was read the article
array:25 [ "pii" => "S2173580814000996" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2013.10.017" "estado" => "S300" "fechaPublicacion" => "2014-09-01" "aid" => "556" "copyright" => "Sociedad Española de Neurología" "copyrightAnyo" => "2013" "documento" => "article" "crossmark" => 0 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2014;29:408-15" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1570 "formatos" => array:3 [ "EPUB" => 31 "HTML" => 1011 "PDF" => 528 ] ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0213485313002442" "issn" => "02134853" "doi" => "10.1016/j.nrl.2013.10.005" "estado" => "S300" "fechaPublicacion" => "2014-09-01" "aid" => "556" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 0 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2014;29:408-15" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2327 "formatos" => array:3 [ "EPUB" => 63 "HTML" => 1664 "PDF" => 600 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Efecto de la deficiencia de hierro sobre la expresión de factor de crecimiento de insulina tipo II y su receptor en células neuronales y gliales" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "408" "paginaFinal" => "415" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 742 "Ancho" => 1771 "Tamanyo" => 88330 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Análisis de expresión de IGF-II de cultivos de células del SNC de ratones BALB/c por western-blot. (A) Cultivos mixtos con hierro suficiente (SFe) o hierro deficiente (DFe). Las flechas indican las principales proteínas encontradas: a) IGFBP-3, b) IGFBP-2, c) IGFB4, d) IGFII. (B) Cultivos de células de la microglía, SFe y DFe. (C) Cultivos de células neuronales SFe y DFe. B-actina se muestra como control de carga.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "E. Morales González, I. Contreras, J.A. Estrada" "autores" => array:3 [ 0 => array:2 [ "nombre" => "E." "apellidos" => "Morales González" ] 1 => array:2 [ "nombre" => "I." "apellidos" => "Contreras" ] 2 => array:2 [ "nombre" => "J.A." "apellidos" => "Estrada" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173580814000996" "doi" => "10.1016/j.nrleng.2013.10.017" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580814000996?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485313002442?idApp=UINPBA00004N" "url" => "/02134853/0000002900000007/v1_201409070304/S0213485313002442/v1_201409070304/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S2173580814001060" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2013.10.019" "estado" => "S300" "fechaPublicacion" => "2014-09-01" "aid" => "554" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 0 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2014;29:416-22" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1840 "formatos" => array:3 [ "EPUB" => 65 "HTML" => 1239 "PDF" => 536 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Induction of mandibular tremor using electrolytic lesion of the ventrolateral striatum or using subchronic haloperidol therapy in male rats: An electromyographic comparison" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "416" "paginaFinal" => "422" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Inducción del temblor mandibular por lesión electrolítica del estriado ventrolateral y por el tratamiento subcrónico con haloperidol en rata macho: un contraste electromiográfico" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 975 "Ancho" => 1360 "Tamanyo" => 29564 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Mean value<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD of the amplitude (mV) of EMG activity in the temporal muscle at baseline in the control group, haloperidol group, and electrolytic VLS lesion group.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "G. Herrera-Meza, J. Manzo, M.E. Hernández, M. Miquel, L.I. García" "autores" => array:5 [ 0 => array:2 [ "nombre" => "G." "apellidos" => "Herrera-Meza" ] 1 => array:2 [ "nombre" => "J." "apellidos" => "Manzo" ] 2 => array:2 [ "nombre" => "M.E." "apellidos" => "Hernández" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Miquel" ] 4 => array:2 [ "nombre" => "L.I." "apellidos" => "García" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485313002429" "doi" => "10.1016/j.nrl.2013.10.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485313002429?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580814001060?idApp=UINPBA00004N" "url" => "/21735808/0000002900000007/v1_201409160948/S2173580814001060/v1_201409160948/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S217358081400100X" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2013.10.018" "estado" => "S300" "fechaPublicacion" => "2014-09-01" "aid" => "558" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 0 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2014;29:402-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 2041 "formatos" => array:3 [ "EPUB" => 50 "HTML" => 1188 "PDF" => 803 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Our experience with the aetiological diagnosis of global developmental delay and intellectual disability: 2006–2010" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "402" "paginaFinal" => "407" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Nuestra experiencia en el diagnóstico etiológico del retraso global del desarrollo y discapacidad intelectual: 2006-2010" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "J. López-Pisón, M.C. García-Jiménez, L. Monge-Galindo, M. Lafuente-Hidalgo, R. Pérez-Delgado, A. García-Oguiza, J.L. Peña-Segura" "autores" => array:7 [ 0 => array:2 [ "nombre" => "J." "apellidos" => "López-Pisón" ] 1 => array:2 [ "nombre" => "M.C." "apellidos" => "García-Jiménez" ] 2 => array:2 [ "nombre" => "L." "apellidos" => "Monge-Galindo" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Lafuente-Hidalgo" ] 4 => array:2 [ "nombre" => "R." "apellidos" => "Pérez-Delgado" ] 5 => array:2 [ "nombre" => "A." "apellidos" => "García-Oguiza" ] 6 => array:2 [ "nombre" => "J.L." "apellidos" => "Peña-Segura" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485313002466" "doi" => "10.1016/j.nrl.2013.10.006" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485313002466?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S217358081400100X?idApp=UINPBA00004N" "url" => "/21735808/0000002900000007/v1_201409160948/S217358081400100X/v1_201409160948/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "408" "paginaFinal" => "415" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "E. Morales González, I. Contreras, J.A. Estrada" "autores" => array:3 [ 0 => array:2 [ "nombre" => "E." "apellidos" => "Morales González" ] 1 => array:2 [ "nombre" => "I." "apellidos" => "Contreras" ] 2 => array:4 [ "nombre" => "J.A." "apellidos" => "Estrada" "email" => array:1 [ 0 => "jose.estrada@mail.mcgill.ca" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Efecto de la deficiencia de hierro sobre la expresión de factor de crecimiento de insulina tipo II y su receptor en células neuronales y gliales" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1046 "Ancho" => 1585 "Tamanyo" => 75286 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Western blot analysis of IGF-I expression in CNS cell cultures from BALB/c mice. (A) Mixed glial cell cultures, (B) Microglial cell cultures, (C) Neuron cell cultures. Cultures in iron-sufficient (SFe) or iron-deficient (DFe) conditions. Arrows indicate the bands detected by the antibody.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Iron is a micronutrient essential to the development and functioning of the central nervous system (CNS). However, dietary iron deficiency and its consequences still constitute a global health problem.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> UNICEF calculates that nearly 2 billion people worldwide have iron deficiency, including 20% to 25% of the paediatric population.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> Iron is crucial to the CNS because it participates in the cellular migration and differentiation processes, myelination, synaptogenesis, gliogenesis, neurogenesis, and in neurotransmitter synthesis. Together, these processes enable different cerebral regions to function correctly.<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3–5</span></a> Iron deficiency has a negative effect on these processes and provokes changes in neurological and cognitive function in people of all ages<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6,7</span></a> since it affects such key brain structures as the hippocampus and cerebral cortex.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Throughout the development of the CNS, there should be a state of balance between external factors (such as dietary iron) and internal factors. The latter include growth factors, which are molecules that control cell proliferation, differentiation, and survival processes,<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,10</span></a> activate signalling pathways to modulate gene transcription, and promote the transduction of extracellular signals.<a class="elsevierStyleCrossRefs" href="#bib0055"><span class="elsevierStyleSup">11,12</span></a> Recent studies in animal models have shown that insulin-like growth factor II (IGF-II) exerts a protective effect against neural or glial damage. It also contributes to inducing the generation and differentiation of new cells, which improves cognitive processes.<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> IGF-II is distributed among multiple CNS structures which include the hippocampus, hypothalamus, striatum, cerebral cortex, and cerebellum.<a class="elsevierStyleCrossRefs" href="#bib0070"><span class="elsevierStyleSup">14,15</span></a> Its specific activator (IGF-IIR) must be activated in order to promote the factor's biological effects.<a class="elsevierStyleCrossRefs" href="#bib0080"><span class="elsevierStyleSup">16,17</span></a> However, despite the importance of IGF-II as a neurotrophic factor and the known negative effects of iron deficiency on cognitive processes, the effect of iron deficiency on the expression of IGF-II and of its receptor remains unknown.</p><p id="par0015" class="elsevierStylePara elsevierViewall">The purpose of this study was to identify changes in IGF-II and IGF-IIR expression in CNS primary cell cultures under conditions of iron deficiency. This will provide a better understanding of the molecular changes that promote cognitive deficits arising due to that deficiency.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Subjects, materials, and methods</span><p id="par0020" class="elsevierStylePara elsevierViewall">Experiments were performed in the Neurochemistry Laboratory at the Faculty of Medicine, Universidad Autónoma del Estado de México, between August 2012 and July 2013.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">BALB/c mice</span><p id="par0025" class="elsevierStylePara elsevierViewall">Breeding pairs of BALB/c mice were kept in standard conditions during 3 weeks (<span class="elsevierStyleItalic">ad libitum</span> access to food and purified water; 12:12<span class="elsevierStyleHsp" style=""></span>hour light/dark cycle; mean temperature of 20<span class="elsevierStyleHsp" style=""></span>°C). Pregnant females were separated from their mates and kept under observation in the same conditions until their litters were born. Newborn mouse pups (<24<span class="elsevierStyleHsp" style=""></span>hours old) were used to initiate primary cell cultures.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Dissection of brain tissue to obtain neural and glial cells</span><p id="par0030" class="elsevierStylePara elsevierViewall">Four to eight newborn mouse pups (<24<span class="elsevierStyleHsp" style=""></span>hours old) were killed by decapitation on chilled plates. Researchers placed brain tissue in a digestion medium (DMEM<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>0.25% trypsin/1<span class="elsevierStyleHsp" style=""></span>mM EDTA) and incubated it for 1<span class="elsevierStyleHsp" style=""></span>hour in standard conditions (37<span class="elsevierStyleHsp" style=""></span>°C, 5% CO<span class="elsevierStyleInf">2</span>) to degrade the connective tissue. The digestion process was halted using a complete culture medium (DMEM<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>FBS 10%) and the cells obtained were centrifuged at 1200<span class="elsevierStyleHsp" style=""></span>rpm for 10<span class="elsevierStyleHsp" style=""></span>minutes.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Mixed culture of CNS cells</span><p id="par0035" class="elsevierStylePara elsevierViewall">Purified cells were cultivated to a density of 1 to 1.2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cells/cm<span class="elsevierStyleSup">2</span> in the growth area and then incubated under standard conditions (37<span class="elsevierStyleHsp" style=""></span>°C, 5% CO<span class="elsevierStyleInf">2</span>) for 10 to 15 days until they had achieved a confluency of ≥80%.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Neuron cell culture</span><p id="par0040" class="elsevierStylePara elsevierViewall">After 24<span class="elsevierStyleHsp" style=""></span>hours, the mixed glial cell culture supernatant was recovered and centrifuged to obtain non-adherent cells. These cells were then cultivated to a density of 1 to 1.2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cells/cm<span class="elsevierStyleSup">2</span> in B27-supplemented neurobasal medium with 5% FBS, using Petri dishes previously coated with poly-<span class="elsevierStyleSmallCaps">l</span>-lysine. The culture was kept under standard incubation conditions (37<span class="elsevierStyleHsp" style=""></span>°C, 5% CO<span class="elsevierStyleInf">2</span>) for 10 to 15 days.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Microglial cell culture</span><p id="par0045" class="elsevierStylePara elsevierViewall">When the mixed culture had reached the desired confluency, researchers added 0.25% trypsin/1<span class="elsevierStyleHsp" style=""></span>mM EDTA over 30 to 45<span class="elsevierStyleHsp" style=""></span>minutes to induce astrocyte separation. Once cells had been separated, we removed and centrifuged the supernatant at 1200<span class="elsevierStyleHsp" style=""></span>rpm at 21<span class="elsevierStyleHsp" style=""></span>°C for 5<span class="elsevierStyleHsp" style=""></span>minutes. Cells were cultivated to a density of 1 to 1.2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cells/cm<span class="elsevierStyleSup">2</span> in the growth area. We added complete culture medium (DMEM<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>FBS 8%) and kept the sample under standard conditions (37<span class="elsevierStyleHsp" style=""></span>°C, 5% CO<span class="elsevierStyleInf">2</span>) until confluency reached 80%.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Initiating iron-deficient (DFe) cell cultures</span><p id="par0050" class="elsevierStylePara elsevierViewall">Selected cell cultures were treated with deferoxamine (100<span class="elsevierStyleHsp" style=""></span>μM) for over 24<span class="elsevierStyleHsp" style=""></span>hours to create conditions of iron deficiency in the medium. The normal iron cultures were not treated.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Protein extraction and quantification</span><p id="par0055" class="elsevierStylePara elsevierViewall">Proteins were extracted from cell cultures by adding 50 to 80<span class="elsevierStyleHsp" style=""></span>μL lysis buffer supplemented with protease and phosphatase inhibitors (+20<span class="elsevierStyleHsp" style=""></span>μL PIC 50×<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>100<span class="elsevierStyleHsp" style=""></span>μL NaF 50<span class="elsevierStyleHsp" style=""></span>mM<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>20<span class="elsevierStyleHsp" style=""></span>μL PMSF 1<span class="elsevierStyleHsp" style=""></span>mM<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>20<span class="elsevierStyleHsp" style=""></span>μL Na<span class="elsevierStyleInf">3</span>VO<span class="elsevierStyleInf">4</span> 2<span class="elsevierStyleHsp" style=""></span>mM) in each well. Cells were then lysed by mechanical shearing and collected in 1.5<span class="elsevierStyleHsp" style=""></span>mL tubes and shaken on ice for 45<span class="elsevierStyleHsp" style=""></span>minutes Researchers then centrifuged cells at 13<span class="elsevierStyleHsp" style=""></span>000<span class="elsevierStyleHsp" style=""></span>rpm at 4<span class="elsevierStyleHsp" style=""></span>°C for 20<span class="elsevierStyleHsp" style=""></span>minutes to extract the proteins from the supernatant. The cell pellet was discarded. Proteins were quantified using the Bradford method previously described in the Quick Start™ Bradford Protein Assay by BIO-RAD.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Analysis of protein expression using Western blot</span><p id="par0060" class="elsevierStylePara elsevierViewall">Researchers prepared a 10× gel running buffer to detect proteins of interest. Before using quantified proteins, we measured actin expression as a control for the sample volume employed, using monoclonal mouse anti-actin antibody (Sigma–Aldrich) at a concentration of 1:2000. Electrophoresis gels were subsequently run for control samples (with sufficient iron) and test samples (with iron deficiency), using 60<span class="elsevierStyleHsp" style=""></span>μg of protein for each sample. After running the gel, proteins were transferred to a PVDF membrane. After protein transfer, the membrane was washed and blocked with a 5% milk solution for 1 hour. IGF-IIR was detected using rabbit polyclonal primary anti-mouse antibody (Santa Cruz Biotechnology) diluted to 1:250. IGF-II was detected with rabbit polyclonal anti-mouse antibody (Abcam) diluted to 1:1500 and agitated overnight at 4<span class="elsevierStyleHsp" style=""></span>°C. The secondary antibody was mouse polyclonal anti-rabbit (Thermo) diluted to 1:2000 for IGF-IIR and IGF-II and incubated for 90<span class="elsevierStyleHsp" style=""></span>minutes at room temperature. Lastly, we developed the membrane using the colorimetric method with diaminobenzidine<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>hydrogen peroxide in PBS, agitated for 15 to 30<span class="elsevierStyleHsp" style=""></span>minutes.</p></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Results</span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Expression of IGF-II under conditions of iron deficiency</span><p id="par0065" class="elsevierStylePara elsevierViewall">To determine the effect of iron deficiency on CNS cells, we examined differences in IGF-II expression in primary cultures of mixed glial cells in DFe and control samples. We detected a band with an approximate molecular weight of <10<span class="elsevierStyleHsp" style=""></span>kDa corresponding to the molecular weight of 7.5<span class="elsevierStyleHsp" style=""></span>kDa that can be expected for a mature IGF-II molecule (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). Expression of this band was found to be higher in DFe cultures than in controls. In addition, we consistently observed bands with molecular weights between 20 and 70<span class="elsevierStyleHsp" style=""></span>kDa, as well as bands with a molecular weight greater than 250<span class="elsevierStyleHsp" style=""></span>kDa (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). These proteins behaved similarly to IGF-II and their expression was also higher in DFe cultures than in controls, except for the band with a weight of ∼70<span class="elsevierStyleHsp" style=""></span>kDa which did not exhibit differences between the samples.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Expression of IGF-II in isolated microglia or neuron cultures</span><p id="par0070" class="elsevierStylePara elsevierViewall">Expression of IGF-II was analysed in isolated microglia and neuron cultures in order to determine the cell population responsible for increased IGF-II expression in mixed cultures. However, these isolated cultures did not display any changes in IGF-II expression in samples with an iron deficiency. As in mixed cultures, we detected bands weighing ∼20 and 55<span class="elsevierStyleHsp" style=""></span>kDa for both cell types, as well as other bands weighing ∼35 and 70<span class="elsevierStyleHsp" style=""></span>kDa for neuron cultures only. Similarly, these bands exhibited no changes in expression in samples with iron deficiency.</p><p id="par0075" class="elsevierStylePara elsevierViewall">Based on these results, we observe that iron deficiency induces an increase in IGF-II expression in mixed CNS cell cultures, but not in cultures of microglia or neurons alone.</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Expression of IGF-II receptor in mixed glial cell cultures</span><p id="par0080" class="elsevierStylePara elsevierViewall">Once changes in IGF-II expression had been detected, we aimed to determine whether this effect could also be found for the IGF-II receptor. Analysis of the expression of IGF-II receptor in mixed cultures of glial cells revealed a band with a molecular weight greater than 250<span class="elsevierStyleHsp" style=""></span>kDa, possibly corresponding to IGF-IIR (∼300<span class="elsevierStyleHsp" style=""></span>kDa), in cells cultured with normal iron levels. On the other hand, expression of this molecule is diminished, and almost non-existent, when iron deficiency is present (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>). In addition, a band weighing ∼70<span class="elsevierStyleHsp" style=""></span>kDa was consistently present and showed no changes in expression in the cultures with iron deficiency. This band does not correspond to the molecular weight reported for the molecule in question. These results show that iron deficiency decreases the expression of IGF-IIR in mixed CNS cell cultures.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Expression of insulin-like growth factor I and its specific receptor in mixed glial cell cultures and populations of microglia or neurons only</span><p id="par0085" class="elsevierStylePara elsevierViewall">To compare expression of both IGF-II and its receptor to the expression of the other closely related growth factor, we examined IGF-I and IGF-IR in cultured CNS cells. There were no observable differences in expression of IGF-I between DFe cell cultures and controls because the bands identified had molecular weights of ∼50 and ∼100<span class="elsevierStyleHsp" style=""></span>kDa, figures which do not correspond to the normal molecular weight for IGF-I (7.6<span class="elsevierStyleHsp" style=""></span>kDa) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). In addition, we examined expression in cell populations consisting of only microglia or only neurons, and the anticipated band weighing less than 10<span class="elsevierStyleHsp" style=""></span>kDa was not found here either. There were no changes in the expression of proteins weighing 50 or 100<span class="elsevierStyleHsp" style=""></span>kDa in samples with iron deficiency.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall">We did detect a band of ∼100<span class="elsevierStyleHsp" style=""></span>kDa in mixed cell cultures, and this might correspond to IGF-IRβ which has a molecular weight of 97<span class="elsevierStyleHsp" style=""></span>kDa. A band weighing ∼50<span class="elsevierStyleHsp" style=""></span>kDa was also detected. We observed no differences in expression of this protein in the DFe samples (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Discussion</span><p id="par0095" class="elsevierStylePara elsevierViewall">Proper diet in the early stages of development is crucial to promote CNS growth and development.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> Evidence supports the association between dietary micronutrients and the function of neurotrophic factors.<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">19–22</span></a> Vitamin A deficiency decreases the expression of brain-derived neurotropic factor (BDNF) and nerve growth factor in the CNS.<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">19,23</span></a> There is also a link between vitamin B and increased levels of BDNF in the CNS.<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">24,25</span></a> Antioxidants like vitamins E and C may promote the protective effects of BDNF and ciliary neurotrophic factor in nervous tissue.<a class="elsevierStyleCrossRefs" href="#bib0110"><span class="elsevierStyleSup">22,26,27</span></a> Nevertheless, there is little evidence as to the relationship between iron deficiency and the expression of specific neurotrophic factors other than BDNF.</p><p id="par0100" class="elsevierStylePara elsevierViewall">Studies have shown that iron deficiency may modify IGF-I expression in mice by altering the mTOR signalling pathway, which is regulated by the Akt pathway.<a class="elsevierStyleCrossRefs" href="#bib0140"><span class="elsevierStyleSup">28,29</span></a> This process decreases signalling mediated by IGF-I and affects neuron proliferation, survival, and myelination.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> When the deficiency is corrected using iron supplements, IGF-I levels may normalise, but this does not occur with IGF-II.<a class="elsevierStyleCrossRefs" href="#bib0150"><span class="elsevierStyleSup">30,31</span></a> Even though they belong to the same family, they may exhibit different responses ranging from genetic regulation to their effects on cellular homeostasis.</p><p id="par0105" class="elsevierStylePara elsevierViewall">This study shows that iron deficiency increases the expression of IGF-II in primary CNS cell cultures. It should be noted that other studies have demonstrated that BDNF expression decreases when iron deficiency is present,<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a> which suggests that IGF-II expression may be stimulated when brain tissue experiences stress due to lack of the micronutrient. This promotes a neuroprotective effect medicated by that neurotrophic factor. The increase in IGF-II expression due to iron deficiency was mainly observed in mixed cell cultures, that is, cultures constituted by neurons, astrocytes, microglial cells, oligodendrocytes, and even endothelial cells. This may mean that the different cell populations interact to create a favourable environment in which IGF-II expression can increase in the presence of iron deficiency. The phenomenon is demonstrated by the fact that researchers examining cultures of isolated microglia or neurons were not able to observe iron deficiency-related differences in IGF-II expression. Furthermore, given that most cells obtained from mixed cultures are astrocytes, the increase in IGF-II expression observed in DFe conditions may be due to the activity of this cell population. This possibility is currently under study.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Additional bands identified by the Western blot test, with molecular weights of ∼20, 50, and 70<span class="elsevierStyleHsp" style=""></span>kDa, resemble those described by Walter et al.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a>; for this reason, they may correspond to IGF-II bound to IGF-binding proteins (IGFBP). Since IGF transport and activity are modulated temporally and locally by these binding proteins,<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a> the proteins may form complexes with IGFs to regulate their renal clearance, transport the IGFs in vascular compartments, and modulate their interaction with cell-surface receptors.<a class="elsevierStyleCrossRefs" href="#bib0170"><span class="elsevierStyleSup">34,35</span></a> Some of the most concentrated proteins found in the intact CNS, especially in the choroid plexus and meninges, include IGFBP-2, -4, -5, and -6.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">36,37</span></a> In pathological conditions, however, IGFBP-2, -3, and -6 have been found in cerebrospinal fluid, and they have been linked to IGF-II transport.<a class="elsevierStyleCrossRefs" href="#bib0190"><span class="elsevierStyleSup">38,39</span></a> This being the case, the protein band with a molecular weight of ∼20<span class="elsevierStyleHsp" style=""></span>kDa may correspond to IGFBP-4, which has been isolated in 2 forms with weights of 24 and 29<span class="elsevierStyleHsp" style=""></span>kDa.<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">40</span></a> In the CNS, this protein has been observed in the ependyma, choroid plexus, meninges, and myelinated nerve fibres; if lesions are present, they may also be found in neurons, astrocytes, microglia, and macrophages.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a> In turn, the bands identified as weighing about 50<span class="elsevierStyleHsp" style=""></span>kDa or less may correspond to IGFBP-2 or IGFBP-3, which have molecular weights of 32 to 34<span class="elsevierStyleHsp" style=""></span>kDa and 53<span class="elsevierStyleHsp" style=""></span>kDa, respectively. These proteins are present in cerebrospinal fluid,<a class="elsevierStyleCrossRefs" href="#bib0210"><span class="elsevierStyleSup">42,43</span></a> choroid plexus, cortical nerve fibres, ependyma, and the meninges. Lesions that affect cerebral tissue may result in increased expression of these proteins in neurons, astrocytes, and macrophages.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a> IGFBP-2 has a greater affinity for IGF-II than for IGF-I,<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">44</span></a> whereas IGFBP-3 has a greater affinity for IGF-I.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">45</span></a> It should be noted that the band with a molecular weight of 70<span class="elsevierStyleHsp" style=""></span>kDa may also correspond to IGFBP-3, since an isoform of that protein with a higher molecular weight also exists.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">46</span></a></p><p id="par0115" class="elsevierStylePara elsevierViewall">Lastly, researchers identified a band with a molecular weight >250<span class="elsevierStyleHsp" style=""></span>kDa; this may correspond to IGF-II bound to its receptor, which has a molecular weight of ∼300<span class="elsevierStyleHsp" style=""></span>kDa.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> In general, additional bands showed increased expression in DFe conditions, except for the 70<span class="elsevierStyleHsp" style=""></span>kDa band whose expression did not vary. If these findings correspond to IGFBP, they may underscore the important roles of these proteins in regulating and modulating IGF functions under both physiological and pathological conditions.</p><p id="par0120" class="elsevierStylePara elsevierViewall">Scientists know that the multiple functions of IGF-II are mainly mediated by 2 types of receptors, IGF-IR and IGF-IIR, which have different affinities.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">47</span></a> IGF-II shows the closest affinity for its specific receptor IGF-IIR, which participates in IGF-II signalling to mediate metabolic response in neurons.<a class="elsevierStyleCrossRefs" href="#bib0080"><span class="elsevierStyleSup">16,48</span></a> IGF-IIR plays an important role because improving the cognitive functions that depend on IGF-II mainly requires IGF-IIR.<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> In contrast to the increase in IGF-II expression observed under DFe conditions, we observed decreased expression of IGF-IIR under the same conditions. Studies have demonstrated that adding IGF-II <span class="elsevierStyleItalic">in vitro</span> induces expression of IGF-IIR on the cell surface of neuron cultures.<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">49,50</span></a> This suggests that IGF-II levels modulate the expression of their receptor in CNS cells such that if concentrations of IGF-II drop, concentrations of its specific receptor will increase, and <span class="elsevierStyleItalic">vice versa.</span> In this way, IGF-IIR can compensate for increases or decreases in IGF-II and activate signalling pathways that promote the cell processes involved in CNS growth and development in pathological situations, such as iron deficiency. These results do not coincide with those from other studies of IGF-I and its receptor finding that iron deficiency decreases the expression of IGF-I without altering IGF-IR expression.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">51</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">Similarly to Fushimi et al.,<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">49</span></a> we detected additional bands with molecular weights of ∼70 and 80<span class="elsevierStyleHsp" style=""></span>kDa. Expression of these proteins did not vary under DFe conditions. However, we did observe an increase in the ∼60<span class="elsevierStyleHsp" style=""></span>kDa band with iron deficiency. Bands with a lower molecular weight may be explained by fragmenting of the receptor during cell lysis, or else lack of specificity of the polyclonal antibody employed in this study.</p><p id="par0130" class="elsevierStylePara elsevierViewall">Lastly, we analysed expression of IGF-I and IGF-IR in mixed glial cell cultures, a decision partially based on the fact that functional binding of IGF-II to cells could be modified by either IGFBP or IGF-IR.<a class="elsevierStyleCrossRefs" href="#bib0235"><span class="elsevierStyleSup">47,52</span></a> We also compared the response of IGF-II to that of IGF-I (and their respective receptors) under DFe conditions. Like IGF-II, IGF-I is known to promote neuron growth and development and it even displays a protective effect under conditions of hypoxia and hypoglycaemia.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">53</span></a> However, the distributions of these proteins are somewhat different<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">54</span></a> even though both are widely distributed in brain tissue. Some reports state that iron deficiency decreases IGF-I levels in plasma.<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">55</span></a> Other studies report that this condition affects signalling mediated by IGF-I and therefore has an impact on cell populations,<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> and that iron deficiency can even increase expression of this molecule and of its receptor.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a> However, our study was unable to record differences in expression of this molecule under DFe conditions; the antibody we used does not enable detection of the band in question, which is expected to have a molecular weight of <10<span class="elsevierStyleHsp" style=""></span>kDa. Analysis of IGF-I expression detected additional bands, with molecular weights of ∼100 and 55<span class="elsevierStyleHsp" style=""></span>kDa, in the mixed culture: ∼100<span class="elsevierStyleHsp" style=""></span>kDa in glial cells and ∼55<span class="elsevierStyleHsp" style=""></span>kDa in neurons. Although these bands may correspond to IGF-I bound to IGFBP, or IGF-I to IGF-IR,<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">45,56</span></a> there are no results to confirm this. In any case, no differences in the expression of these proteins were observed between DFe and normal samples.</p><p id="par0135" class="elsevierStylePara elsevierViewall">The ∼100<span class="elsevierStyleHsp" style=""></span>kDa band detected in the analysis of IGF-IR expression may correspond to the IGF-IR beta subunit, which has a molecular weight of 97<span class="elsevierStyleHsp" style=""></span>kDa. We also found another band with a molecular weight of ∼55<span class="elsevierStyleHsp" style=""></span>kDa, which may be the result of the receptor being fragmented during the lysis process. There were no differences in the expression of this protein given DFe and iron-sufficient conditions. It should be noted that results for IGF-I and IGF-IR expression in our study do not coincide with those reported by Tran et al.,<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> whose team did observe changes in the expression of these molecules in the presence of iron deficiency.</p><p id="par0140" class="elsevierStylePara elsevierViewall">We should point out that other factors not examined in this study, such as duration of iron deficiency, also have an effect. Iron deficiency is known to be a chronic process that affects the CNS from the earliest stages of development and may still be present in adulthood.<a class="elsevierStyleCrossRefs" href="#bib0255"><span class="elsevierStyleSup">51,57</span></a> Previous studies have observed that expression of IGF-II, IGF-IIR, and even IGFBP display different responses during acute and chronic phases of the deficiency when a brain lesion is present. During the acute phase, levels of IGF-II, and also of IGFBP-2, -3, and -6, increase in cerebrospinal fluid, whereas their concentrations will drop during the chronic phase.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a> Since this study analysed the effect of acute deficiency of this micronutrient on specific cell populations, researchers must now determine the effect of chronic iron deficiency in <span class="elsevierStyleItalic">in vivo</span> studies as well as in cell cultures.</p><p id="par0145" class="elsevierStylePara elsevierViewall">Results from our study indicate that iron deficiency in an <span class="elsevierStyleItalic">in vitro</span> model causes increased expression of IGF-II in primary mixed cultures of CNS cells. The increase is accompanied by decreased expression of the receptor IGF-IIR. The increased expression of this molecule under conditions of iron deficiency may exert a neuroprotective effect and promote homeostasis in nervous tissue under pathological conditions.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Funding</span><p id="par0150" class="elsevierStylePara elsevierViewall">This project was funded by <span class="elsevierStyleGrantSponsor" id="gs1">PROMEP</span>, the programme for continuing professor education run by the Mexican Secretariat of Public Education (SEP). EMG received a postgraduate grant from the <span class="elsevierStyleGrantSponsor" id="gs2">Seoul National University of Science and Technology</span> (CONACYT).</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Conflicts of interest</span><p id="par0155" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:2 [ "identificador" => "xres370409" "titulo" => array:5 [ 0 => "Abstract" 1 => "Introduction" 2 => "Methods" 3 => "Results" 4 => "Conclusions" ] ] 1 => array:2 [ "identificador" => "xpalclavsec349647" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xres370408" "titulo" => array:5 [ 0 => "Resumen" 1 => "Introducción" 2 => "Métodos" 3 => "Resultados" 4 => "Conclusiones" ] ] 3 => array:2 [ "identificador" => "xpalclavsec349646" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Subjects, materials, and methods" "secciones" => array:8 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "BALB/c mice" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Dissection of brain tissue to obtain neural and glial cells" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Mixed culture of CNS cells" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Neuron cell culture" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Microglial cell culture" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Initiating iron-deficient (DFe) cell cultures" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Protein extraction and quantification" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Analysis of protein expression using Western blot" ] ] ] 6 => array:3 [ "identificador" => "sec0055" "titulo" => "Results" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Expression of IGF-II under conditions of iron deficiency" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Expression of IGF-II in isolated microglia or neuron cultures" ] 2 => array:2 [ "identificador" => "sec0070" "titulo" => "Expression of IGF-II receptor in mixed glial cell cultures" ] 3 => array:2 [ "identificador" => "sec0075" "titulo" => "Expression of insulin-like growth factor I and its specific receptor in mixed glial cell cultures and populations of microglia or neurons only" ] ] ] 7 => array:2 [ "identificador" => "sec0080" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0085" "titulo" => "Funding" ] 9 => array:2 [ "identificador" => "sec0090" "titulo" => "Conflicts of interest" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2013-09-27" "fechaAceptado" => "2013-10-13" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec349647" "palabras" => array:6 [ 0 => "Central nervous system" 1 => "Iron deficiency" 2 => "Growth factors" 3 => "Insulin-like growth factor II" 4 => "Specific receptor of insulin-like growth factor II" 5 => "Cell cultures" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec349646" "palabras" => array:6 [ 0 => "Sistema nervioso central" 1 => "Deficiencia de hierro" 2 => "Factores de crecimiento" 3 => "Factor de crecimiento de insulina tipo II" 4 => "Receptor específico del factor de crecimiento de insulina tipo II" 5 => "Cultivos celulares" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system (CNS) and alters cognitive abilities. When cellular damage occurs in the CNS, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF-II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified.</p> <span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Mixed primary cell cultures from the CNS were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the Western blot test.</p> <span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient (DFe) mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in DFe cultures.</p> <span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">In vitro</span> iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased.</p>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Muchos estudios han demostrado que la deficiencia de hierro modifica el funcionamiento normal del sistema nervioso central, alterando las habilidades cognitivas. Ante una situación de daño celular en el sistema nervioso central existen mecanismos neuroprotectores, como la producción de factores neurotróficos, los cuales son esenciales para un funcionamiento adecuado del tejido nervioso. El factor de crecimiento de insulina tipo II (IGF-II) es un factor neurotrófico que recientemente se ha involucrado en el funcionamiento normal de los procesos cognitivos en modelos animales; sin embargo, el impacto de la deficiencia de hierro sobre la expresión y funcionamiento de esta molécula aún no ha sido determinado.</p> <span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Se emplearon cultivos primarios mixtos de células del sistema nervioso central, en los que se simuló la deficiencia de hierro empleando deferoxamina y se determinó la expresión de IGF-I, IGF-II, IGF-IR e IGF-IIR por medio de western-blot.</p> <span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Se observó un incremento en la expresión de IGF-II y una disminución en la expresión de IGF-IIR en cultivos primarios mixtos deficientes en hierro. No se observaron cambios en la expresión de dichas proteínas en cultivos individuales de microglía o neuronas en las mismas condiciones. No se encontraron diferencias en la expresión de IGF-I e IGF-IR en condiciones de deficiencia de hierro.</p> <span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">La deficiencia de hierro <span class="elsevierStyleItalic">in vitro</span> induce un incremento en la expresión de IGF-II en cultivos mixtos de células gliales, lo que puede favorecer la homeostasis del tejido cerebral en situaciones de disminución en la disponibilidad de hierro.</p>" ] ] "NotaPie" => array:2 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Morales González E. Efecto de la deficiencia de hierro sobre la expresión de factor de crecimiento de insulina tipo II y su receptor en células neuronales y gliales. Neurología. 2014;29:408–415.</p>" ] 1 => array:2 [ "etiqueta" => "☆☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Preliminary results from this study were presented in poster format at the 2013 Experimental Biology Meeting.</p>" ] ] "multimedia" => array:4 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1232 "Ancho" => 2951 "Tamanyo" => 154339 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Western blot analysis of IGF-II expression in CNS cell cultures from BALB/c mice. (A) Mixed cultures in iron-sufficient (SFe) or iron-deficient (DFe) conditions. Arrows indicate the main proteins found: (a) IGFBP-3, (b) IGFBP-2, (c) IGFB-4, (d) IGF-II. (B) Microglial cell cultures, SFe and DFe. (C) Neuronal cell cultures, SFe and DFe. Beta-actin was used as the loading control.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 362 "Ancho" => 1501 "Tamanyo" => 27827 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Western blot analysis of IGF-IIR expression in mixed CNS cell cultures from newborn BALB/c mice. Cultures under iron-sufficient (SFe) or iron-deficient (DFe) conditions. The arrow indicates the protein under study.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1046 "Ancho" => 1585 "Tamanyo" => 75286 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Western blot analysis of IGF-I expression in CNS cell cultures from BALB/c mice. (A) Mixed glial cell cultures, (B) Microglial cell cultures, (C) Neuron cell cultures. Cultures in iron-sufficient (SFe) or iron-deficient (DFe) conditions. Arrows indicate the bands detected by the antibody.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 337 "Ancho" => 1531 "Tamanyo" => 24764 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Western blot analysis of IGF-IR expression in CNS cell cultures from newborn BALB/c mice. Cultures in iron-sufficient (SFe) or iron-deficient (DFe) conditions. The arrow indicates IGF-IRβ.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:57 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Iron deficiency anaemia: assessment, prevention and control. A guide for programme managers" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "WHO" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "fecha" => "2001" "paginaInicial" => "1" "paginaFinal" => "107" "editorial" => "WHO/NHD" "editorialLocalizacion" => "Geneva" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Desnutrición infantil en América Latina y el Caribe" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "UNICEF" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Desafios. Boletín de la infancia y adolescencia sobre el avance y los objetivos de desarrollo del milenio" "fecha" => "2006" "paginaInicial" => "3" "paginaFinal" => "12" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurogenética de las funciones cognitivas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Beteta-Pacheco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "R Neuro-Psiquiatría" "fecha" => "2003" "volumen" => "66" "paginaInicial" => "335" "paginaFinal" => "343" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Iron status and neural functioning" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.L. Beard" 1 => "J.R. Connor" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev.nutr.23.020102.075739" "Revista" => array:6 [ "tituloSerie" => "Annu Rev Nutr" "fecha" => "2003" "volumen" => "23" "paginaInicial" => "41" "paginaFinal" => "58" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12704220" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "E. Ortiz" 1 => "J.M. Pasquini" 2 => "K. Thompson" 3 => "B. Felt" 4 => "G. Butkus" 5 => "J. Beard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jnr.20207" "Revista" => array:6 [ "tituloSerie" => "J Neurosci Res" "fecha" => "2004" "volumen" => "77" "paginaInicial" => "681" "paginaFinal" => "689" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15352214" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Causas y consecuencias de la deficiencia de hierrro sobre la salud humana" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Boccio" 1 => "M.C. Paéz" 2 => "M. Zubilaga" 3 => "J. Salgueiro" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "ALAN [revista en Internet]" "fecha" => "2004" "volumen" => "54" "paginaInicial" => "165" "paginaFinal" => "173" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anemia por deficiencia de Hierro" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "N. Baiocchi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Rev Cubana Hematol Inmunol Hemoter" "fecha" => "2006" "paginaInicial" => "20" "paginaFinal" => "27" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Funcionamiento intelectual y rendimiento escolar en niños con deficiencia de anemia y hierro" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.G. Stanco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Colom Med" "fecha" => "2007" "volumen" => "38" "paginaInicial" => "25" "paginaFinal" => "33" "itemHostRev" => array:3 [ "pii" => "S0268960X05000044" "estado" => "S300" "issn" => "0268960X" ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurogenesis in adult subventricular zone" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Alvarez-Buylla" 1 => "J.M. Garcia-Verdugo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurosci" "fecha" => "2002" "volumen" => "22" "paginaInicial" => "629" "paginaFinal" => "634" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11826091" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stem cells in neurodevelopment and plasticity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F.M. Vaccarino" 1 => "Y. Ganat" 2 => "Y. Zhang" 3 => "W. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0893-133X(01)00349-9" "Revista" => array:6 [ "tituloSerie" => "Neuropsychopharmacology" "fecha" => "2001" "volumen" => "25" "paginaInicial" => "805" "paginaFinal" => "815" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11750175" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:1 [ "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Langman. Embriología médica" "edicion" => "7th ed." "serieFecha" => "1996" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular mechanisms controlling cortical gliogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.M. Sauvageot" 1 => "C.D. Stiles" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Curr Opin Neurobiol" "fecha" => "2002" "volumen" => "12" "paginaInicial" => "244" "paginaFinal" => "249" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12049929" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A critical role for IGF-II in memory consolidation and enhancement" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.Y. Chen" 1 => "S.A. Stern" 2 => "A. Garcia-Osta" 3 => "B. Saunier-Rebori" 4 => "G. Pollonini" 5 => "D. Bambah-Mukku" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature09667" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2011" "volumen" => "469" "paginaInicial" => "491" "paginaFinal" => "497" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21270887" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.K. Haselbacher" 1 => "M.E. Schwab" 2 => "A. Pasi" 3 => "R.E. Humbel" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "1985" "volumen" => "82" "paginaInicial" => "2153" "paginaFinal" => "2157" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/3885223" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Dore" 1 => "S. Kar" 2 => "W. Rowe" 3 => "R. Quirion" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "1997" "volumen" => "80" "paginaInicial" => "1033" "paginaFinal" => "1040" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9284058" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factors-I and -II differentially regulate endogenous acetylcholine release from the rat hippocampal formation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Kar" 1 => "D. Seto" 2 => "S. Dore" 3 => "U. Hanisch" 4 => "R. Quirion" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "1997" "volumen" => "94" "paginaInicial" => "14054" "paginaFinal" => "14059" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9391151" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factor II signaling through the insulin-like growth factor II/mannose-6-phosphate receptor promotes exocytosis in insulin-secreting cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Q. Zhang" 1 => "M. Tally" 2 => "O. Larsson" 3 => "T.R. Kennedy" 4 => "L. Huang" 5 => "K. Hall" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "1997" "volumen" => "94" "paginaInicial" => "6232" "paginaFinal" => "6237" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9177200" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Maternal and child undernutrition: global and regional exposures and health consequences" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.E. Black" 1 => "L.H. Allen" 2 => "Z.A. Bhutta" 3 => "L.E. Caulfield" 4 => "M. de Onis" 5 => "M. Ezzati" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(07)61690-0" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2008" "volumen" => "371" "paginaInicial" => "243" "paginaFinal" => "260" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18207566" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R.S. Golini" 1 => "S.M. Delgado" 2 => "L.S. Navigatore Fonzo" 3 => "I.T. Ponce" 4 => "M.G. Lacoste" 5 => "A.C. Anzulovich" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hipo.22007" "Revista" => array:6 [ "tituloSerie" => "Hippocampus" "fecha" => "2012" "volumen" => "22" "paginaInicial" => "1720" "paginaFinal" => "1732" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22434687" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Altered brain neurotrophins at birth: consequence of imbalance in maternal folic acid and vitamin B12 metabolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Sable" 1 => "K. Dangat" 2 => "A. Kale" 3 => "S. Joshi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroscience.2011.05.010" "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "2011" "volumen" => "190" "paginaInicial" => "127" "paginaFinal" => "134" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21640168" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased nerve growth factor by zinc supplementation with concurrent vitamin A deficiency does not improve memory performance in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Kheirvari" 1 => "K. Uezu" 2 => "T. Sakai" 3 => "M. Nakamori" 4 => "M. Alizadeh" 5 => "N. Sarukura" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Nutr Sci Vitaminol (Tokyo)" "fecha" => "2006" "volumen" => "52" "paginaInicial" => "421" "paginaFinal" => "427" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurotrophic factor intervention restores auditory function in deafened animals" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Shinohara" 1 => "G. Bredberg" 2 => "M. Ulfendahl" 3 => "I. Pyykkö" 4 => "N.P. Olivius" 5 => "R. Kaksonen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.032677999" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "2002" "volumen" => "99" "paginaInicial" => "1657" "paginaFinal" => "1660" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11818566" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High-dose dietary supplementation of vitamin A induces brain-derived neurotrophic factor and nerve growth factor production in mice with simultaneous deficiency of vitamin A and zinc" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Kheirvari" 1 => "K. Uezu" 2 => "S. Yamamoto" 3 => "Y. Nakaya" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1179/147683008X301603" "Revista" => array:6 [ "tituloSerie" => "Nutr Neurosci" "fecha" => "2008" "volumen" => "11" "paginaInicial" => "228" "paginaFinal" => "234" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18782483" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T. Hathorn" 1 => "A. Snyder-Keller" 2 => "A. Messer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nbd.2010.08.017" "Revista" => array:6 [ "tituloSerie" => "Neurobiol Dis" "fecha" => "2011" "volumen" => "41" "paginaInicial" => "43" "paginaFinal" => "50" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20736066" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.N. Green" 1 => "J.S. Steffan" 2 => "H. Martinez-Coria" 3 => "X. Sun" 4 => "S.S. Schreiber" 5 => "L.M. Thompson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1523/JNEUROSCI.3203-08.2008" "Revista" => array:6 [ "tituloSerie" => "J Neurosci" "fecha" => "2008" "volumen" => "28" "paginaInicial" => "11500" "paginaFinal" => "11510" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18987186" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ylikoski" 1 => "U. Pirvola" 2 => "J. Virkkala" 3 => "P. Suvanto" 4 => "X.Q. Liang" 5 => "E. Magal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Hear Res" "fecha" => "1998" "volumen" => "124" "paginaInicial" => "17" "paginaFinal" => "26" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9822899" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Maruyama" 1 => "J.M. Miller" 2 => "M. Ulfendahl" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nbd.2007.07.026" "Revista" => array:6 [ "tituloSerie" => "Neurobiol Dis" "fecha" => "2008" "volumen" => "29" "paginaInicial" => "14" "paginaFinal" => "21" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17870569" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Iron deficiency down-regulates the Akt/TSC1-TSC2/mammalian Target of Rapamycin signaling pathway in rats and in COS-1 cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Ndong" 1 => "M. Kazami" 2 => "T. Suzuki" 3 => "M. Uehara" 4 => "S. Katsumata" 5 => "H. Inoue" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nutres.2009.09.007" "Revista" => array:6 [ "tituloSerie" => "Nutr Res" "fecha" => "2009" "volumen" => "29" "paginaInicial" => "640" "paginaFinal" => "647" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19854379" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "E.S. Carlson" 1 => "J.D. Stead" 2 => "C.R. Neal" 3 => "A. Petryk" 4 => "M.K. Georgieff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hipo.20307" "Revista" => array:6 [ "tituloSerie" => "Hippocampus" "fecha" => "2007" "volumen" => "17" "paginaInicial" => "679" "paginaFinal" => "691" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17546681" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "P.V. Tran" 1 => "S.J. Fretham" 2 => "J. Wobken" 3 => "B.S. Miller" 4 => "M.K. Georgieff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajpendo.00369.2011" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Endocrinol Metab" "fecha" => "2012" "volumen" => "302" "paginaInicial" => "E316" "paginaFinal" => "E324" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22068601" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L.A. Jorgenson" 1 => "M. Sun" 2 => "M. O’Connor" 3 => "M.K. Georgieff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hipo.20128" "Revista" => array:6 [ "tituloSerie" => "Hippocampus" "fecha" => "2005" "volumen" => "15" "paginaInicial" => "1094" "paginaFinal" => "1102" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16187331" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P.V. Tran" 1 => "S.J. Fretham" 2 => "E.S. Carlson" 3 => "M.K. Georgieff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1203/PDR.0b013e31819d90a1" "Revista" => array:6 [ "tituloSerie" => "Pediatr Res" "fecha" => "2009" "volumen" => "65" "paginaInicial" => "493" "paginaFinal" => "498" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19190544" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H.J. Walter" 1 => "M. Berry" 2 => "D.J. Hill" 3 => "S. Cwyfan-Hughes" 4 => "J.M. Holly" 5 => "A. Logan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/endo.140.1.6463" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "1999" "volumen" => "140" "paginaInicial" => "520" "paginaFinal" => "532" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9886865" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expanding the mind: insulin-like growth factor I and brain development" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Joseph D’Ercole" 1 => "P. Ye" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/en.2008-0920" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "2008" "volumen" => "149" "paginaInicial" => "5958" "paginaFinal" => "5962" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18687773" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physiological role of the insulin-like growth factor binding proteins" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Zapf" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Eur J Endocrinol" "fecha" => "1995" "volumen" => "132" "paginaInicial" => "645" "paginaFinal" => "654" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7787999" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Logan" 1 => "A.M. Gonzalez" 2 => "D.J. Hill" 3 => "M. Berry" 4 => "N.A. Gregson" 5 => "A. Baird" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/endo.135.5.7525264" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "1994" "volumen" => "135" "paginaInicial" => "2255" "paginaFinal" => "2264" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7525264" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression of insulin-like growth factor binding protein-4 and -5 mRNAs in adult rat forebrain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.L. Stenvers" 1 => "E.M. Zimmermann" 2 => "M. Gallagher" 3 => "P.K. Lund" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/cne.903390109" "Revista" => array:6 [ "tituloSerie" => "J Comp Neurol" "fecha" => "1994" "volumen" => "339" "paginaInicial" => "91" "paginaFinal" => "105" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7508953" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factor binding proteins in nervous-tissue-derived cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "I. Ocrant" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ann N Y Acad Sci" "fecha" => "1993" "volumen" => "692" "paginaInicial" => "44" "paginaFinal" => "50" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7692798" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Isolation from human cerebrospinal fluid of a new insulin-like growth factor-binding protein with a selective affinity for IGF-II" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Roghani" 1 => "P. Hossenlopp" 2 => "P. Lepage" 3 => "A. Balland" 4 => "M. Binoux" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "FEBS Lett" "fecha" => "1989" "volumen" => "255" "paginaInicial" => "253" "paginaFinal" => "258" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2551732" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C. Camacho-Hubner" 1 => "W.H. Busby Jr." 2 => "R.H. McCusker" 3 => "G. Wright" 4 => "D.R. Clemmons" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "1992" "volumen" => "267" "paginaInicial" => "11949" "paginaFinal" => "11956" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1376315" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.J. Walter" 1 => "M. Berry" 2 => "D.J. Hill" 3 => "A. Logan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/endo.138.7.5284" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "1997" "volumen" => "138" "paginaInicial" => "3024" "paginaFinal" => "3034" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9202248" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Local synthesis and developmental regulation of avian vitreal insulin-like growth factor-binding proteins: a model for independent regulation in extravascular and vascular compartments" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T.J. Schoen" 1 => "D.C. Beebe" 2 => "D.R. Clemmons" 3 => "G.J. Chader" 4 => "R.J. Waldbillig" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/endo.131.6.1280206" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "1992" "volumen" => "131" "paginaInicial" => "2846" "paginaFinal" => "2854" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1280206" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factor (IGF)-I and -II and IGFBP secretion by ovine satellite cell strains grown alone or in coculture with 3T3-L1 preadipocytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.L. Hossner" 1 => "R. Yemm" 2 => "J. Vierck" 3 => "M.V. Dodson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "In Vitro Cell Dev Biol Anim" "fecha" => "1997" "volumen" => "33" "paginaInicial" => "791" "paginaFinal" => "795" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9466684" "web" => "Medline" ] ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Human insulin-like growth factor binding protein-6 is O-glycosylated" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L.A. Bach" 1 => "N.R. Thotakura" 2 => "M.M. Rechler" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "1992" "volumen" => "186" "paginaInicial" => "301" "paginaFinal" => "307" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1378724" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Insulin-like growth factor binding proteins in the human circulation: a review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "R.C. Baxter" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Horm Res" "fecha" => "1994" "volumen" => "42" "paginaInicial" => "140" "paginaFinal" => "144" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7532612" "web" => "Medline" ] ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transferrin is an insulin-like growth factor-binding protein-3 binding protein" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S.A. Weinzimer" 1 => "T.B. Gibson" 2 => "P.F. Collett-Solberg" 3 => "A. Khare" 4 => "B. Liu" 5 => "P. Cohen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jcem.86.4.7380" "Revista" => array:6 [ "tituloSerie" => "J Clin Endocrinol Metab" "fecha" => "2001" "volumen" => "86" "paginaInicial" => "1806" "paginaFinal" => "1813" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11297622" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0235" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of the insulin-like growth factors in the central nervous system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.J. D’Ercole" 1 => "P. Ye" 2 => "A.S. Calikoglu" 3 => "G. Gutierrez-Ospina" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/BF02740625" "Revista" => array:6 [ "tituloSerie" => "Mol Neurobiol" "fecha" => "1996" "volumen" => "13" "paginaInicial" => "227" "paginaFinal" => "255" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8989772" "web" => "Medline" ] ] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0240" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "In vivo coupling of insulin-like growth factor II/mannose 6-phosphate receptor to heteromeric G proteins. Distinct roles of cytoplasmic domains and signal sequestration by the receptor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T. Ikezu" 1 => "T. Okamoto" 2 => "U. Giambarella" 3 => "T. Yokota" 4 => "I. Nishimoto" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "1995" "volumen" => "270" "paginaInicial" => "29224" "paginaFinal" => "29228" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7493951" "web" => "Medline" ] ] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0245" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Receptors for insulin-like growth factor (IGF)-II/cation-independent mannose-6-phosphate are present in mouse neurons and influenced by IGF-II treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Fushimi" 1 => "Y. Konishi" 2 => "T. Shirabe" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Histochem Cytochem" "fecha" => "2004" "volumen" => "37" "paginaInicial" => "191" "paginaFinal" => "204" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0250" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Developmental expression of insulin-like growth factor-II receptor immunoreactivity in the rat central nervous system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.L. Valentino" 1 => "I. Ocrant" 2 => "R.G. Rosenfeld" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/endo-126-2-914" "Revista" => array:6 [ "tituloSerie" => "Endocrinology" "fecha" => "1990" "volumen" => "126" "paginaInicial" => "914" "paginaFinal" => "920" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2153533" "web" => "Medline" ] ] ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0255" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "R. Rao" 1 => "I. Tkac" 2 => "E.L. Townsend" 3 => "R. Gruetter" 4 => "M.K. Georgieff" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Nutr" "fecha" => "2003" "volumen" => "133" "paginaInicial" => "3215" "paginaFinal" => "3221" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14519813" "web" => "Medline" ] ] ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0260" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular biology of the insulin-like growth factors. Relevance to nervous system function" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.E. Hepler" 1 => "P.K. Lund" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Mol Neurobiol" "fecha" => "1990" "volumen" => "4" "paginaInicial" => "93" "paginaFinal" => "127" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2076220" "web" => "Medline" ] ] ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0265" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B. Cheng" 1 => "M.P. Mattson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurosci" "fecha" => "1992" "volumen" => "12" "paginaInicial" => "1558" "paginaFinal" => "1566" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1313498" "web" => "Medline" ] ] ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0270" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differential expression of insulin-like growth factor genes in rat central nervous system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Rotwein" 1 => "S.K. Burgess" 2 => "J.D. Milbrandt" 3 => "J.E. Krause" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "1988" "volumen" => "85" "paginaInicial" => "265" "paginaFinal" => "269" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/3422422" "web" => "Medline" ] ] ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0275" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Serum levels of ghrelin, leptin, IGF-I, IGFBP-3, insulin, thyroid hormones and cortisol in prepubertal children with iron deficiency" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P. Isguven" 1 => "I. Arslanoglu" 2 => "M. Erol" 3 => "M. Yildiz" 4 => "E. Adal" 5 => "M. Erguven" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Endocr J" "fecha" => "2007" "volumen" => "54" "paginaInicial" => "985" "paginaFinal" => "990" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17998761" "web" => "Medline" ] ] ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0280" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perinatal hypoxia-ischemia decreased neuronal but increased cerebral vascular endothelial IGFBP3 expression" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W.H. Lee" 1 => "G.M. Wang" 2 => "X.L. Yang" 3 => "L.B. Seaman" 4 => "S.I. Vannucci" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1385/ENDO:11:2:181" "Revista" => array:6 [ "tituloSerie" => "Endocrine" "fecha" => "1999" "volumen" => "11" "paginaInicial" => "181" "paginaFinal" => "188" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10709766" "web" => "Medline" ] ] ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0285" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deleterious functional impact of anemia on young adolescent school girls" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Sen" 1 => "S.J. Kanani" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Indian Pediatr" "fecha" => "2006" "volumen" => "43" "paginaInicial" => "219" "paginaFinal" => "226" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16585816" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735808/0000002900000007/v1_201409160948/S2173580814000996/v1_201409160948/en/main.assets" "Apartado" => array:4 [ "identificador" => "17109" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "CO1" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735808/0000002900000007/v1_201409160948/S2173580814000996/v1_201409160948/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580814000996?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 3 | 6 |
2024 October | 20 | 8 | 28 |
2024 September | 30 | 8 | 38 |
2024 August | 24 | 3 | 27 |
2024 July | 16 | 2 | 18 |
2024 June | 19 | 6 | 25 |
2024 May | 22 | 3 | 25 |
2024 April | 22 | 5 | 27 |
2024 March | 48 | 6 | 54 |
2024 February | 41 | 6 | 47 |
2024 January | 24 | 5 | 29 |
2023 December | 40 | 7 | 47 |
2023 November | 45 | 7 | 52 |
2023 October | 55 | 14 | 69 |
2023 September | 27 | 4 | 31 |
2023 August | 42 | 3 | 45 |
2023 July | 46 | 7 | 53 |
2023 June | 27 | 6 | 33 |
2023 May | 21 | 6 | 27 |
2023 April | 23 | 3 | 26 |
2023 March | 16 | 3 | 19 |
2023 February | 15 | 5 | 20 |
2023 January | 18 | 9 | 27 |
2022 December | 14 | 6 | 20 |
2022 November | 23 | 19 | 42 |
2022 October | 13 | 7 | 20 |
2022 September | 17 | 10 | 27 |
2022 August | 14 | 22 | 36 |
2022 July | 9 | 6 | 15 |
2022 June | 15 | 11 | 26 |
2022 May | 27 | 6 | 33 |
2022 April | 10 | 10 | 20 |
2022 March | 11 | 11 | 22 |
2022 February | 17 | 10 | 27 |
2022 January | 13 | 9 | 22 |
2021 December | 13 | 12 | 25 |
2021 November | 11 | 9 | 20 |
2021 October | 18 | 9 | 27 |
2021 September | 10 | 10 | 20 |
2021 August | 23 | 7 | 30 |
2021 July | 9 | 7 | 16 |
2021 June | 10 | 6 | 16 |
2021 May | 17 | 10 | 27 |
2021 April | 23 | 19 | 42 |
2021 March | 18 | 7 | 25 |
2021 February | 9 | 5 | 14 |
2021 January | 11 | 12 | 23 |
2020 December | 15 | 8 | 23 |
2020 November | 6 | 9 | 15 |
2020 October | 11 | 6 | 17 |
2020 September | 13 | 9 | 22 |
2020 August | 11 | 12 | 23 |
2020 July | 20 | 11 | 31 |
2020 June | 12 | 3 | 15 |
2020 May | 4 | 14 | 18 |
2020 April | 9 | 5 | 14 |
2020 March | 5 | 3 | 8 |
2020 February | 14 | 15 | 29 |
2020 January | 15 | 4 | 19 |
2019 December | 12 | 6 | 18 |
2019 November | 10 | 6 | 16 |
2019 October | 8 | 3 | 11 |
2019 September | 10 | 6 | 16 |
2019 August | 12 | 1 | 13 |
2019 July | 7 | 11 | 18 |
2019 June | 21 | 34 | 55 |
2019 May | 64 | 42 | 106 |
2019 April | 27 | 21 | 48 |
2019 March | 4 | 5 | 9 |
2019 February | 7 | 6 | 13 |
2019 January | 6 | 3 | 9 |
2018 December | 8 | 8 | 16 |
2018 November | 9 | 11 | 20 |
2018 October | 11 | 7 | 18 |
2018 September | 16 | 0 | 16 |
2018 August | 2 | 2 | 4 |
2018 July | 7 | 0 | 7 |
2018 June | 6 | 5 | 11 |
2018 May | 10 | 1 | 11 |
2018 April | 13 | 1 | 14 |
2018 March | 6 | 3 | 9 |
2018 February | 4 | 5 | 9 |
2018 January | 9 | 1 | 10 |
2017 December | 12 | 1 | 13 |
2017 November | 11 | 3 | 14 |
2017 October | 9 | 1 | 10 |
2017 September | 16 | 8 | 24 |
2017 August | 16 | 3 | 19 |
2017 July | 11 | 0 | 11 |
2017 June | 18 | 5 | 23 |
2017 May | 7 | 16 | 23 |
2017 April | 10 | 7 | 17 |
2017 March | 5 | 16 | 21 |
2017 February | 11 | 2 | 13 |
2017 January | 8 | 2 | 10 |
2016 December | 10 | 4 | 14 |
2016 November | 8 | 2 | 10 |
2016 October | 17 | 5 | 22 |
2016 September | 22 | 9 | 31 |
2016 August | 19 | 4 | 23 |
2016 July | 17 | 1 | 18 |
2016 June | 13 | 8 | 21 |
2016 May | 18 | 10 | 28 |
2016 April | 19 | 8 | 27 |
2016 March | 20 | 22 | 42 |
2016 February | 21 | 14 | 35 |
2016 January | 11 | 12 | 23 |
2015 December | 10 | 9 | 19 |
2015 November | 19 | 12 | 31 |
2015 October | 16 | 14 | 30 |
2015 September | 27 | 17 | 44 |
2015 August | 23 | 12 | 35 |
2015 July | 12 | 6 | 18 |
2015 June | 16 | 3 | 19 |
2015 May | 31 | 10 | 41 |
2015 April | 27 | 11 | 38 |
2015 March | 22 | 10 | 32 |
2015 February | 21 | 3 | 24 |
2015 January | 38 | 9 | 47 |
2014 December | 40 | 16 | 56 |
2014 November | 27 | 12 | 39 |
2014 October | 43 | 15 | 58 |