covid
Buscar en
Infectio
Toda la web
Inicio Infectio Péptidos antimicrobianos
Journal Information
Vol. 14. Issue 1.
Pages 55-67 (March 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 1.
Pages 55-67 (March 2010)
Revisión De Tema
Open Access
Péptidos antimicrobianos
Antimicrobial peptides
Visits
12416
Germán Alberto Téllez1, Jhon Carlos Castaño
,1
1 Grupo de inmunología molecular, Universidad del Quindío, Armenia, Colombia
This item has received

Under a Creative Commons license
Article information
Resumen

Los péptidos antimicrobianos son las moléculas efectoras del sistema inmune innato, cuyas familias se encuentran en casi todos los organismos, desde bacterias hasta mamíferos. Son una familia de sustancias polifacéticas con complejos mecanismos de acción relacionados con la interacción con el patógeno a través de su membrana, o afectando blancos internos, como la replicación del ADN y la síntesis de proteínas, e interactuando con el huésped con funciones inmunomoduladoras de la regulación del proceso inflamatorio y de la cicatrización.

Aunque la generación de resistencia a los péptidos antimicrobianos es mucho menor si se compara con la generada por los antibióticos convencionales, existen mecanismos de resistencia ya descritos, como la degradación por proteasas, la liberación de proteínas inhibidoras o los cambios en la conformación de la membrana externa del patógeno. El estudio de estas sustancias ha permitido evidenciar sus usos potenciales en el ámbito clínico para contrarrestar los inconvenientes de la resistencia a los antibióticos; sin embargo, a pesar de los grandes avances logrados en este campo, aún quedan puntos controversiales por dilucidar.

Palabras clave:
péptidos catiónicos antimicrobianos
péptidos de defensa del huésped
defensinas
antibióticos
cecropinas
catelicidinas
Abstract

The antimicrobial peptides (AMP) are the effectors molecules of the innate immune system, finding groups of this kind of substances in almost all living organisms from bacteria to mammals. They are a family of versatile substances with complexes action mechanisms in the pathogen they interact with membrane, DNA synthesis and protein synthesis and folding, and also with the host showing immunomodulatory functions in wound healing and inflammation process. Even though the generation of resistance to the AMP is lower compare with conventional antibiotics there are resistance mechanism already describe to this kind of substances like degradation by proteases, releasing of inhibitory substances or conformational changes in the external membrane of the pathogen. Actually the study of this group of substances has make them see as potential tools for clinical use helping to counteract the problem of antibiotic resistance, but even great progress had been made in this field there still exist some controversial issues for future study.

Key words:
antimicrobial peptides
cationic antimicrobial peptides
host defense peptides
defensins
antibiotics
cecropins
cathelicidins
Full text is only aviable in PDF
Referencias
[1.]
R.E.W. Hancock, G. Diamond.
The role of cationic antimicrobial peptides in innate host defences.
Trends Microbiol., 8 (2000), pp. 402-410
[2.]
A.K. Marr, W.J. Gooderham, R.E. Hancock.
Antibacterial peptides for therapeutic use: obstacles and realistic outlook.
Curr Opin Pharmacol., 6 (2006), pp. 468-472
[3.]
P. Bulet, R. Stöcklin, L. Menin.
Anti-microbial peptides from invertebrates to vertebrates.
Immunoll Rev., 198 (2004), pp. 169-184
[4.]
K.A. Brogden.
Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?.
Nat Rev Microbiol., 3 (2005), pp. 238-250
[5.]
D. Yang, A. Biragyn, D.M. Hoover, J. Lubkowski, J.J. Oppenheim.
Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense.
Annu Rev Immunol., 22 (2004), pp. 181-215
[6.]
J.D.F. Hale, R.E.W. Hancock.
Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.
Exprt Rev Anti Infect Ther., 5 (2007), pp. 951-959
[7.]
R.E. Hancock, H.G. Sahl.
Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.
Nat Biotechnol., 24 (2006), pp. 1551-1557
[8.]
R.E.W. Hancock.
Cationic antimicrobial peptides: towards clinical applications.
Expert Opin Invest Dis., 9 (2000), pp. 1723-1729
[9.]
M.G. Scott, R.E.W. Hancock.
Cationic antimicrobial peptides and their multifunctional role in the immune system.
Crit Rev Immunol., 20 (2000), pp. 407-431
[10.]
R.E. Hancock.
Cationic peptides: effectors in innate immunity and novel antimicrobials.
Lancet Infect Dis., 1 (2001), pp. 156-164
[11.]
R.S. Dassanayake, Y.I. Silva Gunawardene, S.S. Tobe.
Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs.
[12.]
M. Brahmachary, S.P.T. Krishnan, J.L.Y. Koh, A.M. Khan, S.H. Seah, T.W. Tan, et al.
ANTIMIC: a database of antimicrobial sequences.
Nucleic acids research., 32 (2004), pp. 586-589
[13.]
S. Thennarasu, D.K. Lee, A. Tan, K.U. Prasad, A. Ramamoorthy.
Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843.
Biochim Biophys Acta., 1711 (2005), pp. 49-58
[14.]
N.P. Chongsiriwatana, J.A. Patch, A.M. Czyzewski, M.T. Dohm, A. Ivankin, D. Gidalevitz, et al.
Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides.
Proc Natl Acad Sci USA., 105 (2008), pp. 2794-2799
[15.]
M. Meister, C. Hetru, J.A. Hoffman.
The antimicrobial host defenses of Drosophila.
pp. 17-36
[16.]
G. Diamond, J.P. Russell, C.L. Bevins.
Inducible expression of an antibiotic peptide gene in lipopolysaccharide challenged tracheal epithelial cells.
Proc Natl Acad. Sci., 93 (1996), pp. 5156-5160
[17.]
T. Ganz.
the role of antimicrobial peptides in innate immunity.
Integr Comp Biol, 43 (2003), pp. 300-304
[18.]
Y. Kaneko, S. Furukawa, H. Tanaka, M. Yamakawa.
Expression of antimicrobial peptide genes encoding enbocin and gloverin isoforms in the silkworm.
Bombyx mori. Biosci Biotenchnol Biochem., 71 (2007), pp. 2233-2241
[19.]
A.J. Ouellette, M.E. Selsted.
Paneth cell defensins: Endogenous peptide components of intestinal host defense.
FASEB J., 10 (1996), pp. 1280-1289
[20.]
H. Jenssen, P. Hamill, R.E.W. Hancock.
Peptide antimicrobial agents.
Clin Microbiol Rev., 19 (2006), pp. 491-511
[21.]
L. Yang, T.A. Harrou, T.M. Weiss, L. Ding, Hw. Huang.
Barrel-stave model or toroidal model?. A case study on melittin pores.
Biophysical Journal., 81 (2001), pp. 1475-1485
[22.]
P.V. LinksDubovskii, P.E. Volynsky, A.A. Polyansky, D.V. Karpunin, V.V. Chupin, R.G. Efremov, et al.
Three-dimensional structure/hydrophobicity of latarcins specifies their mode of membrane activity.
Biochemistry., 47 (2008), pp. 3525-3533
[23.]
C.B. Park, H.S. Kim, S.C. Kim.
Mechanism of action of the antimicrobial peptide Buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting the cell membrane and inhibiting cellular functions.
Biochem Biophys Res Commun., 244 (1998), pp. 253-257
[24.]
C. Marchand, K. Krajewski, H.F. Lee, S. Antony, A.A. Johnson, R. Amin, P. Roller, M. Kvaratskhelia, Y. Pommier.
Covalent binding of the natural antimicrobial peptide indolicin to DNA abasic sites.
Nucl Acids Res., 34 (2006), pp. 5157-5165
[25.]
G. Kragol, S. Lovas, G. Varadi, B.A. Condie, R. Hoffmann, L. Otvos Jr..
The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding.
Biochemestry., 40 (2001), pp. 3016-3026
[26.]
L. Otvos Jr., I. O, M.E. Rogers, P.J. Consolvo, B.A. Condie, S. Lovas, P. Bulet, M. Blaszczyk-Thurin.
Interaction between heat shock protein and antimicrobial peptides.
Biochemestry., 39 (2000), pp. 14150-14159
[27.]
C.L. Friedrich, A. Rozek, A. Patrzkat, R.E.W. Hancock.
Structure and mechanism of action of an indolicina peptide derivative with improved activity against Gram-positive bacteria.
J Biol Cehm., 276 (2001), pp. 24015-24022
[28.]
A. Bellomio, P.A. Vincent, B.F. de Arcuri, R.N. Farías, R.D. Morero.
Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production.
J Bacteriol., 189 (2007), pp. 4180-4186
[29.]
J.J. Oppenheim, D. Yang.
Alarmins: chemotactic activators of immune responses.
Curr Opin Immunol, 17 (2005), pp. 359-365
[30.]
D.M.E. Bowdish, D.J. Davidson, R.E.W. Hancock.
A re-evaluation of the role of host defense peptides in mammalian immunity.
Curr Protein Pept Sci., 6 (2005), pp. 35-51
[31.]
L. Steinstaesser, T. Koehler, F. Jacobsen, A. Daigeler, G. Ole, S. Langer, et al.
Host defense peptides in wound healing.
[32.]
P.H. Lee, J.A. Rudisill, K.H. Lin, L. Zhang, S.M. Harris, T.J. Falla, et al.
HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair.
Wound Repair Regen., 12 (2004), pp. 351-358
[33.]
J. Shi, C.R. Ross, T.L. Leto, F. Blecha.
PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox.
Proc Natl Acad Sci USA., 93 (1996), pp. 6014-6018
[34.]
R.L. Gallo, M. Ono, T. Povsic, C. Page, E. Eriksson, M. Klagsbrun, et al.
Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds.
Proc Natl Acad Sci USA., 91 (1994), pp. 11035-11039
[35.]
D.M. Bowdish, D.J. Davidson, Y.E. Lau, M.G. Scott, R.E.W. Hancock.
Impact of LL-37 on antiinfective immunity.
Journal of Leukocyte Biology., 77 (2005), pp. 451-459
[36.]
G.G. Perron, M. Zasloff, G. Bell.
Experimental evolution of resistance to an antimicrobial peptide.
Proc Biol Sci., 273 (2006), pp. 251-256
[37.]
A.S. Bayer, R. Prasad, J. Chandra, A. Koul, M. Smriti, A. Varma, et al.
In vitro resistance Staphylococcus aureus to thrombin induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity.
Infect Immun., 68 (2000), pp. 3548-3553
[38.]
D.A. Devine.
Antimicrobial peptides in defense of the oral and respiratory tracts.
Molecular Immunology., 40 (2003), pp. 431-443
[39.]
M.A. Campos, M.A. Vargas, V. Regueiro, C.M. Llompart, S. Albertí, J.A. Bengoechea.
Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides.
Infect Immun., 72 (2004), pp. 7107-7114
[40.]
J.P.S. Powers, R.E.W. Hancock.
The relationship between antimicrobial peptide structure and antibacterial activity.
Peptides., 24 (2003), pp. 1681-1691
[41.]
M.D. Winfield, T. Latifi, E.A. Groisman.
Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis.
J Biol Chem., 280 (2005), pp. 14765-14772
[42.]
V. Nizet.
Antimicrobial peptide resistance mechanisms of human bacterial pathogens.
Curr Issues Mol Biol., 8 (2006), pp. 11-26
[43.]
T. Jin, M. Bokarewa, T. Foster, J. Mitchell, J. Higgins, A. Tarkowski.
Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism.
J Immunol., 172 (2004), pp. 1169-1176
[44.]
Y. Ge, D.L. MacDonald, K.J. Holroyd, C. Thornsberry, H. Wexler, M. Zasloff.
In vitro antibacterial properties of pexiganan, an analog of magainin.
Antimicrob Agents Chemother., 43 (1999), pp. 782-788
[45.]
L. Zhang, J. Parente, S.M. Harris, D.E. Woods, R.E.W. Hancock, T.J. Falla.
Antimicrobial peptide therapeutics for cystic fibrosis.
Antimicrob Agents Chemother., 49 (2005), pp. 2921-2927
[46.]
K.V.R. Reddy, D.D. Manjramkar.
Evaluation of the antifertility effect of magainin-A in rabbits: in vitro and in vivo studies.
Fertil Steril., 73 (2000), pp. 353-358
[47.]
K.V. Reddy, R.D. Yedery, C. Aranha.
Antimicrobial peptides: premises promises.
Int J. Antimicrob Agents, 24 (2004), pp. 536-547
[48.]
J.P. Bradshaw.
Cationic antimicrobial peptides issues for potential clinical use.
Biodrugs., 17 (2003), pp. 233-240
[49.]
Y.J. Gordon, E.G. Romanowski.
A review of antimicrobial peptides and their therapeutic potencial as anti-infective drugs.
Curr Eye Res., 30 (2005), pp. 505-515
[50.]
E. Andrès, J.L. Dimarco.
Cationic antimicrobial peptides: update of clinical development.
Journal of Internal Medicine., 255 (2004), pp. 519-520
[51.]
W.H. Lee, J. Zhang, Y.X. Zhang, Y. Jin, R. Lai, Y. Zhang.
Maximin 9, a novel free thiol containing antimicrobial peptide with antimycoplasma activity from frog Bombina maxima.
FEBS Lett., 579 (2005), pp. 4443-4448
[52.]
C. Samakovlis, P. Kylsten, D.A. Kimbrell, A. Engström, D. Hultmark.
The ropin gene its product a male-specific antibacterial peptide in Drosophila melanogaster.
EMBO J., 10 (1991), pp. 163-169
[53.]
A. Pillai, S. Ueno, H. Zhang, J.M. Lee, Y. Kato.
Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum.
Biochem J., 390 (2005), pp. 207-214
[54.]
F. Mehrnejad, H. Naderi-Manesh, B. Ranjbar.
The structural properties of magainin in water TFE/water, and aqueous urea solutions: molecular dynamics simulations.
Proteins., 67 (2007), pp. 931-940
[55.]
M.L. Mangoni, N. Grovale, A. Giorgi, G. Mignogna, M. Simmaco, D. Barra.
Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions.
Peptides., 21 (2000), pp. 1673-1679
[56.]
S.Y. Shin, E.J. Park, S.T. Yang, H.J. Jung, S.H. Eom, W.K. Song, et al.
Structure-activity analysis of SMAP-29, a sheep leukocytesderived antimicrobial peptide.
Biochem Biophys Res Commun., 285 (2001), pp. 1046-1051
[57.]
P.G. Barlow, Y. Li, T.S. Wilkinson, D.M. Bowdish, Y.E. Lau, C. Cosseau, et al.
The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system.
J Leukoc Biol., 80 (2006), pp. 509-520
[58.]
P. Casteels, C. Ampe, L. Riviere, J. van Damme, C. Elicone, M. Fleming, et al.
Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera).
Eur J Biochem., 187 (1990), pp. 381-386
[59.]
G. Kragol, R. Hoffmann, M.A. Chattergoon, S. Lovas, M. Cudic, P. Bulet, et al.
Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin.
Eur J Biochem., 269 (2002), pp. 4226-4237
[60.]
Y. Wang, J. Johansson, W.J. Griffiths.
Characterization of variant forms of prophenin: mechanistic aspects of the fragmentation of proline-rich peptides.
Rapid Commun Mass Spectrom., 14 (2000), pp. 2182-2202
[61.]
P. Casteels, C. Ampe, F. Jacobs, P. Tempst.
Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera).
J Biol Chem., 268 (1993), pp. 7044-7054
[62.]
P. Bulet, S. Cociancich, J.L. Dimarcq, J. Lambert, J.M. Reichhart, D. Hoffmann, et al.
Insect immunity Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family.
J Biol Chem., 266 (1991), pp. 24520-24525
[63.]
H.P. Stallmann, C. Faber, A.L. Bronckers, J.M. de Blieck-Hogervorst, C.P. Brouwer, A.V. Amerongen, et al.
Histatin and lactoferrin derived peptides: antimicrobial properties and effects on mammalian cells.
Peptides., 26 (2005), pp. 2355-2359
[64.]
J.M. Conlon, N. Al-Ghaferi, B. Abraham, H. Jiansheng, P. Cosette, J. Leprince, et al.
Antimicrobial peptides from diverse families isolated from the skin of the Asian frog Rana grahami.
Peptides., 27 (2006), pp. 2111-2117
[65.]
R.I. Lehrer, T. Ganz.
Endogenous vertebrate antibiotics Defensins, protegrins, and other cysteine-rich antimicrobial peptides.
Ann N Y Acad Sci., 797 (1996), pp. 228-239
[66.]
D.L. Diamond, J.R. Kimball, S. Krisanaprakornkit, T. Ganz, B.A. Dale.
Detection of beta-defensins secreted by human oral epithelial cells.
J Immunol Methods., 256 (2001), pp. 65-76
[67.]
B.E. Haug, M.B. Strøm, J.S. Svendsen.
The medicinal chemistry of short lactoferricin-based antibacterial peptides.
Curr Med Chem., 14 (2007), pp. 1-18
Copyright © 2010. Asociación Colombiana de Infectología (ACIN)
Download PDF
Article options