covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología Linfopoyesis temprana en médula ósea adulta
Journal Information
Vol. 26. Issue 3.
Pages 135-144 (July - September 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 3.
Pages 135-144 (July - September 2007)
Full text access
Linfopoyesis temprana en médula ósea adulta
Early lymphopoiesis in adult bone marrow
Visits
29419
R.S. Welner1,2, P.W. Kincade1, R. Pelayo1,3,
Corresponding author
rosana.pelayo@imss.gob.mx

Correspondencia: Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI. I.M.S.S., Av. Cuauhtémoc 330. Colonia Doctores, 06725 Ciudad de México, México. Phone number: (52) 55 56 27 69 00 x 2270. Fax: (52) 55 85 96 47 04
1 Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, U.S.A
2 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, U.S.A
3 Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, I.M.S.S., Mexico City, Mexico
This item has received
Article information
Resumen

El desarrollo de las células linfoides a partir de células troncales hematopoyéticas es un proceso organizado en el que se pierden gradualmente múltiples potenciales de diferenciación alternos; y coinciden el compromiso de linaje y la ganancia de funciones especializadas. En los últimos años se han registrado avances notables en la caracterización de los progenitores primitivos que dan inicio al programa linfoide, y en la definición de los patrones de actividad transcripcional que controlan las decisiones del linaje, aunque está poco definida la relación entre las señales ambientales y la estabilidad de la ruta de diferenciación linfoide. Esta revisión bibliográfica pretende proporcionar un panorama claro del conocimiento actual en los eventos tempranos de la linfopoyesis y su interrelación con el microambiente hematopoyético.

Palabras clave:
Progenitores linfoides
Compromiso de linaje linfoide
Médula ósea
Linfopoyesis temprana
Nicho hematopoyético
Abstract

Development of lymphoid cells from hematopoietic stem cells is an ordered process where multiple alternate lineage potentials are gradually lost and lineage commitment is coincident with gain of specialized functions. Over the last few years remarkable advances have been made in characterizing primitive progenitors that initiate the lymphoid program, and patterns of transcriptional activity controlling lineage fate decisions during normal hematopoiesis, but less is known about environmental signals that may influence the differentiation pathway stability. This review discusses the current knowledge with relevance to hierarchy and early events in lymphopoiesis and their relationship to hematopoietic microenvironment.

Key words:
Lymphoid progenitors
Lymphoid lineage commitment
Adult bone marrow
Early lymphopoiesis
Hematopoietic niche
Full text is only aviable in PDF
Bibliografía
[1.]
G.J. Spangrude, S. Heimfeld, I.L. Weissman.
Purification and characterization of mouse hematopoietic stem cells.
Science, 241 (1988), pp. 58-62
[2.]
M.G. Manz, D. Traver, K. Akashi, M. Merad, T. Miyamoto, E.G. Engleman, et al.
Dendritic cell development from common myeloid progenitors.
Ann NY Acad Sci, 938 (2001), pp. 167-173
[3.]
M.G. Manz, D. Traver, T. Miyamoto, I.L. Weissman, K. Akashi.
Dendritic cell potentials of early lymphoid and myeloid progenitors.
Blood, 97 (2001), pp. 3333-3341
[4.]
R. Pelayo, J. Hirose, J. Huang, K.P. Garrett, A. Delogu, M. Busslinger, et al.
Derivation of two categories of plasmacytoid dendritic cells in murine bone marrow.
Blood, 105 (2005), pp. 4407-4415
[5.]
T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman.
Stem cells, cancer, and cancer stem cells.
Nature, 414 (2001), pp. 105-111
[6.]
M. Kondo, I.L. Weissman, K. Akashi.
Identification of clonogenic common lymphoid progenitors in mouse bone marrow.
Cell, 91 (1997), pp. 661-672
[7.]
K. Akashi, D. Traver, T. Miyamoto, I.L. Weissman.
A clonogeneic common myeloid progenitor that gives rise to all myeloid lineages.
Nature, 404 (2000), pp. 193-197
[8.]
Y. Baba, R. Pelayo, P.W. Kincade.
Relationships between hematopoietic stem cells and lymphocyte progenitors.
Trends Immunol, 25 (2004), pp. 645-649
[9.]
H. Iwasaki, K. Akashi.
Myeloid lineage commitment from the hematopoietic stem cell.
Immunity, 26 (2007), pp. 726-740
[10.]
E.V. Rothenberg.
Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals.
Immunity, 26 (2007), pp. 690-702
[11.]
R.R. Hardy, P.W. Kincade, K. Dorshkind.
The protean nature of cells in the B lymphocyte lineage.
Immunity, 26 (2007), pp. 703-714
[12.]
M. Kondo, A.J. Wagers, M.G. Manz, S.S. Prohaska, D.C. Scherer, G.F. Beilhack, et al.
Biology of hematopoietic stem cells and progenitors: implications for clinical application.
Annu Rev Immunol, 21 (2003), pp. 759-806
[13.]
R. Pelayo, R. Welner, S.S. Perry, J. Huang, Y. Baba, T. Yokota, et al.
Lymphoid progenitors and primary routes to becoming cells of the immune system.
Curr Opin Immunol, 17 (2005), pp. 100-107
[14.]
I.L. Weissman, D.J. Anderson, F. Gage.
Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations.
Annu Rev Cell Dev Biol, 17 (2001), pp. 387-403
[15.]
M.J. Kiel, O.H. Yilmaz, T. Iwashita, T. Terhorst, S.J. Morrison.
SLAM family receptors distinguish hematopoietic and progenitor cells and reveal endothelial niches for stem cells.
Cell, 121 (2005), pp. 1109-1121
[16.]
J. Adolfsson, R. Mansson, N. Buza-Vidas, A. Hultquist, K. Liuba, C.T. Jensen, et al.
Identification of Flt3+ lympho-myeloid ítem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment.
[17.]
R. Pelayo, R.S. Welner, Y. Nagai, P.W. Kincade.
Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow.
Sem Immunol, 18 (2006), pp. 2-11
[18.]
R. Mansson, A. Hultquist, S. Luc, L. Yang, K. Anderson, S. Kharazi, et al.
Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors.
Immunity, 26 (2007), pp. 407-419
[19.]
A.Y. Lai, S.M. Lin, M. Kondo.
Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow.
J Immunol, 175 (2005), pp. 5016-5023
[20.]
H. Igarashi, S.C. Gregory, T. Yokota, N. Sakaguchi, P.W. Kincade.
Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow.
Immunity, 17 (2002), pp. 117-130
[21.]
T. Yokota, T. Kouro, J. Hirose, H. Igarashi, K.P. Garrett, S.C. Gregory, et al.
Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression.
Immunity, 19 (2003), pp. 365-375
[22.]
S.S. Perry, R.S. Welner, T. Kouro, P.W. Kincade, X.H. Sun.
Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential.
J Immunol, 177 (2006), pp. 2880-2887
[23.]
R.S. Welner, R. Pelayo, K.P. Garrett, X. Chen, S.S. Perry, X.-H. Sun, et al.
Interferon-producing killer dendritic cells (IKDC) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors.
Blood, 109 (2007), pp. 4825-4831
[24.]
K.L. Medina, K.P. Garrett, L.F. Thompson, M.I.D. Rossi, K.J. Payne, P.W. Kincade.
Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen.
Nature Immunol, 2 (2001), pp. 718-724
[25.]
T. Kouro, V. Kumar, P.W. Kincade.
Relationships between early B-and NK-lineage lymphocyte precursors in bone marrow.
Blood, 100 (2002), pp. 3672-3680
[26.]
A. D’Amico, L. Wu.
The early progenitors of mouse dendritic cells and plasmacytoid pre-dendritic cells are within the bone marrow hemopoietic precursors expressing Flt3.
J Exp Med, 198 (2003), pp. 293-303
[27.]
G. Balciunaite, R. Ceredig, S. Massa, A.G. Rolink.
A B220+CD117+ CD19+/− hematopoietic progenitor with potent lymphoid and myeloid developmental potential.
Eur J Immunol, 35 (2005), pp. 2019-2030
[28.]
L.L. Rumfelt, Y. Zhou, B.M. Rowley, S.A. Shinton, R.R. Hardy.
Lineage specification and plasticity in CD19-early B cell precursors.
J Exp Med, 203 (2006), pp. 675-687
[29.]
J.P. Miller, D. Izon, W. DeMuth, R. Gerstein, A. Bhandoola, D. Allman.
The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7.
J Exp Med, 196 (2002), pp. 705-711
[30.]
R.R. Hardy, C.E. Carmack, S.A. Shinton, J.D. Kemp, K. Hayakawa.
Resolution and characterization of pro-B and pre-proB cell stages in normal mouse bone marrow.
J Exp Med, 173 (1991), pp. 1213-1225
[31.]
Y.S. Li, R. Wasserman, K. Hayakawa, R.R. Hardy.
Identification of the earliest B lineage stage in mouse bone marrow.
Immunity, 5 (1996), pp. 527-535
[32.]
K.S. Tudor, K.J. Payne, Y. Yamashita, P.W. Kincade.
Functional assessment of precursors from murine BM suggests a sequence of early B lineage differentiation events.
Immunity, 12 (2000), pp. 335-345
[33.]
C.W. Chan, E. Crafton, H.N. Fan, J. Flook, K. Yoshimura, M. Skarica, et al.
Interferon-producing killer dendritic cells provide a link between innate and adaptative immunity.
Nat Med, 12 (2006), pp. 207-213
[34.]
J. Taieb, N. Chaput, C. Menard, L. Apetoh, E. Ullrich, M. Bonmort, et al.
A novel dendritic cell subset involved in tumor immunosurveillance.
Nat Med, 12 (2006), pp. 214-219
[35.]
H. Spits, L.L. Lanier.
Natural killer or dendritic: what's in a name?.
[36.]
D. Vremec, M. O’Keeffe, H. Hochrein, M. Fuchsberger, I. Caminschi, M. Lahoud, et al.
Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells.
Blood, 109 (2007), pp. 1165-1173
[37.]
S.S. Perry, H. Wang, L.J. Pierce, A.M. Yang, S. Tsai, G.J. Spangrude.
L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor.
Blood, 103 (2004), pp. 2990-2996
[38.]
D. Allman, J. Li, R.R. Hardy.
Commitment to the B lymphoid lineage occurs before DH-JH recombination.
J Exp Med, 189 (1999), pp. 735-740
[39.]
K.L. Medina, J.M. Pongubala, K.L. Reddy, D.W. Lancki, R. DeKoter, M. Kieslinger, et al.
Assembling a gene regulatory network for specification of the B cell fate.
[40.]
T. Yoshida, S.Y. Ng, J.C. Zuñiga-Pflucker, K. Georgopoulos.
Early hematopoietic lineage restrictions directed by Ikaros.
Nat Immunol, 7 (2006), pp. 382-391
[41.]
P. Liu, J.R. Keller, M. Ortiz, L. Tessarollo, R.A. Rachel, T. Nakamura, et al.
Bcl11a is essential for normal lymphoid development.
Nat Immunol, 4 (2003), pp. 525-532
[42.]
X.H. Sun.
Multitasking of helix-loop-helix proteins in lymphopoiesis.
Adv Immunol, 84 (2004), pp. 43-77
[43.]
S.L. Nutt, B. Heavey, A.G. Rolink, M. Busslinger.
Commitment to the B-lymphoid lineage depends on the transcription factor Pax5.
Nature, 401 (1999), pp. 556-562
[44.]
M. Busslinger.
Transcriptional control of early B cell development.
[45.]
M. Ye, T. Graf.
Early decisions in lymphoid development.
Curr Opin Immunol, 19 (2007), pp. 123-128
[46.]
T. Maeda, T. Merghoub, R.M. Hobbs, L. Dong, M. Maeda, J. Zakrzewski, et al.
Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF.
Science, 316 (2007), pp. 860-866
[47.]
E. Montecino-Rodriguez, H. Leathers, K. Dorshkind.
Bipotential B-macrophage progenitors are present in adult bone marrow.
Nat Immunol, 2 (2001), pp. 83-88
[48.]
E. Montecino-Rodríguez, H. Leathers, K. Dorshkind.
Identification of a B-1 B cell-specified progenitor.
Nat Immunol, 7 (2006), pp. 293-301
[49.]
R. Ceredig, T. Rolink.
A positive look at double-negative thymocytes.
Nat Rev Immunol, 2 (2002), pp. 888-897
[50.]
A. Bhandoola, A. Sambandam, D. Allman, A. Meraz, B. Schwarz.
Early T lineage progenitors: new insights, but old questions remain.
J Immunol, 171 (2003), pp. 5653-5658
[51.]
B.A. Schwarz, A. Sambandam, I. Maillard, B.C. Harman, P.E. Love, A. Bhandoola.
Selective thymus settling regulated by cytokine and chemokine receptors.
J Immunol, 178 (2007), pp. 2008-2017
[52.]
O. Umland, W.N. Mwangi, B.M. Anderson, J.C. Walker, H.T. Petrie.
The blood contains multiple distinct progenitor populations with clonogenic B and T lineage potential.
J Immunol, 178 (2007), pp. 4147-4152
[53.]
D. Allman, A. Sambandam, S. Kim, J.P. Miller, A. Pagan, D. Well, et al.
Thymopoiesis independent of common lymphoid progenitors.
Nat Immunol, 4 (2003), pp. 168-174
[54.]
H.E. Porritt, L.L. Rumfelt, S. Tabrizifard, T.M. Schmitt, J.C. Zuñiga-Pflucker, H.T. Petrie.
Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages.
Immunity, 20 (2004), pp. 735-745
[55.]
C.H. Martin, I. Aifantis, M.L. Scimone, U.H. von Andrian, B. Reizis, H. von Boehmer, et al.
Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential.
Nat Immunol, 4 (2003), pp. 866-873
[56.]
A. Krueger, H. von Boehmer.
Identification of a T lineage-committed progenitor in adult blood.
Immunity, 26 (2007), pp. 105-116
[57.]
A. Bhandoola, H. von Boehmer, H.T. Petrie, J.C. Zúñiga-Pflucker.
Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from.
Immunity, 26 (2007), pp. 678-689
[58.]
S.E. Prockop, H.T. Petrie.
Regulation of thymus size by competition for stromal niches among early T cell progenitors.
J Immunol, 173 (2004), pp. 1604-1611
[59.]
J. Laurent, N. Bosco, P.N. Marche, R. Ceredig.
New insights into the proliferation and differentiation of early mouse thymocytes.
Int Immunol, 16 (2004), pp. 1069-1080
[60.]
J.C. Pui, D. Allman, L. Xu, S. DeRocco, F.G. Karnell, S. Bakkour, et al.
Notch1 expression in early lymphopoiesis influences B versus T lineage determination.
Immunity, 11 (1999), pp. 299-308
[61.]
P.W. Kincade, J.J. Owen, H. Igarashi, T. Kouro, T. Yokota, M.I. Rossi.
Nature or Nurture? Steady state lymphocyte formation in adults does not recapitulate ontogeny.
Immunol Rev, 187 (2002), pp. 116-125
[62.]
K.A. Moore, I.R. Lemischka.
Stem cells and their niches.
Science, 311 (2006), pp. 1880-1885
[63.]
L. Li, T. Xie.
Stem Cell Niches: Structure and Function.
Annu Rev Cell Dev Biol, 21 (2005), pp. 605-631
[64.]
C.R. Walkley, J.M. Shea, N.A. Sims, L.E. Purton, S.H. Orkin.
Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment.
Cell, 129 (2007), pp. 1081-1095
[65.]
T. Cheng, N. Rodrigues, H. Shen, Y. Yang, D. Dombkowski, M. Sykes, et al.
Hematopoietic stem cell quiescence maintained by p21cip1/waf1.
Science, 287 (2000), pp. 1804-1808
[66.]
F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, et al.
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.
[67.]
T. Suda, F. Arai, A. Hirao.
Hematopoietic stem cells and their niche.
Trends Immunol, 26 (2005), pp. 426-433
[68.]
J. Zhang, J.C. Grindley, T. Yin, S. Jayasinghe, X.C. He, J.T. Ross, et al.
PTEN maintains hematopoietic stem cells and acts in lineage choice and leukaemia prevention.
Nature, 441 (2006), pp. 518-522
[69.]
E. Passegue, A.J. Wagers, S. Giuriato, W.C. Anderson, I.L. Weissman.
Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates.
J Exp Med, 202 (2005), pp. 1599-1611
[70.]
R. Pelayo, K. Miyazaki, J. Huang, K.P. Garrett, D.G. Osmond, P.W. Kincade.
Cell cycle quiescence of early lymphoid progenitors in adult bone marrow.
Stem Cells, 24 (2006), pp. 2703-2713
[71.]
H. Nagaoka, G. Gonzalez-Aseguinolaza, M. Tsuji, M.C. Nussenzweig.
Immunization and infection change the number of recombination activating gene (RAG)-expressing B cells in the periphery by altering immature lymphocyte production.
J Exp Med, 191 (2000), pp. 2113-2120
[72.]
Y. Ueda, K. Yang, S.J. Foster, M. Kondo, G. Kelsoe.
Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression.
J Exp Med, 199 (2004), pp. 47-58
[73.]
Y. Ueda, M. Kondo, G. Kelsoe.
Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow.
J Exp Med, 201 (2005), pp. 1771-1780
[74.]
Y. Nagai, K.P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, et al.
Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment.
Immunity, 24 (2006), pp. 801-812
Copyright © 2007. Sociedad Española de Inmunología
Download PDF
Article options