quinolone resistance in Acinetobacter spp.
J Clin Microbiol, 47 (2009), pp. 1436-1442
[8.]
J. Mak, M. Kim, J. Pham, J. Tapsall, P. White.
Antibiotic resistance determinants in nosocomial strains of multidrugresistant Acinetobacter baumannii.
J Antimicrob Chemother, 63 (2009), pp. 47-54
[9.]
A. Hamouda, S. Amyes.
Novel gyrA and parC point mutations in two strains of Acinetobacter baumannii resistant to ciprofloxacin.
J Antimicrob Chemother, 54 (2004), pp. 695-696
[10.]
P. Higgins, H. Wisplinghoff, D. Stefanik, H. Seifert.
Selection of topoisomerase mutations and overexpression of AdeB mRNA transcripts during an outbreak of Acinetobacter baumannii.
J Antimicrob Chemother, 54 (2004), pp. 821-823
[11.]
L. Damier-Piolle, S. Magnet, S. Brémont, T. Lambert, P. Courvalin.
AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii.
Antimicrob Agents Chemother, 52 (2008), pp. 557-562
[12.]
J. Tran, G. Jacoby, D. Hooper.
Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase.
Antimicrob Agents Chemother, 49 (2005), pp. 118-125
[13.]
A. Peleg, H. Seifert, D. Paterson.
Acinetobacter baumannii: Emergence of a successful pathogen.
Clin Microbiol Rev, 21 (2008), pp. 538-582
[14.]
Clinical and Laboratory Standards, Institute..
Performance standards for antimicrobial susceptibility testing; 17th informational, supplement.
Clinical and Laboratory Standards Institute, (2007),
[15.]
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman.
Basic local alignment search tool.
J Mol Biol., 215 (1990), pp. 403-410
[16.]
J. Thompson, D. Higgins, T. Gibson.
CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res, 22 (1994), pp. 4673-4680
[17.]
Y. Lin, K. Hsia, Y. Chen, W. Sheng, S. Chang, M. Liao, et al.
Genetic basis of multidrug resistance in Acinetobacter clinical isolates in Taiwan.
Antimicrob Agents Chemother, 54 (2010), pp. 2078-2084
[18.]
J. Vila, J. Ruiz, P. Goñi, T. Jiménez de Anta.
Quinoloneresistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii.
J Antimicrob Chemother, 39 (1997), pp. 757-762
[19.]
G. Jacoby.
Mechanisms of resistance to quinolones.
Clin Infect Dis, 41 (2005), pp. S120-S126
[20.]
J. Kyu, Y. Seon, Y. Keun, B. Su.
Mutations in the gyrA and parC genes in ciprofloxacin-resistant clinical isolates of Acinetobacter baumanniiin Korea.
Microbiol Immunol, 49 (2005), pp. 647-653
[21.]
J. Oteo, J. Campos.
Uso de quinolonas y resistencia.
Enferm Infecc Microbiol Clin, 22 (2004), pp. 201-203
[22.]
T. Akasaka, M. Tanaka, A. Yamaguchi, K. Sato.
Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance.
Antimicrob Agents Chemother, 45 (2001), pp. 2263-2268
[23.]
J. Heddle, A. Maxwell.
Quinolone-binding pocket of DNA gyrase: role of gyrB.
Antimicrob Agents Chemother, 46 (2002), pp. 1805-1815
[24.]
P. Martínez, M. Mercado, S. Máttar.
Actividad in vitro de moxifloxacina comparada con otros antibióticos frente a aislamientos nosocomiales de dos hospitales de Colombia.
Universitas Médica, 45 (2004), pp. 101-109
[25.]
S. Jalal, O. Ciofu, N. Hoiby, N. Gotoh, B. Wretlind.
Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients.
Antimicrob Agents Chemother, 44 (2000), pp. 710-712
[26.]
C. Moubareck, S. Bremont, M. Conroy, P. Courvalin, T. Lambert.
GES-11, a novel integron-associated GES variant in Acinetobacter baumannii.
Antimicrob Agents Chemother, 53 (2009), pp. 3579-3581
[27.]
A. Nemec, L. Dolzani, S. Brisse, P. van den Broek, L. Dijkshoorn.
Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones.
J Med Microbiol, 53 (2004), pp. 1233-1240
[28.]
T. Lim, K. Ledesma, K. Chang, J. Hou, A. Kwa, M. Nikolaou, et al.
Quantitative assessment of combination antimicrobial therapy against multidrug-resistant Acinetobacter baumannii.
Antimicrob Agents Chemother, 52 (2008), pp. 2898-2904
[29.]
G. Drusano, S. Preston, C. Fowler, M. Corrado, B. Weisinger, J. Kahn.
Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia.
J Infect Dis, 189 (2004), pp. 1590-1597
[30.]
J. Vila, J. Ruiz, P. Goñi, A. Marcos, T. Jiménez De Anta.
Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii Antimicrobial Agents Chemother, 39 (1995), pp. 1201-1203
[31.]
J. Vila, J. Ruiz, P. Goñi, M. Jiménez de Anta.
Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli.
Antimicrob Agents Chemother, 40 (1996), pp. 491-493
[32.]
S. Magnet, P. Courvalin, T. Lambert.
Resistance-nodulationcell division-type efflux pump involved in aminoglucoside resistance in Acinetobacter baumannii strain BM4454.
Antimicrob Agents Chemother, 45 (2001), pp. 3375-3380
Copyright © 2010. Asociación Colombiana de Infectología (ACIN)
Download PDF
Article options