covid
Buscar en
Ingeniería, Investigación y Tecnología
Toda la web
Inicio Ingeniería, Investigación y Tecnología Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electr...
Journal Information

Statistics

Follow this link to access the full text of the article

Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electrical Network and Newton-Raphson
Modelación numérica del anillo de Thomson en levitación estacionaria usando circuitos eléctricos, MEF y Newton-Raphson
Guzmán Juana,
Corresponding author
maestro_juan_rafael@hotmail.com

Corresponding author.
, González-Montañez Felipe de Jesúsb, Escarela-Pérez Rafaelc, Olivares-Galván Juan Carlosd, Jiménez-Mondragon Victor Manuele
a Departamento de Energía Universidad Autónoma Metropolitana (UAM) Unidad Azcapotzalco
b Departamento de Energía Universidad Autónoma Metropolitana (UAM) Unidad Azcapotzalco
c Departamento de Energía Universidad Autónoma Metropolitana (UAM) Unidad Azcapotzalco
d Departamento de Energía Universidad Autónoma Metropolitana (UAM) Unidad Azcapotzalco
e Departamento de Energía Universidad Autónoma Metropolitana (UAM) Unidad Azcapotzalco
Read
4841
Times
was read the article
1065
Total PDF
3776
Total HTML
Share statistics
 array:23 [
  "pii" => "S1405774315000232"
  "issn" => "14057743"
  "doi" => "10.1016/j.riit.2015.05.005"
  "estado" => "S300"
  "fechaPublicacion" => "2015-07-01"
  "aid" => "19"
  "copyrightAnyo" => "2015"
  "documento" => "article"
  "crossmark" => 0
  "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
  "subdocumento" => "fla"
  "cita" => "Revista Ingeniería Investigación y Tecnología. 2015;16:431-9"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 2178
    "formatos" => array:3 [
      "EPUB" => 40
      "HTML" => 1541
      "PDF" => 597
    ]
  ]
  "itemSiguiente" => array:18 [
    "pii" => "S1405774315000256"
    "issn" => "14057743"
    "doi" => "10.1016/j.riit.2015.05.007"
    "estado" => "S300"
    "fechaPublicacion" => "2015-07-01"
    "aid" => "21"
    "documento" => "article"
    "crossmark" => 0
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Revista Ingeniería Investigación y Tecnología. 2015;16:441-52"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 2990
      "formatos" => array:3 [
        "EPUB" => 47
        "HTML" => 2291
        "PDF" => 652
      ]
    ]
    "en" => array:12 [
      "idiomaDefecto" => true
      "titulo" => "VLSI Design with Alliance Free CAD Tools: an Implementation Example"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "441"
          "paginaFinal" => "452"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Diseño VLSI con herramientas CAD libres de Alliance: un ejemplo de implementación"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0010"
          "etiqueta" => "Figure 2"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr2.jpeg"
              "Alto" => 900
              "Ancho" => 1025
              "Tamanyo" => 87521
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">I&#47;O terminals from the SPI MASTER core&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Ch&#225;vez-Bracamontes Ram&#243;n, Garc&#237;a-L&#243;pez Reyna Itzel, Gurrola-Navarro Marco Antonio, Bandala-S&#225;nchez Manuel"
          "autores" => array:4 [
            0 => array:2 [
              "nombre" => "Ch&#225;vez-Bracamontes"
              "apellidos" => "Ram&#243;n"
            ]
            1 => array:2 [
              "nombre" => "Garc&#237;a-L&#243;pez Reyna"
              "apellidos" => "Itzel"
            ]
            2 => array:2 [
              "nombre" => "Gurrola-Navarro Marco"
              "apellidos" => "Antonio"
            ]
            3 => array:2 [
              "nombre" => "Bandala-S&#225;nchez"
              "apellidos" => "Manuel"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405774315000256?idApp=UINPBA00004N"
    "url" => "/14057743/0000001600000003/v1_201507020200/S1405774315000256/v1_201507020200/en/main.assets"
  ]
  "itemAnterior" => array:18 [
    "pii" => "S1405774315000219"
    "issn" => "14057743"
    "doi" => "10.1016/j.riit.2015.05.003"
    "estado" => "S300"
    "fechaPublicacion" => "2015-07-01"
    "aid" => "17"
    "documento" => "article"
    "crossmark" => 0
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Revista Ingenier&#237;a Investigaci&#243;n y Tecnolog&#237;a. 2015;16:419-30"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 2324
      "formatos" => array:3 [
        "EPUB" => 39
        "HTML" => 1747
        "PDF" => 538
      ]
    ]
    "es" => array:12 [
      "idiomaDefecto" => true
      "titulo" => "Desarrollo de un modelo matem&#225;tico para procesos multivariables mediante Balanced Six Sigma"
      "tienePdf" => "es"
      "tieneTextoCompleto" => "es"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "419"
          "paginaFinal" => "430"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "en" => array:1 [
          "titulo" => "Development of a Mathematical Model for Multivariate Process by Balanced Six Sigma"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "es" => true
      ]
      "contienePdf" => array:1 [
        "es" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0010"
          "etiqueta" => "Figura 2"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr2.jpeg"
              "Alto" => 1337
              "Ancho" => 2060
              "Tamanyo" => 206348
            ]
          ]
          "descripcion" => array:1 [
            "es" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Dendograma integrado por el an&#225;lisis cluster&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "D&#237;az-Castellanos Elizabeth Eugenia, D&#237;az- Ramos Carlos, Barroso-Moreno Luis Alberto, Pico-Gonz&#225;lez Beatriz"
          "autores" => array:4 [
            0 => array:2 [
              "nombre" => "D&#237;az-Castellanos Elizabeth"
              "apellidos" => "Eugenia"
            ]
            1 => array:2 [
              "nombre" => "D&#237;az- Ramos"
              "apellidos" => "Carlos"
            ]
            2 => array:2 [
              "nombre" => "Barroso-Moreno Luis"
              "apellidos" => "Alberto"
            ]
            3 => array:2 [
              "nombre" => "Pico-Gonz&#225;lez"
              "apellidos" => "Beatriz"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "es"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405774315000219?idApp=UINPBA00004N"
    "url" => "/14057743/0000001600000003/v1_201507020200/S1405774315000219/v1_201507020200/es/main.assets"
  ]
  "en" => array:20 [
    "idiomaDefecto" => true
    "titulo" => "Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electrical Network and Newton-Raphson"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "431"
        "paginaFinal" => "439"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "Guzm&#225;n Juan, Gonz&#225;lez-Monta&#241;ez Felipe de Jes&#250;s, Escarela-P&#233;rez Rafael, Olivares-Galv&#225;n Juan Carlos, Jim&#233;nez-Mondragon Victor Manuel"
        "autores" => array:5 [
          0 => array:4 [
            "nombre" => "Guzm&#225;n"
            "apellidos" => "Juan"
            "email" => array:1 [
              0 => "maestro&#95;juan&#95;rafael&#64;hotmail&#46;com"
            ]
            "referencia" => array:2 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:4 [
            "nombre" => "Gonz&#225;lez-Monta&#241;ez Felipe de"
            "apellidos" => "Jes&#250;s"
            "email" => array:1 [
              0 => "fjgm&#64;correo&#46;azc&#46;uam&#46;mx"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
            ]
          ]
          2 => array:4 [
            "nombre" => "Escarela-P&#233;rez"
            "apellidos" => "Rafael"
            "email" => array:1 [
              0 => "r&#46;escarela&#64;ieee&#46;org"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
          3 => array:4 [
            "nombre" => "Olivares-Galv&#225;n Juan"
            "apellidos" => "Carlos"
            "email" => array:1 [
              0 => "jolivare&#95;1999&#64;yahoo&#46;com"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">d</span>"
                "identificador" => "aff0020"
              ]
            ]
          ]
          4 => array:4 [
            "nombre" => "Jim&#233;nez-Mondragon Victor"
            "apellidos" => "Manuel"
            "email" => array:1 [
              0 => "vmjm1986&#64;gmail&#46;com"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">e</span>"
                "identificador" => "aff0025"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:5 [
          0 => array:3 [
            "entidad" => "Departamento de Energ&#237;a Universidad Aut&#243;noma Metropolitana &#40;UAM&#41; Unidad Azcapotzalco"
            "etiqueta" => "a"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Departamento de Energ&#237;a Universidad Aut&#243;noma Metropolitana &#40;UAM&#41; Unidad Azcapotzalco"
            "etiqueta" => "b"
            "identificador" => "aff0010"
          ]
          2 => array:3 [
            "entidad" => "Departamento de Energ&#237;a Universidad Aut&#243;noma Metropolitana &#40;UAM&#41; Unidad Azcapotzalco"
            "etiqueta" => "c"
            "identificador" => "aff0015"
          ]
          3 => array:3 [
            "entidad" => "Departamento de Energ&#237;a Universidad Aut&#243;noma Metropolitana &#40;UAM&#41; Unidad Azcapotzalco"
            "etiqueta" => "d"
            "identificador" => "aff0020"
          ]
          4 => array:3 [
            "entidad" => "Departamento de Energ&#237;a Universidad Aut&#243;noma Metropolitana &#40;UAM&#41; Unidad Azcapotzalco"
            "etiqueta" => "e"
            "identificador" => "aff0025"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "Modelaci&#243;n num&#233;rica del anillo de Thomson en levitaci&#243;n estacionaria usando circuitos el&#233;ctricos&#44; MEF y Newton-Raphson"
      ]
    ]
    "resumenGrafico" => array:2 [
      "original" => 0
      "multimedia" => array:7 [
        "identificador" => "fig0025"
        "etiqueta" => "Figure 5"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr5.jpeg"
            "Alto" => 1200
            "Ancho" => 1546
            "Tamanyo" => 58467
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Average Lorentz force <span class="elsevierStyleItalic">f<span class="elsevierStyleInf">zav</span></span> as a function of the distance <span class="elsevierStyleItalic">z<span class="elsevierStyleInf">s</span></span>&#46;</p>"
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">In the electric industry is important to have electric systems of immediate breaking and safe&#46; Some of these electric systems consist of power switchers&#44; which use the Thomson ring &#40;Meyer and Rufer&#44; 2006Meyer &#38; Rufer&#59; <a class="elsevierStyleCrossRef" href="#bib0065">Meyer and Rufer&#44; 2006Meyer &#38; Rufer&#44; 2006</a>&#41;&#46; Other systems utilize the Thomson ring as actuator to eliminate the electric arcs &#40;<a class="elsevierStyleCrossRef" href="#bib0045">Li&#44; Jeong&#44; Yoon&#44; &#38; Koh&#44; 2010</a>&#41;&#46; Other applications of the Thomson ring consist in the levitation of superconductor materials &#40;<a class="elsevierStyleCrossRef" href="#bib0070">Patitsas&#44; 2011</a>&#41;&#46; Therefore&#44; it is important the numerical modeling of the Thomson ring&#46; The Thomson ring consists of a coil with ferromagnetic core on which an aluminum ring levitates&#46; The coil is fed by a cosine voltage&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">The modeling of the electromagnetic field of any electric device &#40;as the Thomson ring&#41; requires of the knowledge of the current density&#46; However&#44; this knowledge cannot be known a priori&#46; It is known a priori the power source voltage instead of current density&#46; In the literature&#44; several methods &#40;<a class="elsevierStyleCrossRefs" href="#bib0020">Belforte <span class="elsevierStyleItalic">et al</span>&#46;&#44; 1985&#59; Bissal <span class="elsevierStyleItalic">et al</span>&#46;&#44; 2010&#59; Konrad&#44; 1982&#59; Lombard and Meunier&#44; 1992</a>&#44; <a class="elsevierStyleCrossRefs" href="#bib0055">1993&#59; Meunier <span class="elsevierStyleItalic">et al&#46;</span>&#44; 1988&#59; Piriou and Razek&#44; 1989</a>&#41; have been developed to calculate the electromagnetic field if the power source voltage is supplied&#58; integro-differential method &#40;<a class="elsevierStyleCrossRef" href="#bib0040">Konrad&#44; 1982</a>&#41;&#59; direct methods &#40;<a class="elsevierStyleCrossRef" href="#bib0020">Belforte <span class="elsevierStyleItalic">et al</span>&#46;&#44; 1985</a>&#59; Meunier <span class="elsevierStyleItalic">et al</span>&#46;&#44; 1988&#59; <a class="elsevierStyleCrossRef" href="#bib0075">Piriou and Razek&#44; 1989</a>&#41;&#59; and methods that use electric networks equations &#40;<a class="elsevierStyleCrossRefs" href="#bib0015">Barry and Casey&#44; 1999&#59; Bissal <span class="elsevierStyleItalic">et al</span>&#46;&#44; 2010&#59; Lombard and Meunier&#44; 1992&#44; 1993</a>&#41;&#46; In this work is supposed that the power source voltage is known and the current density is calculated using electric networks equations&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">Several studies have analyzed the mathematical and physics models of the Thomson ring&#46; In the work of <a class="elsevierStyleCrossRef" href="#bib0025">Bissal <span class="elsevierStyleItalic">et al</span>&#46; &#40;2010&#41;</a> is modeled the dynamic behavior of the Thomson ring&#44; which consist of a coil without ferromagnetic core&#46; In this work&#44; the coil is fed by a capacitor&#46; <a class="elsevierStyleCrossRef" href="#bib0015">Barry and Casey &#40;1999&#41;</a> obtained analytical solutions of the force acting on the aluminum ring in a stationary levitated position&#46; In the work of <a class="elsevierStyleCrossRef" href="#bib0045">Li <span class="elsevierStyleItalic">et al</span>&#46; &#40;2010&#41;</a> is analyzed the dynamic characteristics of the Thomson ring used as actuator to eliminate the electric arcs&#46; In the work of <a class="elsevierStyleCrossRef" href="#bib0070">Patitsas &#40;2011&#41;</a> is developed a new modality of Thomson ring&#46; This modality consisted in keeping the stable levitation of a superconductor sphere immerse in a magnetic field supplied by a coil&#46;</p><p id="par0020" class="elsevierStylePara elsevierViewall">The aim of this work is to analyze the Thomson ring when the aluminum ring is a stationary levitated position&#46; This situation is reached if the coil is fed by a cosine voltage&#46; In the stationary levitation&#44; the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field&#46; These equations are discretized using the Galerkin method&#46; These discretized equations are solved using the COMSOL software &#40;<a class="elsevierStyleCrossRef" href="#bib0030">COMSOL&#44; 2008</a>&#41;&#46; It is described the methodology &#40;which uses the Newton-Raphson method&#41; that obtains the separation between the coil and the aluminum ring in stationary levitation &#40;mechanical equilibrium&#41;&#46; Also&#44; the separation obtained with this methodology is compared with the experimental data for different values of the power source voltage&#46; It is concluded that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high&#46;</p><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Experimental setup</span><p id="par0025" class="elsevierStylePara elsevierViewall">The Thomson ring used in this work consists of a coil with ferromagnetic core&#59; where an aluminum ring is threaded on the core&#44; as shown in <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>&#46; The ferromagnetic core consists in a solid cylinder that is collocated vertically&#44; as is illustrated in <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>&#46; In this figure&#44; <span class="elsevierStyleItalic">Z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">S</span></span> represents the distance between the coil and the aluminum ring&#46;</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">The coil is made of copper wire and consists of 1140 turns &#40;see&#44; <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>&#41;&#46; This coil is fed by a cosine voltage given by<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0035" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf">0</span> is the amplitude&#59; <span class="elsevierStyleItalic">&#969;</span> &#61; 2<span class="elsevierStyleItalic">&#960;f</span> is the angular frequency &#40;<span class="elsevierStyleItalic">f</span> being the natural frequency&#41;&#44; as shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>&#46; The electric and magnetic characteristics of the materials used in the Thomson ring are indicated in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>&#46; The ferromagnetic core is iron whose relativity permeability is taken from the data base of <a class="elsevierStyleCrossRef" href="#bib0030">COMSOL &#40;2008&#41;</a>&#46;</p><p id="par0040" class="elsevierStylePara elsevierViewall">In order to take advantage of axial symmetry&#44; the Thomson ring is represented by means of axisymmetric geometry as depicted in <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>&#46; In this Figure&#44; a cylinder coordinate system is chosen so that the <span class="elsevierStyleItalic">r</span>-axis represents the horizontal axis&#44; the <span class="elsevierStyleItalic">z</span>-axis represents the vertical axis&#46; The dimensions of the aluminum ring are&#58; interior radius of 0&#46;031 m&#44; exterior radius of 0&#46;0365 m and height of 0&#46;018 m as illustrated in <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>&#46; In this figure&#44; <span class="elsevierStyleItalic">Z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">S</span></span> is the separation distance between aluminum ring and copper coil&#46;</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0045" class="elsevierStylePara elsevierViewall">The copper coil forms a toroid with dimensions&#58; interior radius of 0&#46;025 m&#44; exterior radius of 0&#46;039 m&#44; and height of 0&#46;075 m&#44; as shown in <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>&#46; The distance between base of ferromagnetic core and base of copper coil is 0&#46;025 m&#46; The copper coil is threaded on a ferromagnetic cylinder &#40;ferromagnetic core&#41;&#46; The ferromagnetic core has a radius of 0&#46;0235 m and height of 0&#46;41 m&#44; as depicted in <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>&#46;</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Solution methodology</span><p id="par0050" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Electromagnetic field equations</span></span></p><p id="par0055" class="elsevierStylePara elsevierViewall">In this section the equations that describe the electromagnetic field in the Thomson ring are presented&#46; The magnetic field B&#8594;&#61;&#8711;&#215;A&#8594; &#40;A&#8594; being the magnetic vector potential&#41; satisfies the Ampere-Maxwell equation<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0060" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">v</span> is the reluctivity&#44; J&#8594; is the current density&#59; and D&#8594;&#61;&#949;E&#8594; &#40;<span class="elsevierStyleItalic">¿</span> being the permittivity&#41; is the electric density&#46; The second term in the Eq&#46; &#40;2&#41; represents the displacement current&#44; which can be dropped if the frequency of the power source is small&#59; in this case&#44; the Eq&#46; &#40;2&#41; is given by<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">The current density in this equation depends of the type of region &#40;cupper coil&#44; aluminum ring&#44; air or ferromagnetic core&#41; and is given by&#58;</p><p id="par0070" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">1&#41; Air and ferromagnetic core region</span></p><p id="par0075" class="elsevierStylePara elsevierViewall">The current density in air and ferromagnetic core regions is J&#8594;&#61;0&#8594;&#59; therefore</p><p id="par0080" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleInlineFigure"><elsevierMultimedia class="elsevierStyleLink" ident="fx4"></elsevierMultimedia></span></p><p id="par0085" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">2&#41; Aluminum ring region</span></p><p id="par0090" class="elsevierStylePara elsevierViewall">The current density J&#8594;&#61;&#963;E&#8594; &#40;being &#963;<span class="elsevierStyleInf"><span class="elsevierStyleItalic">r</span></span> the electric conductivity of the aluminum ring&#41; is found using the Faraday law<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0095" class="elsevierStylePara elsevierViewall">Solving this equation for the vector potential A&#8594;<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">It is observed that this equation does not contain the term of the scalar electric potential gradient &#40;&#916;<span class="elsevierStyleItalic">V</span>&#41; due to that there is not a power source in the aluminum region&#46; Substituting Eq&#46; &#40;6&#41; in J&#8594;&#61;&#963;rE&#8594;<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0105" class="elsevierStylePara elsevierViewall">Substituting Eq&#46; &#40;6&#41; in Eq&#46; &#40;3&#41;<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0110" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">3&#41; Copper coil region</span></p><p id="par0115" class="elsevierStylePara elsevierViewall">The region of the copper coil is modeled as a region that contains <span class="elsevierStyleItalic">N</span> turns where each turn carries the same current <span class="elsevierStyleItalic">i</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span>&#46; In this case&#44; the current density <span class="elsevierStyleItalic">J</span> is uniform with value<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0120" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> is the cross section area of the copper coil region&#46; Substituting Eq&#46; &#40;9&#41; in Eq&#46; &#40;3&#41;<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0125" class="elsevierStylePara elsevierViewall">where&#44; I&#710; is a unit vector pointed in direction of the current density&#46;</p><p id="par0130" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Electrical network equations</span></span></p><p id="par0135" class="elsevierStylePara elsevierViewall">If the current is known&#44; the solution of the Eq&#46; &#40;10&#41; can be realized&#46; However&#44; this current cannot be known a priori&#46; We know a priori the voltage <span class="elsevierStyleItalic">V</span> between the terminals of the coil&#46; An additional equation is required&#46; This equation is obtained using the Kirchhoff voltage law<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0140" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">R</span> is the resistance&#44; <span class="elsevierStyleItalic">&#981;</span> is the magnetic flux that cross all the turns of the coil&#46; The resistance is given by<elsevierMultimedia ident="eq0055"></elsevierMultimedia></p><p id="par0145" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">&#963;</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> is the electric conductivity of the coil and <span class="elsevierStyleItalic">L</span> is the length of all the turns of the coil&#46; The magnetic flux is given by<elsevierMultimedia ident="eq0060"></elsevierMultimedia></p><p id="par0150" class="elsevierStylePara elsevierViewall">where&#44; the surface <span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> comprises all the surfaces of the turns of the coil&#46; Using the fact B&#8594;&#61;&#8711;&#215;A&#8594; and the Stokes theorem in Eq&#46; &#40;13&#41; we obtain<elsevierMultimedia ident="eq0065"></elsevierMultimedia></p><p id="par0155" class="elsevierStylePara elsevierViewall">where&#44; the trajectory <span class="elsevierStyleItalic">C</span> comprises all the turns of the coil&#46; Substituting Eq&#46; &#40;14&#41; in Eq&#46; &#40;11&#41;<elsevierMultimedia ident="eq0070"></elsevierMultimedia></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Phasor equations</span><p id="par0160" class="elsevierStylePara elsevierViewall">The current in the copper coil is cosine to ensure that the aluminum ring stays in a stationary levitated position&#46; In this situation&#44; the state of the electromagnetic field is stable and the equations of the electromagnetic field can be given in phasor form&#46; In phasor notation&#44; the operator <span class="elsevierStyleItalic">d</span>&#47;<span class="elsevierStyleItalic">dt</span> becomes <span class="elsevierStyleItalic">i&#969;</span> in Eqs&#46; &#40;4&#41;&#44; &#40;8&#41; and &#40;10&#41;&#58;</p><p id="par0165" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">air and ferromagnetic core regions</span><elsevierMultimedia ident="eq0075"></elsevierMultimedia></p><p id="par0170" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">aluminum ring region</span><elsevierMultimedia ident="eq0080"></elsevierMultimedia></p><p id="par0175" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">copper coil region</span><elsevierMultimedia ident="eq0085"></elsevierMultimedia></p><p id="par0180" class="elsevierStylePara elsevierViewall">where&#44; A&#8594; and <span class="elsevierStyleItalic"><span class="elsevierStyleBold">i</span></span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> are phasors of the potential A&#8594; and the current <span class="elsevierStyleItalic"><span class="elsevierStyleBold">i</span></span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span>&#44; respectively&#46;</p><p id="par0185" class="elsevierStylePara elsevierViewall">The phasor equation of the electrical network equation Eq&#46; &#40;15&#41; is<elsevierMultimedia ident="eq0090"></elsevierMultimedia></p><p id="par0190" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic"><span class="elsevierStyleBold">V</span></span> is the phasor of the voltage <span class="elsevierStyleItalic">V</span>&#46;</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Boundary conditions</span><p id="par0195" class="elsevierStylePara elsevierViewall">It is observed that Eq&#46; &#40;3&#41; is a second order partial differential equation for the magnetic vector potential A&#8594;&#46; The solution of this partial differential equation requires boundary conditions for the vector potential A&#8594;&#46; The boundary of the solution domain is chosen so that the vector potential can be dropped &#40;magnetic insulation&#41;&#46; The magnetic insulation condition is expressed as<elsevierMultimedia ident="eq0095"></elsevierMultimedia></p><p id="par0200" class="elsevierStylePara elsevierViewall">where&#44; &#915; is the boundary of solution domain&#46; In phasor notation&#44; the condition of magnetic insulation is<elsevierMultimedia ident="eq0100"></elsevierMultimedia></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Discretization</span><p id="par0205" class="elsevierStylePara elsevierViewall">Using the Galerkin method &#40;Lombard and Meunier&#44; 1992Lombard &#38; Meunier&#59; Lombard and Meunier&#44; 1992Lombard and Meunier&#44; 1993Lombard &#38; Meunier&#59; <a class="elsevierStyleCrossRef" href="#bib0055">Lombard and Meunier&#44; 1993Lombard &#38; Meunier&#44; 1993</a>&#41;&#44; Eqs&#46; &#40;16&#41;-&#40;19&#41; can be discretized&#58;</p><p id="par0210" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">air and ferromagnetic core regions</span><elsevierMultimedia ident="eq0105"></elsevierMultimedia></p><p id="par0215" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">aluminum ring region</span><elsevierMultimedia ident="eq0110"></elsevierMultimedia></p><p id="par0220" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">copper coil region</span><elsevierMultimedia ident="eq0115"></elsevierMultimedia></p><p id="par0225" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">electrical network equation</span><elsevierMultimedia ident="eq0120"></elsevierMultimedia></p><p id="par0230" class="elsevierStylePara elsevierViewall">With<elsevierMultimedia ident="eq0125"></elsevierMultimedia></p><p id="par0235" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">N</span> represents the number of nodes&#46; The matrices and vectors are defined as<elsevierMultimedia ident="eq0130"></elsevierMultimedia><elsevierMultimedia ident="eq0135"></elsevierMultimedia><elsevierMultimedia ident="eq0140"></elsevierMultimedia><elsevierMultimedia ident="eq0145"></elsevierMultimedia></p><p id="par0240" class="elsevierStylePara elsevierViewall">where&#44; the vector potential <span class="elsevierStyleItalic">A</span> is expanded in the base function <span class="elsevierStyleItalic">&#946;</span><span class="elsevierStyleInf">i</span>&#58; <span class="elsevierStyleItalic">A</span><span class="elsevierStyleHsp" style=""></span>&#61;<span class="elsevierStyleHsp" style=""></span>&#8721;<span class="elsevierStyleItalic">&#946;</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">j</span></span><span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">j</span></span>&#46; The surface <span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">d</span></span> is the surface of the solution domain&#46;</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Mechanical equilibrium</span><p id="par0245" class="elsevierStylePara elsevierViewall">The voltage is a cosine in order to maintain the aluminum ring in a stationary levitated position&#46; This stationary levitation is obtained when the mechanical equilibrium is reached&#59; this is&#44; the Lorentz force averaged in a cycle&#44; <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span> equals the gravity force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">g</span></span>&#46; Using the complex notation&#44; the Lorentz force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span> &#40;Barry and Casey&#44; 1999Barry &#38; Casey&#59; Barry and Casey&#44; 1999Hayt and Buck&#44; 2006Hayt &#38; Buck&#59; <a class="elsevierStyleCrossRef" href="#bib0035">Hayt and Buck&#44; 2006Hayt &#38; Buck&#44; 2006</a>&#41; is given by<elsevierMultimedia ident="eq0150"></elsevierMultimedia></p><p id="par0250" class="elsevierStylePara elsevierViewall">with<elsevierMultimedia ident="eq0155"></elsevierMultimedia></p><p id="par0255" class="elsevierStylePara elsevierViewall">where&#44; B&#8594; and J&#8594; are the phasors of magnetic density and current density&#44; J&#8594; respectively&#46; The factor 1&#47;2 in Eq&#46; &#40;31&#41; is due to that the Lorentz force period is half of the magnetic field period &#40;Barry and Casey&#44; 1999Barry &#38; Casey&#59; <a class="elsevierStyleCrossRef" href="#bib0015">Barry and Casey&#44; 1999Barry &#38; Casey&#44; 1999</a>&#41;&#46; <a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a> shows the flowchart of the obtaining of the average Lorentz force&#46; The steps of this methodology are&#58;<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1&#41;</span><p id="par0260" class="elsevierStylePara elsevierViewall">Calculate the phasor potential using the phasor equations &#40;Eqs&#46; 22-25&#41; along with boundary condition of magnetic insulation A&#8594;&#8901;n&#710;&#61;0 on &#915; &#40;see Eq&#46; 20&#41;&#46;</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2&#41;</span><p id="par0265" class="elsevierStylePara elsevierViewall">Determine the phasor magnetic density B&#8594;&#61;&#8711;&#215;A&#8594; and phasor current density J&#8594;&#61;i&#969;&#963;rA&#8594; &#40;see Eq&#46; 6&#41; in the aluminum ring region&#46;</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3&#41;</span><p id="par0270" class="elsevierStylePara elsevierViewall">Calculate the average Lorentz force fzav&#61;12&#8747;VrJ&#8594;&#215;B&#8594;&#42;dV &#40;see Eq&#46; 31&#41;&#46;</p></li></ul></p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0275" class="elsevierStylePara elsevierViewall">The space distribution of the electromagnetic field depends of the separation <span class="elsevierStyleItalic">s</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">z</span></span> between the aluminum ring and the copper coil&#46; Therefore&#44; the average Lorentz force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span> is a function of the separation &#40;<span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">z</span></span> &#61; <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">z</span></span>&#40;<span class="elsevierStyleItalic">s</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">z</span></span>&#41;&#41;&#46; In order to reach the stationary levitation of the aluminum ring&#44; the average Lorentz force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span> equals to the gravity force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">g</span></span>&#46;<elsevierMultimedia ident="eq0160"></elsevierMultimedia></p><p id="par0280" class="elsevierStylePara elsevierViewall">where&#44; <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#8217; is the separation in stationary levitation and represents the root of Eq&#46; &#40;33&#41;&#46; It is observed that Eq&#46; &#40;33&#41; is a transcendental equation&#46; The root of this transcendental equation can be found using a variant of the Newton-Raphson method&#58; secant method &#40;Arfken and Weber&#44; 2005Arfken &#38; Weber&#59; <a class="elsevierStyleCrossRef" href="#bib0010">Arfken and Weber&#44; 2005Arfken &#38; Weber&#44; 2005</a>&#41;&#46; The convergence of Newton-Raphson is guaranteed due to that the average Lorentz force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span>&#40;<span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#41; is a function decreasing of the separation <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span> &#40;see <a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a>&#41;&#46; The secant method is defined by the recurrence relation<elsevierMultimedia ident="eq0165"></elsevierMultimedia></p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Experimental validation</span><p id="par0285" class="elsevierStylePara elsevierViewall">In this section we compared the numerical and experimental results for the separation in stationary levitation <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#8217; as a function of the voltage amplitude in rms&#44; Vrms&#61;V02&#46; The experimental setup was described in the second section&#46; The numerical results are obtained using the proposed methodology in the section above&#46; <a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a> shows the separation <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#8217; as function of the voltage amplitude <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> for both experimental and numerical results&#46; The discrepancy between the theoretical and experimental data is at most 12&#37;&#46; This difference can be due to the fact that the numerical modeling does not take into account the temperature effect in the electric conductivity <span class="elsevierStyleItalic">&#963;</span>&#46;</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Results and discussion</span><p id="par0290" class="elsevierStylePara elsevierViewall">In this section some results obtained by the proposed modeling are studied&#46; The average Lorentz force is examined as a function of the separation distance&#59; the ratio between coil current and ring current&#44; and the spatial distribution of the magnetic field&#46;</p><p id="par0295" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a> depicts the average Lorentz force <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">zav</span></span> as function of the separation <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span> for a representative voltage amplitude <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> &#61; 120<span class="elsevierStyleHsp" style=""></span>V&#46; It is observed that the Lorentz force is a decreasing function of the distance <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#46; This guarantees the convergence of the Newton-Raphson method due to that the derivative dfzavdzS is negative&#46;</p><p id="par0300" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a> shows the spatial distribution of the radial component <span class="elsevierStyleItalic">B</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">r0</span></span> of the magnetic density amplitude&#44; for a representative voltage amplitude <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> &#61; 120<span class="elsevierStyleHsp" style=""></span>V in state of stationary levitation &#40;<span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#8217; &#61; 0&#46;057 m&#41;&#46; It also presents the positions of the ferromagnetic core&#44; copper coil and aluminum ring&#46; This <a class="elsevierStyleCrossRef" href="#fig0030">Figure 6</a> shows that the radial component is higher in regions close to the core&#44; coil and ring edges&#46; In contrast&#44; the radial component <span class="elsevierStyleItalic">B</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">r0</span></span> presents small values in positions far away from above edges&#46;</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0305" class="elsevierStylePara elsevierViewall">The total current in the ring <span class="elsevierStyleItalic">i</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">r</span></span> is realized by means of ir&#61;&#8747;ringJ&#8594;&#8901;dS&#8594;&#59; while the total current in the region of the coil is <span class="elsevierStyleItalic">Ni</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>&#46; In <a class="elsevierStyleCrossRef" href="#fig0035">Figure 7</a> is shown the ratio irNic as function of voltage amplitude <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> in stationary levitation&#46; It is observed that the highest value &#40;<span class="elsevierStyleItalic">i</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">r</span></span> &#47; <span class="elsevierStyleItalic">Ni</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> &#61; 0&#46;47&#41; occurs in <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> &#61; 43&#46;4<span class="elsevierStyleHsp" style=""></span>V corresponding to a separation <span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">s</span></span>&#8217;&#61; 0&#46; The ratio <span class="elsevierStyleItalic">i</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">r</span></span> &#47; <span class="elsevierStyleItalic">Ni</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">C</span></span> decreases if the voltage amplitude <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">rms</span></span> increases&#46; Also&#44; in a first order approach&#44; the magnetic field originated by any system is proportional to the current of this system&#46; Therefore&#44; the magnetic coupling of the ring on the coil can be neglected for high values of voltage amplitude&#46;</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Conclusions</span><p id="par0310" class="elsevierStylePara elsevierViewall">The aim of this work was to present a numerical modeling based upon the use of the Galerkin method to simulate the electromagnetic field of the Thomson ring&#46; Also&#44; this modeling is capable of simulating numerically the separation between aluminum ring and copper coil in situation of stationary levitation &#40;the average Lorentz force equals gravity force&#41;&#46; This calculation of the separation uses the Newton-Raphson method&#46;</p><p id="par0315" class="elsevierStylePara elsevierViewall">The proposed modeling was validated comparing theoretical and experimental results&#46; The compared results were the separation between the aluminum ring and the copper coil &#40;in stationary levitation&#41; for different voltage amplitudes&#46;</p><p id="par0320" class="elsevierStylePara elsevierViewall">It is concluded that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high&#46; Therefore&#44; the coil current can be modeled without taking into account the coupling ring-coil&#46; This means that the coil current is found using a RL &#40;resistance-inductance&#41; circuit&#59; where&#44; the resistance and inductance are parameter of the coil&#46;</p><p id="par0325" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Citation for this article&#58;</span></p><p id="par0330" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chicago citation style</span></p><p id="par0335" class="elsevierStylePara elsevierViewall">Guzm&#225;n&#44; Juan&#44; Felipe de Jes&#250;s Gonz&#225;lez-Monta&#241;ez&#44; Rafael Escarela-P&#233;rez&#44; Juan Carlos Olivares-Galv&#225;n&#44; Victor Manuel Jim&#233;nez-Mondragon&#46; Numerical modeling of the Thomson ring in stationary levitation using FEM-electrical network and Newton-Raphson&#46; <span class="elsevierStyleItalic"><span class="elsevierStyleBold">Ingenier&#237;a Investigaci&#243;n y Tecnolog&#237;a</span></span>&#44; XVI&#44; 03 &#40;2015&#41;&#58; 431-439&#46;</p><p id="par0340" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">ISO 690 citation style</span></p><p id="par0345" class="elsevierStylePara elsevierViewall">Guzm&#225;n J&#46;&#44; Gonz&#225;lez-Montanez F&#46;J&#46;&#44; Escarela-P&#233;rez R&#46;&#44; Olivares-Galv&#225;n J&#46;C&#46;&#44; Jim&#233;nez-Mondragon V&#46;M&#46; Numerical modeling of the Thomson ring in stationary levitation using FEM-electrical network and Newton-Raphson&#46; <span class="elsevierStyleItalic"><span class="elsevierStyleBold">Ingenier&#237;a Investigaci&#243;n y Tecnolog&#237;a</span></span>&#44; volume XVI &#40;issue 3&#41;&#44; july 2015&#58; 431-439&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:10 [
        0 => array:3 [
          "identificador" => "xres528819"
          "titulo" => "Abstract"
          "secciones" => array:1 [
            0 => array:1 [
              "identificador" => "abst0005"
            ]
          ]
        ]
        1 => array:2 [
          "identificador" => "xpalclavsec549051"
          "titulo" => "Keywords"
        ]
        2 => array:3 [
          "identificador" => "xres528818"
          "titulo" => "Resumen"
          "secciones" => array:1 [
            0 => array:1 [
              "identificador" => "abst0010"
            ]
          ]
        ]
        3 => array:2 [
          "identificador" => "xpalclavsec549052"
          "titulo" => "Descriptores"
        ]
        4 => array:3 [
          "identificador" => "sec0005"
          "titulo" => "Introduction"
          "secciones" => array:6 [
            0 => array:2 [
              "identificador" => "sec0010"
              "titulo" => "Experimental setup"
            ]
            1 => array:2 [
              "identificador" => "sec0015"
              "titulo" => "Solution methodology"
            ]
            2 => array:2 [
              "identificador" => "sec0020"
              "titulo" => "Phasor equations"
            ]
            3 => array:2 [
              "identificador" => "sec0025"
              "titulo" => "Boundary conditions"
            ]
            4 => array:2 [
              "identificador" => "sec0030"
              "titulo" => "Discretization"
            ]
            5 => array:2 [
              "identificador" => "sec0035"
              "titulo" => "Mechanical equilibrium"
            ]
          ]
        ]
        5 => array:2 [
          "identificador" => "sec0040"
          "titulo" => "Experimental validation"
        ]
        6 => array:2 [
          "identificador" => "sec0045"
          "titulo" => "Results and discussion"
        ]
        7 => array:2 [
          "identificador" => "sec0050"
          "titulo" => "Conclusions"
        ]
        8 => array:1 [
          "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0080">Further reading</span>"
        ]
        9 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "fechaRecibido" => "2014-03-01"
    "fechaAceptado" => "2014-07-01"
    "PalabrasClave" => array:2 [
      "en" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec549051"
          "palabras" => array:5 [
            0 => "Thomson ring"
            1 => "levitation"
            2 => "stationary"
            3 => "modeling"
            4 => "FEM"
          ]
        ]
      ]
      "es" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Descriptores"
          "identificador" => "xpalclavsec549052"
          "palabras" => array:5 [
            0 => "anillo de Thomson"
            1 => "levitaci&#243;n"
            2 => "estacionaria"
            3 => "modelaci&#243;n"
            4 => "MEF"
          ]
        ]
      ]
    ]
    "Biografia" => array:5 [
      0 => array:2 [
        "identificador" => "vt0005"
        "biografia" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Juan Guzm&#225;n&#46;</span> Obtained Ph&#46;D&#46; in Energy Engineering from the Universidad Nacional Aut&#243;noma de M&#233;xico&#44; M&#233;xico City&#44; Mexico&#44; in 2008&#46; He is currently with the &#225;rea de ingenier&#237;a energ&#233;tica y electromagn&#233;tica&#44; Departamento de Energ&#237;a&#44; UAM&#44; Azcapotzalco&#44; M&#233;xico&#46;</p>"
      ]
      1 => array:2 [
        "identificador" => "vt0010"
        "biografia" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Felipe de Jes&#250;s Gonz&#225;lez-Monta&#241;ez&#46;</span> He received the M&#46;Sc&#46; degree in electrical engineering from the Centro de Investigaci&#243;n y de Estudios Avanzados del IPN&#44; M&#233;xico City&#44; Mexico&#44; in 2011&#46; His research interests include the modeling and control of electrical machines&#46;</p>"
      ]
      2 => array:2 [
        "identificador" => "vt0015"
        "biografia" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Rafael Escarela-P&#233;rez&#46;</span> He obtained his B&#46;Sc&#46; in electrical engineering from Universidad Autonoma Metropolitana&#44; Mexico City in 1992 and his Ph&#46;D&#46; from Imperial College&#44; London in 1996&#46; He is interested in the modeling of electrical machines&#46;</p>"
      ]
      3 => array:2 [
        "identificador" => "vt0020"
        "biografia" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Juan Carlos Olivares-Galv&#225;n&#46;</span> He received the Ph&#46;D&#46; degree in electrical engineering from CINVESTAV&#44; Guadalajara&#44; Mexico&#44; in 2003&#46; His main research interests are related to the experimental and numerical analysis of electromagnetic devices&#46;</p>"
      ]
      4 => array:2 [
        "identificador" => "vt0025"
        "biografia" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Victor Manuel Jim&#233;nez-Mondragon&#46;</span> He received the M&#46;Sc&#46; degree in electrical engineering from the Universidad Nacional Aut&#243;noma de M&#233;xico&#44; M&#233;xico City&#44; Mexico&#44; in 2012&#46; He is interested in the modeling of electrical machines&#46;</p>"
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:2 [
      "en" => array:2 [
        "titulo" => "Abstract"
        "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">There are a lot of applications of the Thomson ring&#58; levitation of superconductor materials&#44; power interrupters &#40;used as actuator&#41; and elimination of electric arcs&#46; Therefore&#44; it is important the numerical modeling of Thomson ring&#46; The aim of this work is to model the stationary levitation of the Thomson ring&#46; This Thomson ring consists of a copper coil with ferromagnetic core and an aluminum ring threaded in the core&#46; The coil is fed by a cosine voltage to ensure that the aluminum ring is in a stationary levitated position&#46; In this situation&#44; the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field&#46; These equations are discretized using the Galerkin method in the Lagrange base space &#40;<span class="elsevierStyleItalic">finite element method</span>&#44; FEM&#41;&#46; These equations are solved using the COMSOL software&#46; A methodology is also described &#40;which uses the Newton-Raphson method&#41; that obtains the separation between coil and aluminum ring&#46; The numerical solutions of this separation are compared with experimental data&#46; The conclusion is that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high&#46;</p></span>"
      ]
      "es" => array:2 [
        "titulo" => "Resumen"
        "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Existen una gran cantidad de aplicaciones del anillo de Thomson&#58; levitaci&#243;n de materiales superconductores&#44; interruptores de potencia &#40;usados como actuadores&#41; y eliminaci&#243;n de arcos el&#233;ctricos&#46; Por lo tanto&#44; es importante la modelaci&#243;n del anillo de Thomson&#46; El objetivo de este trabajo es modelar la levitaci&#243;n estacionaria del anillo de Thomson&#46; Este anillo de Thomson consiste de una bobina de cobre con n&#250;cleo ferromagn&#233;tico y un anillo de aluminio enhebrado en el n&#250;cleo&#46; La bobina se alimenta por un voltaje cosenoidal para asegura el anillo de aluminio en una posici&#243;n de levitaci&#243;n estacionaria&#46; En esta situaci&#243;n&#44; el campo electromagn&#233;tico se puede considerar estable y se pueden emplear las ecuaciones fasoriales del campo electromagn&#233;tico&#46; Estas ecuaciones se discretizan usando el m&#233;todo de Galerkin en el espacio base de Lagrange &#40;m&#233;todo de elementos finitos&#44; FEM&#41;&#46; Estas ecuaciones discretizadas se resuelven usando el c&#243;digo COMSOL&#46; Adem&#225;s&#44; se describe una metodolog&#237;a con la cual se puede obtener la separaci&#243;n entre la bobina y el anillo de aluminio&#46; Esta metodolog&#237;a usa el m&#233;todo de Newton-Rapson&#46; Las soluciones num&#233;ricas de esta separaci&#243;n se comparan con datos experimentales&#46; Se concluye que el acoplamiento magn&#233;tico entre el anillo de aluminio sobre la bobina se puede despreciar si el voltaje de alimentaci&#243;n es alto&#46;</p></span>"
      ]
    ]
    "multimedia" => array:41 [
      0 => array:7 [
        "identificador" => "fig0005"
        "etiqueta" => "Figure 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr1.jpeg"
            "Alto" => 1591
            "Ancho" => 1571
            "Tamanyo" => 113855
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Thomson ring setup&#46;</p>"
        ]
      ]
      1 => array:7 [
        "identificador" => "fig0010"
        "etiqueta" => "Figure 2"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr2.jpeg"
            "Alto" => 1288
            "Ancho" => 2115
            "Tamanyo" => 177997
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">a&#41; axisymmetric representation of the Thomson ring&#44; b&#41; experimental setup&#46;</p>"
        ]
      ]
      2 => array:7 [
        "identificador" => "fig0015"
        "etiqueta" => "Figure 3"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr3.jpeg"
            "Alto" => 1335
            "Ancho" => 1377
            "Tamanyo" => 125133
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Flowchart of the obtaining of <span class="elsevierStyleItalic">f<span class="elsevierStyleInf">zav</span></span>&#46;</p>"
        ]
      ]
      3 => array:7 [
        "identificador" => "fig0020"
        "etiqueta" => "Figure 4"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr4.jpeg"
            "Alto" => 1196
            "Ancho" => 1574
            "Tamanyo" => 84821
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">z<span class="elsevierStyleInf">s</span></span>&#8217; vs <span class="elsevierStyleItalic">V<span class="elsevierStyleInf">0</span></span> for theoretical and experimental data&#46;</p>"
        ]
      ]
      4 => array:7 [
        "identificador" => "fig0025"
        "etiqueta" => "Figure 5"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr5.jpeg"
            "Alto" => 1200
            "Ancho" => 1546
            "Tamanyo" => 58467
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Average Lorentz force <span class="elsevierStyleItalic">f<span class="elsevierStyleInf">zav</span></span> as a function of the distance <span class="elsevierStyleItalic">z<span class="elsevierStyleInf">s</span></span>&#46;</p>"
        ]
      ]
      5 => array:7 [
        "identificador" => "fig0030"
        "etiqueta" => "Figure 6"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr6.jpeg"
            "Alto" => 1665
            "Ancho" => 2123
            "Tamanyo" => 159509
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Spatial distribution of the radial component <span class="elsevierStyleItalic">B<span class="elsevierStyleInf">r0</span></span>&#40;<span class="elsevierStyleItalic">T</span>&#41;&#46;</p>"
        ]
      ]
      6 => array:7 [
        "identificador" => "fig0035"
        "etiqueta" => "Figure 7"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr7.jpeg"
            "Alto" => 1128
            "Ancho" => 1478
            "Tamanyo" => 70837
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">irNic as function of <span class="elsevierStyleItalic">V<span class="elsevierStyleInf">rms</span></span>&#46;</p>"
        ]
      ]
      7 => array:7 [
        "identificador" => "tbl0005"
        "etiqueta" => "Table 1"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Aluminum ring&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Copper coil&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Ferromagnetic core&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry  " align="left" valign="top">Relativity permittivity &#40;¿<span class="elsevierStyleInf">r</span>&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="left" valign="top">Relativity permeability &#40;&#956;<span class="elsevierStyleInf">r</span>&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">4000&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="left" valign="top">Electric conductivity &#40;&#963;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">3&#46;77 &#215; 10<span class="elsevierStyleSup">7</span> S&#47;m&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">5&#46;99 &#215; 10<span class="elsevierStyleSup">7</span> S&#47;m&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1&#46;12 &#215; 10<span class="elsevierStyleSup">7</span> S&#47;m&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="left" valign="top">Coil turn &#40;N&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="" valign="top">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">1140 turns&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="" valign="top">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="left" valign="top">Natural frequency &#40;f&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="" valign="top">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="left" valign="top">60 Hz&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="" valign="top">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab852183.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Parameters used in the Thomson ring&#46;</p>"
        ]
      ]
      8 => array:6 [
        "identificador" => "eq0005"
        "etiqueta" => "&#40;1&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx1.jpeg"
              "Tamanyo" => 20541
              "Alto" => 88
              "Ancho" => 417
            ]
          ]
        ]
      ]
      9 => array:6 [
        "identificador" => "eq0010"
        "etiqueta" => "&#40;2&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx2.jpeg"
              "Tamanyo" => 23675
              "Alto" => 158
              "Ancho" => 595
            ]
          ]
        ]
      ]
      10 => array:6 [
        "identificador" => "eq0015"
        "etiqueta" => "&#40;3&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx3.jpeg"
              "Tamanyo" => 18916
              "Alto" => 103
              "Ancho" => 439
            ]
          ]
        ]
      ]
      11 => array:6 [
        "identificador" => "eq0020"
        "etiqueta" => "&#40;5&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx5.jpeg"
              "Tamanyo" => 20864
              "Alto" => 157
              "Ancho" => 329
            ]
          ]
        ]
      ]
      12 => array:6 [
        "identificador" => "eq0025"
        "etiqueta" => "&#40;6&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx6.jpeg"
              "Tamanyo" => 26822
              "Alto" => 157
              "Ancho" => 235
            ]
          ]
        ]
      ]
      13 => array:6 [
        "identificador" => "eq0030"
        "etiqueta" => "&#40;7&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx7.jpeg"
              "Tamanyo" => 26924
              "Alto" => 157
              "Ancho" => 305
            ]
          ]
        ]
      ]
      14 => array:6 [
        "identificador" => "eq0035"
        "etiqueta" => "&#40;8&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx8.jpeg"
              "Tamanyo" => 24544
              "Alto" => 157
              "Ancho" => 671
            ]
          ]
        ]
      ]
      15 => array:6 [
        "identificador" => "eq0040"
        "etiqueta" => "&#40;9&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx9.jpeg"
              "Tamanyo" => 21228
              "Alto" => 170
              "Ancho" => 207
            ]
          ]
        ]
      ]
      16 => array:6 [
        "identificador" => "eq0045"
        "etiqueta" => "&#40;10&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx10.jpeg"
              "Tamanyo" => 23227
              "Alto" => 170
              "Ancho" => 652
            ]
          ]
        ]
      ]
      17 => array:6 [
        "identificador" => "eq0050"
        "etiqueta" => "&#40;11&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx11.jpeg"
              "Tamanyo" => 20839
              "Alto" => 142
              "Ancho" => 366
            ]
          ]
        ]
      ]
      18 => array:6 [
        "identificador" => "eq0055"
        "etiqueta" => "&#40;12&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx12.jpeg"
              "Tamanyo" => 21205
              "Alto" => 149
              "Ancho" => 250
            ]
          ]
        ]
      ]
      19 => array:6 [
        "identificador" => "eq0060"
        "etiqueta" => "&#40;13&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx13.jpeg"
              "Tamanyo" => 22452
              "Alto" => 252
              "Ancho" => 320
            ]
          ]
        ]
      ]
      20 => array:6 [
        "identificador" => "eq0065"
        "etiqueta" => "&#40;14&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx14.jpeg"
              "Tamanyo" => 20802
              "Alto" => 225
              "Ancho" => 305
            ]
          ]
        ]
      ]
      21 => array:6 [
        "identificador" => "eq0070"
        "etiqueta" => "&#40;15&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx15.jpeg"
              "Tamanyo" => 24154
              "Alto" => 174
              "Ancho" => 574
            ]
          ]
        ]
      ]
      22 => array:6 [
        "identificador" => "eq0075"
        "etiqueta" => "&#40;16&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx16.jpeg"
              "Tamanyo" => 19442
              "Alto" => 105
              "Ancho" => 404
            ]
          ]
        ]
      ]
      23 => array:6 [
        "identificador" => "eq0080"
        "etiqueta" => "&#40;17&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx17.jpeg"
              "Tamanyo" => 29089
              "Alto" => 105
              "Ancho" => 678
            ]
          ]
        ]
      ]
      24 => array:6 [
        "identificador" => "eq0085"
        "etiqueta" => "&#40;18&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx18.jpeg"
              "Tamanyo" => 23306
              "Alto" => 170
              "Ancho" => 655
            ]
          ]
        ]
      ]
      25 => array:6 [
        "identificador" => "eq0090"
        "etiqueta" => "&#40;19&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx19.jpeg"
              "Tamanyo" => 22908
              "Alto" => 180
              "Ancho" => 581
            ]
          ]
        ]
      ]
      26 => array:6 [
        "identificador" => "eq0095"
        "etiqueta" => "&#40;20&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx20.jpeg"
              "Tamanyo" => 16186
              "Alto" => 63
              "Ancho" => 302
            ]
          ]
        ]
      ]
      27 => array:6 [
        "identificador" => "eq0100"
        "etiqueta" => "&#40;21&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx21.jpeg"
              "Tamanyo" => 22419
              "Alto" => 64
              "Ancho" => 302
            ]
          ]
        ]
      ]
      28 => array:6 [
        "identificador" => "eq0105"
        "etiqueta" => "&#40;22&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx22.jpeg"
              "Tamanyo" => 17576
              "Alto" => 89
              "Ancho" => 377
            ]
          ]
        ]
      ]
      29 => array:6 [
        "identificador" => "eq0110"
        "etiqueta" => "&#40;23&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx23.jpeg"
              "Tamanyo" => 21121
              "Alto" => 89
              "Ancho" => 686
            ]
          ]
        ]
      ]
      30 => array:6 [
        "identificador" => "eq0115"
        "etiqueta" => "&#40;24&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx24.jpeg"
              "Tamanyo" => 18255
              "Alto" => 88
              "Ancho" => 447
            ]
          ]
        ]
      ]
      31 => array:6 [
        "identificador" => "eq0120"
        "etiqueta" => "&#40;25&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx25.jpeg"
              "Tamanyo" => 22280
              "Alto" => 113
              "Ancho" => 680
            ]
          ]
        ]
      ]
      32 => array:6 [
        "identificador" => "eq0125"
        "etiqueta" => "&#40;26&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx26.jpeg"
              "Tamanyo" => 15213
              "Alto" => 48
              "Ancho" => 201
            ]
          ]
        ]
      ]
      33 => array:6 [
        "identificador" => "eq0130"
        "etiqueta" => "&#40;27&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx27.jpeg"
              "Tamanyo" => 32199
              "Alto" => 201
              "Ancho" => 949
            ]
          ]
        ]
      ]
      34 => array:6 [
        "identificador" => "eq0135"
        "etiqueta" => "&#40;28&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx28.jpeg"
              "Tamanyo" => 31707
              "Alto" => 200
              "Ancho" => 900
            ]
          ]
        ]
      ]
      35 => array:6 [
        "identificador" => "eq0140"
        "etiqueta" => "&#40;29&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx29.jpeg"
              "Tamanyo" => 30027
              "Alto" => 199
              "Ancho" => 812
            ]
          ]
        ]
      ]
      36 => array:6 [
        "identificador" => "eq0145"
        "etiqueta" => "&#40;30&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx30.jpeg"
              "Tamanyo" => 24925
              "Alto" => 233
              "Ancho" => 542
            ]
          ]
        ]
      ]
      37 => array:6 [
        "identificador" => "eq0150"
        "etiqueta" => "&#40;31&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx31.jpeg"
              "Tamanyo" => 25960
              "Alto" => 257
              "Ancho" => 579
            ]
          ]
        ]
      ]
      38 => array:6 [
        "identificador" => "eq0155"
        "etiqueta" => "&#40;32&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx32.jpeg"
              "Tamanyo" => 22646
              "Alto" => 108
              "Ancho" => 482
            ]
          ]
        ]
      ]
      39 => array:6 [
        "identificador" => "eq0160"
        "etiqueta" => "&#40;33&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx33.jpeg"
              "Tamanyo" => 22564
              "Alto" => 159
              "Ancho" => 410
            ]
          ]
        ]
      ]
      40 => array:6 [
        "identificador" => "eq0165"
        "etiqueta" => "&#40;34&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:1 [
          "imagen" => array:1 [
            0 => array:4 [
              "Fichero" => "fx34.jpeg"
              "Tamanyo" => 98620
              "Alto" => 163
              "Ancho" => 1469
            ]
          ]
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:14 [
            0 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "Arfken and Weber&#44; 2005"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Mathematical methods for physicists"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "G&#46;B&#46; Arfken"
                            1 => "H&#46;J&#46; Weber"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "edicion" => "sixth ed&#46;"
                        "fecha" => "2005"
                        "editorial" => "Elsevier&#44; Academic Press"
                        "editorialLocalizacion" => "New York"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "Barry and Casey&#44; 1999"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Elihu Thomson&#39;s jumping ring in a levitated closed-loop control experiment&#44; Education"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "N&#46; Barry"
                            1 => "R&#46; Casey"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on"
                        "fecha" => "1999"
                        "volumen" => "42"
                        "numero" => "1"
                        "paginaInicial" => "72"
                        "paginaFinal" => "80"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "Belforte et al&#46;&#44; 1985"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A finite element computation procedure for electromagnetic fields under different supply conditions&#44; Magnetics"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "P&#46; Belforte"
                            1 => "M&#46; Chiampi"
                            2 => "M&#46; Tartaglia"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on"
                        "fecha" => "1985"
                        "volumen" => "21"
                        "numero" => "6"
                        "paginaInicial" => "2284"
                        "paginaFinal" => "2287"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "Bissal et al&#46;&#44; 2010"
              "referencia" => array:1 [
                0 => array:1 [
                  "referenciaCompleta" => "Bissal A&#46;&#44; Salinas E&#46;&#44; Engdahl G&#46;&#44; Ohrstrom M&#46; Simulation and verification of Thomson actuator systems&#44; in Proceedings of the COMSOL Conference&#44; Paris&#44; France&#44; 2010&#46;"
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "COMSOL&#44; 2008"
              "referencia" => array:1 [
                0 => array:1 [
                  "referenciaCompleta" => "COMSOL&#44; AC&#47;DC MODULE User&#39;s Guide&#44; 2008&#46;"
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "Hayt and Buck&#44; 2006"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Teor&#237;a electromagn&#233;tica"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "W&#46;H&#46; Hayt"
                            1 => "J&#46;A&#46; Buck"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "fecha" => "2006"
                        "editorial" => "Mc Graw Hill"
                        "editorialLocalizacion" => "New York"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "Konrad&#44; 1982"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Integrodifferential finite element formulation of two-dimensional steady-state skin effect problems"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "A&#46; Konrad"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Magnetics"
                        "fecha" => "1982"
                        "volumen" => "18"
                        "numero" => "1"
                        "paginaInicial" => "284"
                        "paginaFinal" => "292"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "Li et al&#46;&#44; 2010"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Analysis of parameters influence on the characteristics of Thomson coil type actuator of arc eliminator using adaptive segmentation equivalent circuit method"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:4 [
                            0 => "W&#46; Li"
                            1 => "Y&#46;W&#46; Jeong"
                            2 => "H&#46;S&#46; Yoon"
                            3 => "C&#46;S&#46; Koh"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1371/journal.pone.0127769"
                      "Revista" => array:7 [
                        "tituloSerie" => "Journal of Electrical Engineering &#38; Technology"
                        "fecha" => "2010"
                        "volumen" => "5"
                        "numero" => "2"
                        "paginaInicial" => "282"
                        "paginaFinal" => "289"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26126116"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "Lombard and Meunier&#44; 1992"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A general method for electric and magnetic coupled problem in 2D and magnetodynamic domain"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "P&#46; Lombard"
                            1 => "G&#46; Meunier"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Magnetics"
                        "fecha" => "1992"
                        "volumen" => "28"
                        "numero" => "2"
                        "paginaInicial" => "1291"
                        "paginaFinal" => "1294"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0055"
              "etiqueta" => "Lombard and Meunier&#44; 1993"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A general purpose method for electric and magnetic combined problems for 2D&#44; axisymmetric and transient systems"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "P&#46; Lombard"
                            1 => "G&#46; Meunier"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Magnetics"
                        "fecha" => "1993"
                        "volumen" => "29"
                        "numero" => "2"
                        "paginaInicial" => "1737"
                        "paginaFinal" => "1740"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib0060"
              "etiqueta" => "Meunier et al&#46;&#44; 1998"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Modelisation of 2D and axisymmetric magnetodynamic domain by the finite elements method"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "G&#46; Meunier"
                            1 => "D&#46; Shen"
                            2 => "J&#46;L&#46; Coulomb"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Magnetics"
                        "fecha" => "1998"
                        "volumen" => "24"
                        "numero" => "1"
                        "paginaInicial" => "166"
                        "paginaFinal" => "169"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib0065"
              "etiqueta" => "Meyer and Rufer&#44; 2006"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A DC hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors &#40;IGCTs&#41;"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46;M&#46; Meyer"
                            1 => "A&#46; Rufer"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Power Delivery"
                        "fecha" => "2006"
                        "volumen" => "21"
                        "numero" => "2"
                        "paginaInicial" => "646"
                        "paginaFinal" => "651"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib0070"
              "etiqueta" => "Patitsas&#44; 2011"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Stability analysis for axially-symmetric magnetic field levitation of a superconducting sphere"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "S&#46;N&#46; Patitsas"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Physica C"
                        "fecha" => "2011"
                        "volumen" => "471"
                        "numero" => "1&#8211;2"
                        "paginaInicial" => "12"
                        "paginaFinal" => "18"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            13 => array:3 [
              "identificador" => "bib0075"
              "etiqueta" => "Piriou and Razek&#44; 1989"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Simulation of electromagnetic systems by coupling of magnetic and electric equations"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "F&#46; Piriou"
                            1 => "A&#46; Razek"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Mathematics and Computers in Simulation"
                        "fecha" => "1989"
                        "volumen" => "31"
                        "numero" => "3"
                        "paginaInicial" => "189"
                        "paginaFinal" => "194"
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
    "lecturaRecomendada" => array:1 [
      0 => array:3 [
        "vista" => "all"
        "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0080">Further reading</span>"
        "seccion" => array:1 [
          0 => array:2 [
            "vista" => "all"
            "bibliografiaReferencia" => array:2 [
              0 => array:3 [
                "identificador" => "bib0005"
                "etiqueta" => "Alferov et al&#46;&#44; 2008"
                "referencia" => array:1 [
                  0 => array:1 [
                    "referenciaCompleta" => "Alferov D&#46;&#44; Budovsky A&#46;&#44; Evsin D&#46;&#44; Ivanov V&#46;&#44; Sidorov V&#46;&#44; Yagnov V&#46; DC vacuum circuit-breaker&#44; in&#58; International Symposium on Discharges and Electrical Insulation in Vacuum&#44; 24th&#44; Bucharest&#44; 2008&#44; pp&#46; 173-176&#46;"
                  ]
                ]
              ]
              1 => array:3 [
                "identificador" => "bib0080"
                "etiqueta" => "Hoole&#44; 1989"
                "referencia" => array:1 [
                  0 => array:2 [
                    "contribucion" => array:1 [
                      0 => array:2 [
                        "titulo" => "Computer aided analysis and design of electromagnetic devices"
                        "autores" => array:1 [
                          0 => array:2 [
                            "etal" => false
                            "autores" => array:1 [
                              0 => "S&#46;E&#46;H&#46; Hoole"
                            ]
                          ]
                        ]
                      ]
                    ]
                    "host" => array:1 [
                      0 => array:1 [
                        "Libro" => array:3 [
                          "fecha" => "1989"
                          "editorial" => "Elsevier"
                          "editorialLocalizacion" => "New York"
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/14057743/0000001600000003/v1_201507020200/S1405774315000232/v1_201507020200/en/main.assets"
  "Apartado" => null
  "PDF" => "https://static.elsevier.es/multimedia/14057743/0000001600000003/v1_201507020200/S1405774315000232/v1_201507020200/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405774315000232?idApp=UINPBA00004N"
]
Article information
ISSN: 14057743
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 October 10 6 16
2024 September 21 0 21
2024 August 22 4 26
2024 July 21 7 28
2024 June 17 4 21
2024 May 23 6 29
2024 April 26 1 27
2024 March 47 7 54
2024 February 48 5 53
2024 January 41 8 49
2023 December 51 6 57
2023 November 78 12 90
2023 October 85 7 92
2023 September 66 0 66
2023 August 34 12 46
2023 July 41 2 43
2023 June 34 10 44
2023 May 38 4 42
2023 April 32 7 39
2023 March 48 3 51
2023 February 24 9 33
2023 January 33 5 38
2022 December 27 10 37
2022 November 38 10 48
2022 October 27 14 41
2022 September 32 16 48
2022 August 24 9 33
2022 July 29 8 37
2022 June 26 5 31
2022 May 43 10 53
2022 April 47 11 58
2022 March 110 15 125
2022 February 102 18 120
2022 January 71 17 88
2021 December 40 10 50
2021 November 63 13 76
2021 October 37 13 50
2021 September 29 12 41
2021 August 37 5 42
2021 July 26 9 35
2021 June 28 6 34
2021 May 33 13 46
2021 April 103 7 110
2021 March 46 8 54
2021 February 22 12 34
2021 January 39 17 56
2020 December 42 7 49
2020 November 42 9 51
2020 October 22 6 28
2020 September 15 8 23
2020 August 20 9 29
2020 July 27 10 37
2020 June 39 7 46
2020 May 35 8 43
2020 April 25 4 29
2020 March 37 6 43
2020 February 22 5 27
2020 January 14 7 21
2019 December 23 8 31
2019 November 20 4 24
2019 October 24 3 27
2019 September 35 9 44
2019 August 21 6 27
2019 July 31 10 41
2019 June 66 33 99
2019 May 135 75 210
2019 April 90 27 117
2019 March 14 5 19
2019 February 31 13 44
2019 January 12 6 18
2018 December 27 1 28
2018 November 28 6 34
2018 October 35 14 49
2018 September 41 6 47
2018 August 20 7 27
2018 July 12 8 20
2018 June 20 6 26
2018 May 8 5 13
2018 April 28 4 32
2018 March 8 0 8
2018 February 13 3 16
2018 January 24 4 28
2017 December 6 2 8
2017 November 9 5 14
2017 October 24 3 27
2017 September 14 13 27
2017 August 6 0 6
2017 July 15 10 25
2017 June 14 14 28
2017 May 21 13 34
2017 April 14 7 21
2017 March 20 48 68
2017 February 22 6 28
2017 January 17 6 23
2016 December 31 9 40
2016 November 25 6 31
2016 October 41 3 44
2016 September 37 10 47
2016 August 46 4 50
2016 July 23 2 25
2016 June 40 15 55
2016 May 32 19 51
2016 April 21 14 35
2016 March 44 16 60
2016 February 49 20 69
2016 January 32 22 54
2015 December 26 15 41
2015 November 27 13 40
2015 October 30 9 39
2015 September 28 6 34
2015 August 18 7 25
2015 July 19 6 25
Show all

Follow this link to access the full text of the article