metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Botulinum toxin type A infiltration in spasticity and cervical dystonia. Muscle ...
Journal Information
Visits
1603
Original article
Full text access
Botulinum toxin type A infiltration in spasticity and cervical dystonia. Muscle morphology: an overlooked factor
Infiltración de toxina botulínica tipo A en espasticidad y distonía cervical. La morfología muscular, la gran olvidada
Visits
1603
M. Murie-Fernándeza,
Corresponding author
manumurie@gmail.com

Corresponding author.
, C. Bahamondea, D. Graffignaa, B. Hontanillab
a Unidad de Neurorrehabilitación, Hospital Ciudad de Telde, Telde, Las Palmas de Gran Canaria, Spain
b Departamento de Cirugía Plástica, Clínica Universidad de Navarra, Pamplona, Spain
This item has received
Received 20 September 2021. Accepted 25 September 2021
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (3)
Show moreShow less
Tables (3)
Table 1. Morphological measurements of muscles.
Table 2. Recommended and real-life doses of botulinum toxin for each muscle.4
Table 3. Units of toxin administered per gramme of muscle, in ascending order. The scalene and adductor pollicis are excluded.
Show moreShow less
Abstract
Introduction

Botulinum toxin type A is used to treat spasticity and dystonia. However, its relationship with muscle morphology has not been studied. The action mechanism of botulinum toxin is based on the inhibition of acetylcholine release. Therefore, larger doses of toxin would be needed to treat larger muscles. This study aims to establish whether there is a discrepancy between muscle morphology and the botulinum toxin doses administered.

Methods

We dissected, and subsequently measured and weighed, muscles from the upper and lower limbs and the head of a fresh cadaver. We consulted the summary of product characteristics for botulinum toxin type A to establish the recommended doses for each muscle and calculated the number of units infiltrated per gramme of muscle.

Results

Different muscles present considerable morphological variability, and the doses of botulinum toxin administered to each muscle are very similar. We observed great variability in the amount of botulinum toxin administered per gramme of muscle, ranging from 0.3 U/g in the biceps femoris to 14.6 U/g in the scalene muscles. The mean dose was 2.55 U/g. The doses administered for nearly all lower limb muscles were below this value.

Conclusions

There are significant differences in morphology between the muscles of the lower limbs, upper limbs, and head, but similar doses of botulinum toxin are administered to each muscle. These differences result in great variability in the number of units of botulinum toxin administered per gramme of muscle.

Keywords:
Botulinum toxin
Spasticity
Dystonia
Resumen
Introducción

La toxina botulínica tipo A es un tratamiento para la espasticidad y la distonía. Sin embargo, no se ha estudiado su relación con la morfología muscular. El mecanismo de acción de la Toxina botulínica radica en inhibir la liberación de acetilcolina. Cabe pensar que, a mayor tamaño muscular, mayor dosis de toxina necesaria. El objetivo del presente trabajo es poner de manifiesto la existencia o no de una discrepancia entre las dosis de toxina botulínica utilizadas y la morfología muscular.

Método

Se procedió a la disección de los músculos de las extremidades inferiores, superiores y de la cabeza, en cadáver fresco para su pesaje y medición. De la ficha técnica de las toxinas botulínica tipo A se obtuvieron las dosis recomendadas para cada músculo. Se calculó la Unidad de toxina botulínica tipo A infiltrada por gramo muscular.

Resultados

Existe una gran variabilidad morfológica entre los músculos; las dosis de toxina botulínica administradas por músculo son muy similares. Existe una gran variabilidad de la Unidad de toxina botulínica por gramo muscular: desde los 0,3 U/gr del bíceps femoral hasta 14,6 U/gr del escaleno. La dosis media de unidad de toxina por gramo muscular fue de 2,55 U/gr. Casi todos los músculos de la extremidad inferior quedan por debajo de esta media.

Conclusiones

Existen diferencias morfológicas significativas entre los músculos de la extremidad inferior, superior y la cabeza pero las dosis de toxina botulínica infiltradas por músculo son similares. Estas diferencias hacen que la Unidad de toxina recibida por gramo muscular sea muy variable.

Palabras clave:
Toxina botulínica
Espasticidad
Distonia
Full Text
Introduction

Botulinum toxin has been used in humans for over 40 years, after Drachman1 first demonstrated that it causes skeletal muscle paralysis in animals. This discovery encouraged Allan Scott to investigate its use in humans, specifically in the management of strabismus; this research, conducted between 1960 and 1970, led the United States Food and Drug Administration to approve the drug for the treatment of strabismus in humans in 1979. The following years saw a considerable expansion of research into the use of botulinum toxin in different areas of medicine, to treat such disorders as cervical dystonia, overactive bladder, hyperhidrosis, sialorrhoea, spasticity, and migraine.2 Currently, 3 types of botulinum toxin A and one type of botulinum toxin B are commercially available. The type A drugs are Botox (onabotulinumtoxinA), produced by Allergan Inc., Xeomin (incobotulinumtoxinA), manufactured by Merz Pharma, and Dysport (abobotulinumtoxinA), produced by Ipsen. The type B botulinum toxin is Myobloc (rimabotulinumtoxinB). All 3 type A botulinum toxins present similar action mechanisms. According to the summary of product characteristics for onabotulinumtoxinA, the drug “blocks peripheral acetylcholine release at presynaptic cholinergic nerve terminals by cleaving SNAP-25, a protein integral to the successful docking and release of acetylcholine from vesicles situated within the nerve endings”; in other words, it selectively, transiently, and reversibly blocks neurotransmission in cholinergic nerve terminals of the neuromuscular junction, causing weakness and atrophy of the infiltrated muscle.

Historically, research into the use of botulinum toxin in humans has always followed a similar pattern: a clinical trial is conducted in which a range of doses are administered to a particular muscle and to treat a particular disorder, and subsequent studies seek to optimise that dose in terms of dilution, dosage, anatomical disposition of the muscle, and infiltration techniques.3

However, little or no research has addressed muscle morphology. Therefore, it seems logical to consider that, if the action mechanism of botulinum toxin lies in the inhibition of acetylcholine at the neuromuscular junction, then larger muscles would require higher doses of the drug for the same effect to be achieved. Accumulated professional experience with botulinum toxin, particularly in the treatment of dystonia, spasticity, and migraine, suggests that there may be a discrepancy between the authorised doses and those actually used for different-sized muscles. In the light of this, the present study aims to establish whether there exists such a discrepancy between the recommended and the actual doses of botulinum toxin A used, in relation to muscle size, in the treatment of adult patients with spasticity and cervical dystonia.

Material and methods

We dissected the muscles of the lower limbs, upper limbs, and head of the fresh (unprocessed) cadaver of a 73-year-old woman with no history of relevant neurological disease, prolonged periods of bed rest, or pharmacological treatment that may affect skeletal muscle. After dissection, muscles were weighed and measured to record their length and maximum diameter. We took measurements bilaterally and used the mean value.

The recommended doses for each muscle are taken from the summary of product characteristics for botulinum toxin A. As some types of botulinum toxin A are not approved for all muscles, and because the recommendations for cervical dystonia refer to the dose per infiltration session, rather than the dose per muscle, we used the mean real-life doses reported in a recent expert consensus statement4 to calculate the units of toxin per gramme of muscle.

Results

Table 1 shows the weight, length, and maximum diameter of each muscle studied.

Table 1.

Morphological measurements of muscles.

Muscle  Weight (g)  Length (cm)  Maximum diameter (cm) 
Lower limbs
Biceps femoris  214.9  36.8  8.5 
Semimembranosus  30  29.5 
Semitendinosus  64.7  29.6  5.4 
Rectus femoris  74.1  29.5  5.5 
Gracilis  44.35  33.6  5.1 
Medial gastrocnemius  68  33 
Lateral gastrocnemius  32.4  35.1 
Soleus  131.9  27.5  8.9 
Tibialis posterior  42  27.4  3.2 
Extensor hallucis longus  10  21.5 
Flexor hallucis longus  17.2  23.3  1.6 
Flexor digitorum longus  8.3  22  1.2 
Upper limbs
Deltoid  124  12.5  10 
Pectoralis major  69  20  13.7 
Latissimus dorsi  112.3  25.5  24.5 
Teres major  36.5  17.8 
Biceps brachii  34.2  25.2  3.9 
Long head of biceps  15.5  22.7  2.9 
Short head of biceps  22.5  25.3  2.7 
Brachialis  24  15.2  3.7 
Brachioradialis  12.8  24.7  2.3 
Pronator teres  13.7  13.1  2.5 
Flexor carpi ulnaris  9.5  21.6  1.5 
Flexor carpi radialis  8.9  23.5  1.8 
Flexor digitorum superficialis  19.9  19.6  3.2 
Flexor digitorum profundus  25.75  19.4  3.5 
Adductor pollicis  2.3  3.6  2.3 
Flexor pollicis longus  5.5  17.2  1.5 
Head
Sternocleidomastoid  13.5  16.2  2.7 
Levator scapulae  17.5  17.8  3.5 
Scalene  2.5  8.75  1.5 

Table 2 shows the recommended botulinum toxin A doses for each muscle, and Table 3 shows the mean doses reported in a recent international consensus statement on the treatment of spasticity and dystonia (that article does not issue recommendations on abobotulinumtoxinA).

Table 2.

Recommended and real-life doses of botulinum toxin for each muscle.4

Muscle  Botox (onabotulinumtoxinA)  Xeomin (incobotulinumtoxinA)  Dysport (abobotulinumtoxinA)  Real-life doses4,b 
Lower limbs
Biceps femoris      100−400a  65 
Semimembranosus      100−400a  65 
Semitendinosus      100−400a  65 
Rectus femoris      100−400  63.3 
Medial gastrocnemius  75    100−450  56.5 
Lateral gastrocnemius  75    100−450  52.7 
Soleus  75    300−550  53.3 
Tibialis posterior  75    100−250  71.8 
Extensor hallucis longus        52.5 
Flexor hallucis longus  50    50−200  68.6 
Flexor digitorum longus  50    50−200  60 
Upper limbs
Deltoid    20−150    58.6 
Pectoralis major    20−200  150−300  58.5 
Latissimus dorsi    20−150  150−300  64.4 
Teres major    20−100    64.4 
Biceps brachii    50−200  200−400  63.5 
Brachialis    25−100  200−400  45.7 
Brachioradialis      100−200  43.7 
Pronator teres    25−75  100−200  42 
Flexor carpi ulnaris  10−50  20−100  100−200  61.7 
Flexor carpi radialis  15−60  25−100  100−200  52.5 
Flexor digitorum superficialis  15−50  25−10  100−200  74.9 
Flexor digitorum profundus  15−50  25−100  100−200  75.7 
Adductor pollicis  20  5−30  25−50  39.4 
Flexor pollicis longus  20  10−50  100−200   
Head
Sternocleidomastoid        46.4 
Levator scapulae        34.2 
Scalene        36.5 
a

The summary of product characteristics refers to the hamstring muscles (100−400 U).

b

Reported data are for onabotulinumtoxinA and incobotulinumtoxinA.

Table 3.

Units of toxin administered per gramme of muscle, in ascending order. The scalene and adductor pollicis are excluded.

Units of toxin/gramme muscle  Muscle 
0.30246626  Biceps femoris 
0.40409401  Soleus 
0.47258065  Deltoid 
0.57346394  Latissimus dorsi 
0.83088235  Medial gastrocnemius 
0.84782609  Pectoralis major 
0.85425101  Rectus femoris 
1.00463679  Semitendinosus 
1.62654321  Lateral gastrocnemius 
1.70952381  Tibialis posterior 
1.76438356  Teres major 
1.85672515  Biceps brachii 
1.90416667  Brachialis 
1.95428571  Levator scapulae 
2.16666667  Semimembranosus 
2.93980583  Flexor digitorum profundus 
3.06569343  Pronator teres 
3.4140625  Brachioradialis 
3.43703704  Sternocleidomastoid 
3.7638191  Flexor digitorum superficialis 
3.98837209  Flexor hallucis longus 
5.25  Extensor hallucis longus 
5.8988764  Flexor carpi radialis 
6.49473684  Flexor carpi ulnaris 
7.22891566  Flexor digitorum longus 

The real-life doses (units of toxin per gramme of muscle) for onabotulinumtoxinA and incobotulinumtoxinA ranged from 0.3 U/g for the biceps femoris to 14.6 U/g for the scalene muscles. Figs. 1–3 present the units of toxin administered per gramme of muscle for the lower limbs, upper limbs, and head, respectively.

Figure 1.

Units of botulinum toxin administered per gramme of muscle in the lower limbs.

(0.16MB).
Figure 2.

Units of botulinum toxin administered per gramme of muscle in the upper limbs.

(0.16MB).
Figure 3.

Units of botulinum toxin administered per gramme of muscle in the head.

(0.07MB).

If we exclude outliers, such as the scalene muscles and adductor pollicis, the mean dose was 2.55 U/g. With the exception of the flexor hallucis longus and the extensor hallucis longus, which weigh the least of all muscles in the leg, all muscles in the lower limb are below this cut-off point; several muscles of the upper limb (the heaviest muscles, such as the deltoid, latissimus dorsi, teres major, biceps brachii, and brachialis) are also below this cut-off point.

Discussion

Several studies have demonstrated the efficacy of botulinum toxin A in the treatment of spasticity5 and cervical dystonia.6 However, the scientific community continues to search for ways to improve the efficacy of these drugs, either through correct selection of target muscles according to the different patterns of involvement,7 through the use of technical guidelines for infiltration,8 or by administering higher doses than have been officially approved.9 These studies demonstrate the need to expand our knowledge in order to improve the efficacy of botulinum toxin infiltration in patients with spasticity and dystonia.

Articles in the literature suggest that correct infiltration is already possible with localisation techniques (electromyography, electrical stimulation, or ultrasound),10 and that strategies for dilution of the drug and selecting the target muscle are very clear. Therefore, new approaches are needed to make further progress. In this sense, muscle size may be an important consideration when establishing toxin dose. For instance, plantar flexor muscle spasticity is treated with infiltration of the medial (68 g) and lateral (32.4 g) heads of the gastrocnemius, the soleus (131.9 g), and the tibialis posterior (42 g) in patients presenting inversion. If we exclusively consider the weight of each muscle, then the soleus should receive approximately half of the total dose; however, in clinical practice, the same dose is administered to the lateral and medial heads of the gastrocnemius as to the soleus, with the tibialis posterior receiving a little more. All 4 of these muscles receive less than the mean dose per gramme of muscle, which may explain reports of incomplete response to infiltration. There are 2 possible reasons for this situation. Firstly, muscle weight is not the sole factor analysed; rather, the anatomical pattern is also taken into account (mono- or biarticular muscle; muscle action). The other reason is the limitation on the total dose to be used in each infiltration: 400 units for onabotulinumtoxinA and incobotulinumtoxinA and 1500 for abobotulinumtoxinA.

There is a clear morphological difference between the muscles of the lower limbs and those of the upper limbs, with lower limb muscles being much larger in terms of weight, length, and maximum diameter. This morphological difference is reflected in the greater force exerted by the muscles of the lower limbs.11 However, there is little difference in the approved doses for these muscle groups: the recommended dose of abobotulinumtoxinA for the biceps femoris (214 g) is 100−400 U, with a real-life mean dose of 65 U, whereas the recommended dose for the biceps brachii (34.2 g) is 200−400 U, with a mean real-life mean dose of 63.5 U. It seems logical that if we seek to weaken a larger, stronger muscle, we would need to use higher doses of botulinum toxin.

The dose-dependent effect of botulinum toxin is well known. Pittock et al.12 analysed the effect of 3 doses (500, 1000, and 1500 U) of abobotulinumtoxinA on spastic equinovarus deformity after stroke; the best results were achieved with 1500 U, and significant effects were also observed with 1000 U of toxin, but not with 500 U.

To address this issue, some studies have analysed the use of higher doses and more flexible time periods between infiltrations. For instance, the TOWER study13 concluded that the administration of 800 units of incobotulinumtoxinA is safe, enables treatment of more muscle groups, and improves the efficacy of infiltration, as is the case with higher doses of other toxins.14 Wissel15 proposes an interval of 6 weeks between infiltrations in the treatment of cervical dystonia. Both strategies, increasing doses and decreasing intervals between infiltrations, have been shown to be efficacious and not to cause relevant secondary reactions in selected patients.

However, we must be cautious when using higher doses due to the risk of undesired effects, such as increased weakness or systemic diffusion of the toxin; however, studies addressing the safety of using increased doses of the drug conclude that this risk is small.16

Until high-dose botulinum toxin therapy is authorised, we must seek to distribute the drug in the most reasonable way, taking into account each muscle’s anatomical function, the pattern of spasticity/dystonia, and the best way of optimising the toxin; the morphological structure (length and weight) of the target muscles should also be considered.

The greatest limitation of our study is that muscle measurements were taken from a single patient, who presented neither spasticity nor dystonia. Future studies are needed to establish whether muscle morphology should be taken into account in the infiltration of botulinum toxin to treat spasticity and dystonia; muscle ultrasound is probably the best way to take these measurements.17

The muscle study was conducted in a patient without neurological disease. Spasticity is known to cause changes in muscle tissue, for several reasons, including neurological damage, which reduces voluntary motor control, and relative immobilisation due to hemiparesis and disuse of the muscle18; this process is known as the vicious cycle of paresis-disuse-paresis. However, we may expect this phenomenon to affect all muscles equally.

In conclusion, despite significant morphological differences (weight, length, and maximum diameter) between muscle groups, similar doses of botulinum toxin A are administered to the muscles of the lower limbs, upper limbs, and head, resulting in considerable variations in the dose received per gramme of muscle. This is the case for all 3 types of botulinum toxin A.

Funding

No specific funding was received for this article.

Conflicts of interest

The authors have no conflicts of interest to declare.

References
[1]
D.B. Drachman.
Pharmacological denervation of skeletal muscle in chick embryos treated with botulinum toxin.
Trans Am Neurol Assoc, 90 (1965), pp. 241-242
[2]
B. Jabbari.
History of botulinum toxin treatment in movement disorders.
Tremor Other Hyperkinet Mov (N Y), 6 (2016), pp. 394
[3]
A. Esquenazi, A. Alfaro, Z. Ayyoub, D. Charles, K. Dashtipour, G.D. Graham, et al.
OnabotulinumtoxinA for lower limb spasticity: guidance from a delphi panel approach.
[4]
D. Dressler, M.C. Altavista, E. Altenmueller, R. Bhidayasiri, S. Bohlega, P. Chana, et al.
Consensus guidelines for botulinum toxin therapy: General algorithms and dosing tables for dystonia and spasticity.
J Neural Transm (Vienna), 128 (2021), pp. 321-335
[5]
L.C. Sun, R. Chen, C. Fu, Y. Chen, Q. Wu, R. Chen, et al.
Efficacy and safety of botulinum toxin type A for limb spasticity after stroke: A meta-analysis of randomized controlled trials.
Biomed Res Int, 2019 (2019),
[6]
M. Castelão, R.E. Marques, G.S. Duarte, F.B. Rodrigues, J. Ferreira, C. Sampaio, et al.
Botulinum toxin type A therapy for cervical dystonia.
Cochrane Database Syst Rev, 12 (2017),
[7]
J.M. Gracies, M. O'Dell, M. Vecchio, P. Hedera, S. Kocer, M. Rudzinska-Bar, International AbobotulinumtoxinA Adult Upper Limb Spasticity Study Group, et al.
Effects of repeated abobotulinumtoxinA injections in upper limb spasticity.
Muscle Nerve, 57 (2018), pp. 245-254
[8]
K.E. Alter, B.I. Karp.
Ultrasound guidance for botulinum neurotoxin chemodenervation procedures.
Toxins (Basel), 10 (2017), pp. 18
[9]
A. Santamato, M.F. Micello, M. Ranieri, G. Valeno, A. Albano, A. Baricich, et al.
Employment of higher doses of botulinum toxin type A to reduce spasticity after stroke.
J Neurol Sci, 350 (2015), pp. 1-6
[10]
E.C. Lim, A.M. Quek, R.C. Seet.
Accurate targeting of botulinum toxin injections: how to and why.
Parkinsonism Relat Disord, 17 (2011), pp. S34-9
[11]
D.G. Candow, P.D. Chilibeck.
Differences in size, strength, and power of upper and lower body muscle groups in young and older men.
J Gerontol A Biol Sci Med Sci, 60 (2005), pp. 148-156
[12]
S.J. Pittock, A.P. Moore, O. Hardiman, E. Ehler, M. Kovac, J. Bojakowski, et al.
A double-blind randomised placebo-controlled evaluation of three doses of botulinum toxin type A (Dysport) in the treatment of spastic equinovarus deformity after stroke.
Cerebrovasc Dis, 15 (2003), pp. 289-300
[13]
J. Wissel, D. Bensmail, J.J. Ferreira, F. Molteni, L. Satkunam, S. Moraleda, et al.
TOWER study investigators. Safety and efficacy of incobotulinumtoxinA doses up to 800 U in limb spasticity: The TOWER study.
Neurology, 88 (2017), pp. 1321-1328
[14]
S.Y. Chiu, B. Patel, M.R. Burns, J. Legacy, A. Wagle Shukla, A. Ramirez-Zamora, et al.
High-dose botulinum toxin therapy: safety, benefit, and endurance of efficacy.
Tremor Other Hyperkinet Mov (N Y), 10 (2020),
[15]
J. Wissel.
Towards flexible and tailored botulinum neurotoxin dosing regimens for focal dystonia and spasticity - Insights from recent studies.
Toxicon, 147 (2018), pp. 100-106
[16]
A. Baricich, A. Picelli, A. Santamato, S. Carda, A. de Sire, N. Smania, et al.
Safety profile of high-dose botulinum toxin type A in post-stroke spasticity treatment.
Clin Drug Investig, 38 (2018), pp. 991-1000
[17]
C. Körting, M. Schlippe, S. Petersson, G.V. Pennati, O. Tarassova, A. Arndt, et al.
In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging.
[18]
J.M. Gracies.
Pathophysiology of spastic paresis. I: Paresis and soft tissue changes.
Muscle Nerve, 31 (2005), pp. 535-551
Copyright © 2021. Sociedad Española de Neurología
Download PDF
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos