metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Incidence of Bell’s palsy after coronavirus disease (COVID-19) vaccination: a ...
Journal Information
Vol. 39. Issue 9.
Pages 802-809 (November - December 2024)
Share
Share
Download PDF
More article options
Visits
2467
Vol. 39. Issue 9.
Pages 802-809 (November - December 2024)
Review article
Full text access
Incidence of Bell’s palsy after coronavirus disease (COVID-19) vaccination: a systematic review and meta-analysis
Incidencia de la parálisis de Bell después de la vacunación contra la COVID-19: una revisión sistemática y un metanálisis
Visits
2467
Atena Soltanzadia, Omid Mirmosayyebb, Amin Momeni Moghaddama, Hamed Ghoshounib, Mahsa Ghajarzadehc,d,
Corresponding author
m.ghajarzadeh@gmail.com

Corresponding author.
a Radiology Department, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
b Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
c Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
d Universal council of epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (3)
Show moreShow less
Tables (1)
Table 1. Basic characteristics of included studies.
Resumen
Objetivo

Estimar la incidencia agrupada de la parálisis de Bell después de la vacunación contra el COVID-19.

Métodos

Realizamos búsquedas sistemáticas (dos investigadores independientes) en PubMed, Scopus, EMBASE, Web of Science y Google Scholar. También se realizaron búsquedas en la literatura gris, incluidas las referencias de las referencias y los resúmenes de congresos. Extrajimos datos sobre el número total de participantes, el primer autor, el año de publicación, el país de origen, femenino/masculino, el tipo de vacunas y el número de pacientes que desarrollaron parálisis de Bell después de la vacunación contra el COVID-19.

Resultados

La búsqueda bibliográfica reveló 370 artículos, eliminando posteriormente los duplicados que quedaban 227. Después de una cuidadosa evaluación de los textos completos, quedaron veinte artículos para el metanálisis. Las vacunas más comúnmente administradas fueron Pfizer seguida de Moderna.

En total, 4,54e+07 personas recibieron vacunas contra la COVID-19 y 1739 casos desarrollaron parálisis de Bell. En nueve estudios, se inscribieron controles (individuos sin vacunación). El número total de controles fue de 1809069, de los cuales 203 desarrollaron parálisis de Bell. La incidencia de la parálisis de Bell después de las vacunas COVID-19 fue ignorable. La probabilidad de desarrollar parálisis de Bell después de las vacunas contra la COVID-19 fue de 1,02 (IC 95 %: 0,79-1,32) (I2 = 74,8 %, p < 0,001).

Conclusión

los resultados de esta revisión sistemática y metanálisis muestran que la incidencia de parálisis facial periférica después de la vacunación contra el COVID-19 es despreciable y que la vacunación no aumenta el riesgo de desarrollar parálisis de Bell. Tal vez, la parálisis de Bell es un síntoma de presentación de una forma más grave de COVID-19, por lo que los médicos deben ser conscientes de esto.

Palabras clave:
Parálisis de Bell
Incidencia
Vacunas COVID-19
Abstract
Objective

To estimate the pooled incidence of Bell’s palsy after COVID-19 vaccination.

Methods

PubMed, Scopus, EMBASE, Web of Science, and Google Scholar were searched by 2 independent researchers. We also searched the grey literature including references of the references and conference abstracts. We extracted data regarding the total number of participants, first author, publication year, the country of origin, sex, type of vaccines, and the number of patients who developed Bell’s palsy after COVID-19 vaccination.

Results

The literature search revealed 370 articles, subsequently deleting duplicates 227 remained. After careful evaluation of the full texts, 20 articles remained for meta-analysis. The most commonly administered vaccines were Pfizer followed by Moderna.

In total, 4.54e+07 individuals received vaccines against COVID-19, and 1739 cases developed Bell’s palsy. In nine studies, controls (individuals without vaccination) were enrolled. The total number of controls was 1 809 069, of whom 203 developed Bell’s palsy. The incidence of Bell’s palsy after COVID-19 vaccines was ignorable. The odds of developing Bell’s palsy after COVID-19 vaccines was 1.02 (95% CI: 0.79-1.32) (I2 = 74.8%, P < .001).

Conclusion

The results of this systematic review and meta-analysis show that the incidence of peripheral facial palsy after COVID-19 vaccination is ignorable and vaccination does not increase the risk of developing Bell’s palsy. Maybe, Bell’s palsy is a presenting symptom of a more severe form of COVID-19, so clinicians must be aware of this.

Keywords:
Bell palsy
Incidence
COVID-19 vaccines
Full Text
Introduction

In December 2019, a new coronavirus was detected in Wuhan, China which spread rapidly all over the world.1 It is in the pandemic stage and different vaccines have been developed to stop the pandemic.2 The European Medicines Agency, the US Food and Drug Administration, and the UK Medicines and Healthcare products Regulatory Agency have approved various types of vaccines since December 2020.2 Each vaccine has its safety and efficacy profiles which raises the necessity for careful evaluation. The side effects have a wide range from injection site pain (swelling) to extreme reactions such as anaphylaxis.3,4 Neurological complications have been reported after COVID-19 vaccination including Guillain-Barré syndrome (GBS), neuromyelitis optica spectrum disorders (NMOSD), transverse myelitis, multiple sclerosis (MS), thrombosis with thrombocytopenia syndrome, and Bell’s palsy.5–10

Bell’s palsy is acute peripheral facial nerve with unknown aetiology and sudden onset of unilateral peripheral facial paralysis.10 It is transient and more than half of the affected patients recover within 6 months without treatment.11 The relationship between vaccination and incidence of Bell’s palsy is unclear while mimicry of host molecules by the vaccinal antigen could be the possible explanation.12 Up to now, different studies reported various incidence rates of Bell’s palsy after vaccination with different vaccines.13–16 So, we designed this systematic review and meta-analysis to estimate the pooled incidence of Bell’s palsy after COVID-19 vaccination.

Methods

PubMed, Scopus, EMBASE, Web of Science, and Google Scholar were searched by 2 independent researchers. We also searched the grey literature including references of the references and conference abstracts by 10th February 2022.

After deleting duplicates, we screened the titles and abstracts of the potential studies and in the case of discrepancy, they asked the third one to solve the disagreement.

Then the full texts of the remained studies were assessed and the data were extracted. The extracted data were entered in a datasheet and the third one checked the data of two sources.

We extracted data regarding the total number of participants, first author, publication year, the country of origin, sex, type of vaccines, and the number of patients who developed Bell’s palsy after COVID-19 vaccination.

The MeSH terms which were used for searching in the PubMed are attached in a supplementary file.

Inclusion criteria were: retrospective/prospective cohort studies which reported incidence of facial palsy after vaccination, articles published in English.

Exclusion criteria were: Letters to the editor, case-control, case reports, and cross-sectional studies which had no clear data.

Risk of bias assessment: Newcastle-Ottawa Scale (NOS) (adapted for cohort studies).17

Statistical analysis

All statistical analyses were performed using STATA (Version 14.0; Stata Corp LP, College Station, TX, USA.

To determine heterogeneity, inconsistency (I2) was calculated.

We used random-effects model for meta-analysis as the heterogeneity between study results (I2) was more than 50%.

Results

The literature search revealed 370 articles, subsequently after deleting duplicates 227 remained. After careful evaluation of the full texts, 20 articles remained for meta-analysis (Fig. 1).

Figure 1.

Flow diagram of including studies.

(0.12MB).

The most commonly administered vaccines were Pfizer (in 16 studies [80%]) followed by Moderna (4 [25%]).

In total, 4.54e+07 individuals received vaccines against COVID-19, and 1739 cases developed Bell’s palsy

Totally 1.79e+07 patients received Pfizer vaccines and 429 cases developed Bell’s palsy. In 12 studies, it was determined the dose of the vaccines (first or second). In 9 studies, controls (individuals without vaccination) were enrolled. The total number of controls was 1 809 069, of whom203 developed Bell’s palsy. The quality assessment scores of included studies ranged between 6 and 8 (Table 1).

Table 1.

Basic characteristics of included studies.

Author/year/country  All vac  Male/female/unknown  Vac type/dose  Bell’s palsy vac  Male/female  Vac type/dose  All controls  Controls Bell’s palsy  NOS score 
    All vac      Bell’s palsy  Bell’s palsy       
Barbara H. Bardenheier/2021/USA18  8275  Unknown  Pf = 5842  1/0  Pf : 1  11 072 
      Mod = 2433      1st = 1       
            2nd = 0       
            Mod = 0       
Joshua TC Tan/2021/ Singapore15  64 661  59 574/4929/ 158  Pf : 37 367  1/0  Pf : 1     
      1st = 37 367      1st = 1       
      2nd = 37 162      2nd = 0       
      Mod : 27 294      Mod : 0       
      1st = 27 294             
      2nd = 25 258             
Rana Shibli/2021/Israel19  2 594 990  1 256 958/1 338 032  Pf  284  153/131  Pf     
      1st = 2 594 990      1st = 132       
      2nd = 2 434 674      2nd = 152       
Filippos Filippatos/2021/Greece20  502  393/109  Pf  1/0  Pf     
      2nd      1st = 0       
            2nd = 1       
Eric Yuk Fai Wan/2022/Hong Kong10  989 144  Unknown  Pf : 537 205  44  29/15  Pf : 16     
      1st = 537 205      1st = 8       
      2nd = 247 957      2nd = 8       
      CoronaVac : 451 939      CoronaVac : 28       
      1nd = 451 939      1st = 19       
      2nd = 324 632      2nd = 9       
G. Gómez de Terreros Caro/2021/Spain21  877  Unknown  Pf  1/0  Pf     
      2nd      1st = 1       
            2nd = 0       
H.M. El Sahly/2021/USA22  15 180  7917/7263  Mod    Mod  15 166 
            1st = 0       
            2nd = 8       
Jasmine Shimin Koh/2021/Singapore14  1 398 074  761 950/636 124  Pf : 1 212 130  11  5/6  Pf = 11     
      Mod : 185 944      Mod = 0       
      1st = 1 398 074      1st = 6       
      2nd = 915 344      2nd = 5       
Nagla A El-Shitany/2021/Saudi Arabia23  455  163/292  Pf    Pf     
      1st = 203      1st = 3       
      2nd = 252      2nd = 0       
Francisco Tsz Tsun Lai/2022/Hong Kong24  335 620  161 467/174 153  Pf : 153 178  13    Pf : 4  547 796  24 
      CoronaVac : 182 442      1st = 4       
      1st      2nd = 0       
            CoronaVac: 9       
            1st = 9       
            2nd = 0       
Martina Patone/2021/UK25  32 552 534  14 219 053/16 759 298/1 574 183  Pf : 12 134 782  685  319/366  Pf : 250     
      AZD : 20 417 752      1st = 250       
      1st      2nd = 0       
            AZD : 435       
            1st = 435       
            2nd = 0       
Reid McMurry/2021/USA26  68 266  28 408/39 857/1  Pf : 51 795  26    Pf : 22  68 266  75 
      1st = 51 795      1st = 14       
      2nd = 39 058      2nd = 8       
      Mod : 16 471      Mod : 4       
      1st = 16 471      1st = 2       
      2nd = 11 851      2nd = 2       
David Shasha/2022/Israel27  231 159  114 634/118 525  Pf  31    Pf  233 159  36 
      1st = 233 159      1st = 23       
      2nd = 131 033      2nd = 8       
Youn Young Choi/2021/Korea28  638  283/355  Pf  1/0  Pf     
      1st = 638      1st = 1       
      2nd = 580      2nd = 0       
Noam Barda/2021/Israel29  884 828  461 590/423 238  Pf  81    Pf  884 828  59 
Nicola P. Klein/2021/USA30  6 175 813  2 830 791/33 45 022  Pf : 3 539 611  535    mRNA(Pf/Mod)     
      1st = 3 539 611             
      2nd = 3 214 737             
      Mod : 2 636 202             
      1st = 2 636 202             
      2nd = 2 454 578             
Merryn Voysey/2021/Multicentre16  12 021  Unknown.  AZD      11 724 
J. Sadoff/2021/Multicentre  21 895  12 071/9820/4  J&J    J&J  21 888 
      Single dose             
Fernando P. Polack/2020/Multicentre3  18 860  9639/9221  Pf    Pf     
      1st = 18 860             
      2nd = 18 556             
L.R. Baden/2021/USA13  15 181  7923/7258  Mod    Mod  15 170 
      1st = 15 181             
      2nd = 14 711             

Pf = Pfizer, Mod = Moderna, AZD = AstraZeneca.

UK: United Kingdom.

The incidence of Bell’s palsy after COVID-19 vaccines was ignorable (Fig. 2).

The incidence of Bell’s palsy after COVID-19 vaccines was ignorable (Fig. 2).

Figure 2.

The incidence of Bell’s palsy after COVID-19 vaccines.

(0.29MB).

The odds of developing Bell’s palsy after COVID-19 vaccines was 1.02 (95% CI: 0.79-1.32) (I2 = 74.8%, P <0.001) (Fig. 3) (only 9 studies had controls).

Figure 3.

The odds of developing Bell’s palsy after COVID-19 vaccines.

(0.18MB).
Discussion

To our knowledge, this is the first systematic review and meta-analysis estimating the pooled incidence of Bell’s palsy after COVID-19 vaccines. The results show that the pooled incidence is ignorable and administration of the COVID-19 vaccines does not increase the risk of developing Bell’s palsy.

In a multi-centric study in the USA which was conducted by Baden et al.,13 15 181 individuals who received Moderna vaccine and 15 170 controls were evaluated. Their results show that 3 individuals in the vaccinated group and one in the control group developed Bell’s palsy.13 The odds of developing Bell’s palsy in their study was 1.5, which was not significant (95% CI: 0.85-2.6).

McMurry et al.26 enrolled 68 266 vaccinated individuals and 68 266 controls. In their study, the incidence of Bell’s palsy was higher among controls which suggested that administration of COVID-19 vaccines decreases the risk of Bell’s palsy (OR = 0.51, 95% CI: 0.37-0.72).26

In another large study which was conducted in Israel, Barda et al.29 recruited 884 828 vaccinated and the same number of controls. The incidence of Bell’s palsy was higher in the vaccinated group while there was no significant association between Bell’s palsy and COVID-19 vaccination.29

Association between vaccination and Bell’s palsy occurrence had been reported previously. Strong associations were reported between the intranasal inactivated influenza vaccine and also influenza H1N1 monovalent vaccine.31,32 The aetiology of Bell’s palsy after vaccination is not fully understood while there are some hypotheses that re-activation of a herpes virus infection, mimicry of host molecules, or activation of dormant auto-reactive T cells play a role.12 As the results of this systematic review show, there is no association between COVID-19 vaccination and Bell’s palsy.

A new study shows that the incidence of neurological adverse effects after COVID-19 infection is higher than rates of neurological complications after vaccination, besides serious neurological adverse effects are rare.33

In all included studies in this systematic review, Pfizer, Moderna, and AstraZeneca vaccines were used. Pfizer and Moderna are mRNA vaccines while the Oxford-AstraZeneca vaccine is an adenoviral (ChAdOx1) vector-based COVID-19 vaccine with a wide range of complications including thrombosis with thrombocytopenia syndrome, transverse myelitis, Guillain-Barré syndrome, etc.34–36 In only two included studies AstraZeneca was administered which showed no significant association between vaccination and Bell’s palsy.

This study had some strengths. First, it is the first systematic review and meta-analysis in this field. Second, we estimated the odds of developing Bell’s palsy after vaccination.

Conclusion

The results of this systematic review and meta-analysis show that the incidence of peripheral facial palsy after COVID-19 vaccination is ignorable and vaccination does not increase the risk of developing Bell’s palsy. Maybe, Bell’s palsy is a presenting symptom of a more severe form of COVID-19, so clinicians must be aware of this.

References
[1]
A.N. Moghadasi, O. Mirmosayyeb, M. Barzegar, M.A. Sahraian, M. Ghajarzadeh.
The prevalence of COVID-19 infection in patients with multiple sclerosis (MS): a systematic review and meta-analysis.
Neurol Sci, 42 (2021), pp. 3093-3099
[2]
X. Li, A. Ostropolets, R. Makadia, A. Shoaibi, G. Rao, A.G. Sena, et al.
Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study.
BMJ, 373 (2021),
[3]
F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al.
Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.
N Engl J Med, (2020), pp. 2603-2615
[4]
J.H. Kim, F. Marks, J.D. Clemens.
Looking beyond COVID-19 vaccine phase 3 trials.
Nat Med, 27 (2021), pp. 205-211
[5]
D. Čenščák, L. Ungermann, I. Štětkářová, E. Ehler.
Guillan-Barré syndrome after the first vaccination dose against COVID-19: case report.
Acta Med, 64 (2021), pp. 183-186
[6]
S. Chen, X.-R. Fan, S. He, J.-W. Zhang, S.-J. Li.
Watch out for neuromyelitis optica spectrum disorder after inactivated virus vaccination for COVID-19.
Neurol Sci, 42 (2021), pp. 3537-3539
[7]
E. Khan, A.K. Shrestha, M.A. Colantonio, R.N. Liberio, S. Sriwastava.
Acute transverse myelitis following SARS-CoV-2 vaccination: a case report and review of literature.
J Neurol, (2021), pp. 1-12
[8]
M. Khayat-Khoei, S. Bhattacharyya, J. Katz, D. Harrison, S. Tauhid, P. Bruso, et al.
COVID-19 mRNA vaccination leading to CNS inflammation: a case series.
J Neurol, (2021), pp. 1-14
[9]
K. Kragholm, M. Sessa, T. Mulvad, M.P. Andersen, H. Collatz-Christensen, S.N. Blomberg, et al.
Thrombocytopenia after COVID-19 vaccination.
J Autoimmun, 123 (2021),
[10]
E.Y.F. Wan, C.S.L. Chui, F.T.T. Lai, E.W.Y. Chan, X. Li, V.K.C. Yan, et al.
Bell’s palsy following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and nested case-control study.
Lancet Infect Dis, 22 (2022), pp. 64-72
[11]
E. Peitersen.
Natural history of Bell’s palsy.
Acta Otolaryngol, 112 (1992), pp. 122-124
[12]
N. Principi, S. Esposito.
Do vaccines have a role as a cause of autoimmune neurological syndromes?.
Front Public Health, 361 (2020), pp. 361
[13]
L.R. Baden, H.M. El Sahly, B. Essink, K. Kotloff, S. Frey, R. Novak, et al.
Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.
N Engl J Med, (2020),
[14]
J.S. Koh, R.H.M. Hoe, M.H. Yong, H.J. Chiew, Y. Goh, K.P. Yong, et al.
Hospital-based observational study of neurological disorders in patients recently vaccinated with COVID-19 mRNA vaccines.
J Neurol Sci, 430 (2021),
[15]
J.T. Tan, C. Tan, J. Teoh, M. Wahab, G.Z. Tan, R.Y.Z. Chin, et al.
Adverse reactions and safety profile of the mRNA COVID-19 vaccines among Asian military personnel.
Ann Acad Med Singap, 50 (2021), pp. 827-837
[16]
M. Voysey, S.A.C. Clemens, S.A. Madhi, L.Y. Weckx, P.M. Folegatti, P.K. Aley, et al.
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
[17]
G. Wells, B. Shea, D. O’Connell, J. Peterson, V. Welch, M. Losos, et al.
Newcastle-Ottawa quality assessment scale cohort studies.
University of Ottawa, (2014),
[18]
B.H. Bardenheier, S. Gravenstein, C. Blackman, R. Gutman, I.N. Sarkar, R.A. Feifer, et al.
Adverse events following mRNA SARS-CoV-2 vaccination among US nursing home residents.
Vaccine, 39 (2021), pp. 3844-3851
[19]
R. Shibli, O. Barnett, Z. Abu-Full, N. Gronich, R. Najjar-Debbiny, I. Doweck, et al.
Association between vaccination with the BNT162b2 mRNA COVID-19 vaccine and Bell’s palsy: a population-based study.
Lancet Reg Health Europe, 11 (2021),
[20]
F. Filippatos, E.-B. Tatsi, C. Dellis, N. Dessypris, V. Syriopoulou, A. Michos.
Association of clinical and epidemiological characteristics with COVID-19 BNT162b2 mRNA vaccine short-term adverse reactions in healthcare workers.
Human Vaccines Immunother, (2021), pp. 1-6
[21]
G.G. de Terreros Caro, S.G. Díaz, M.P. Alé, M.M. Gimeno.
Bell’s palsy following COVID-19 vaccination: a case report.
Neurologia (Barcelona, Spain), (2021), pp. 567-568
[22]
H.M. El Sahly, L.R. Baden, B. Essink, S. Doblecki-Lewis, J.M. Martin, E.J. Anderson, et al.
Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase.
N Engl J Med, 385 (2021), pp. 1774-1785
[23]
N.A. El-Shitany, S. Harakeh, S.M. Badr-Eldin, A.M. Bagher, B. Eid, H. Almukadi, et al.
Minor to moderate side effects of Pfizer-BioNTech COVID-19 vaccine among Saudi residents: a retrospective cross-sectional study.
International journal of general medicine, 14 (2021), pp. 1389
[24]
F.T.T. Lai, L. Huang, C.S.L. Chui, E.Y.F. Wan, X. Li, C.K.H. Wong, et al.
Multimorbidity and adverse events of special interest associated with Covid-19 vaccines in Hong Kong.
Nat Commun, 13 (2022), pp. 1-8
[25]
M. Patone, L. Handunnetthi, D. Saatci, J. Pan, S.V. Katikireddi, S. Razvi, et al.
Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection.
Nat Med, 27 (2021), pp. 2144-2153
[26]
R. McMurry, P. Lenehan, S. Awasthi, E. Silvert, A. Puranik, C. Pawlowski, et al.
Real-time analysis of a mass vaccination effort confirms the safety of FDA-authorized mRNA COVID-19 vaccines.
[27]
D. Shasha, R. Bareket, F.H. Sikron, O. Gertel, J. Tsamir, D. Dvir, et al.
Real-world safety data for the Pfizer BNT162b2 SARS-CoV-2 vaccine: historical cohort study.
Clin Microbiol Infect, 28 (2022), pp. 130-134
[28]
Y.Y. Choi, M.-K. Kim, H.C. Kwon, G.H. Kim.
Safety monitoring after the BNT162b2 COVID-19 vaccine among adults aged 75 years or older.
J Korean Med Sci, 36 (2021),
[29]
N. Barda, N. Dagan, Y. Ben-Shlomo, E. Kepten, J. Waxman, R. Ohana, et al.
Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting.
N Engl J Med, (2021), pp. 1078-1090
[30]
N.P. Klein, N. Lewis, K. Goddard, B. Fireman, O. Zerbo, K.E. Hanson, et al.
Surveillance for adverse events after COVID-19 mRNA vaccination.
JAMA, 326 (2021), pp. 1390-1399
[31]
M. Mutsch, W. Zhou, P. Rhodes, M. Bopp, R.T. Chen, T. Linder, et al.
Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland.
N Engl J Med, 350 (2004), pp. 896-903
[32]
C. Bardage, I. Persson, Å Örtqvist, U. Bergman, J.F. Ludvigsson, F. Granath.
Neurological and autoimmune disorders after vaccination against pandemic influenza A (H1N1) with a monovalent adjuvanted vaccine: population based cohort study in Stockholm, Sweden.
BMJ, 343 (2011),
[33]
J.A. Frontera, A.A. Tamborska, M.F. Doheim, D. Garcia-Azorin, H. Gezegen, A. Guekht, et al.
Neurological events reported after COVID-19 vaccines: an analysis of VAERS.
Ann Neurol, 2 (2022), pp. 756-771
[34]
A. Introna, F. Caputo, C. Santoro, T. Guerra, M. Ucci, D.M. Mezzapesa, et al.
Guillain-Barré syndrome after AstraZeneca COVID-19-vaccination: a causal or casual association?.
Clin Neurol Neurosurg, 208 (2021),
[35]
A.A. Notghi, J. Atley, M. Silva.
Lessons of the month 1: Longitudinal extensive transverse myelitis following AstraZeneca COVID-19 vaccination.
Clin Med, 21 (2021), pp. e535
[36]
J. Oldenburg, R. Klamroth, F. Langer, M. Albisetti, C. Von Auer, C. Ay, et al.
Diagnosis and management of vaccine-related thrombosis following AstraZeneca COVID-19 vaccination: guidance statement from the GTH.
Hämostaseologie, (2021), pp. e1
Copyright © 2023. Sociedad Española de Neurología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.nrleng.2022.09.007
No mostrar más