was read the article
array:25 [ "pii" => "S2173580817301372" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2016.03.002" "estado" => "S300" "fechaPublicacion" => "2017-11-01" "aid" => "890" "copyright" => "Sociedad Española de Neurología" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2017;32:579-86" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1407 "formatos" => array:3 [ "EPUB" => 40 "HTML" => 1140 "PDF" => 227 ] ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0213485316300251" "issn" => "02134853" "doi" => "10.1016/j.nrl.2016.03.004" "estado" => "S300" "fechaPublicacion" => "2017-11-01" "aid" => "890" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2017;32:579-86" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2615 "formatos" => array:3 [ "EPUB" => 63 "HTML" => 1835 "PDF" => 717 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Análisis de la actividad y coordinación motora en ratas con cirugía estereotáxica e implante de cánula en el hipocampo dorsal" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "579" "paginaFinal" => "586" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figura 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2112 "Ancho" => 1277 "Tamanyo" => 71625 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Tiempo total de inmovilidad en la prueba de nado. a) La manipulación quirúrgica no produjo cambios significativos en esta variable, respecto al grupo de ratas intactas. b) En el grupo metaestro-diestro (M-D) se encontró un mayor tiempo de inmovilidad, respecto al grupo proestro-estro (P-E).</p> <p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">* p<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,05 vs. P-E.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "F. Hernández-López, J.F. Rodríguez-Landa, A. Puga-Olguín, L.J. Germán-Ponciano, E. Rivadeneyra-Domínguez, B. Bernal-Morales" "autores" => array:6 [ 0 => array:2 [ "nombre" => "F." "apellidos" => "Hernández-López" ] 1 => array:2 [ "nombre" => "J.F." "apellidos" => "Rodríguez-Landa" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Puga-Olguín" ] 3 => array:2 [ "nombre" => "L.J." "apellidos" => "Germán-Ponciano" ] 4 => array:2 [ "nombre" => "E." "apellidos" => "Rivadeneyra-Domínguez" ] 5 => array:2 [ "nombre" => "B." "apellidos" => "Bernal-Morales" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173580817301372" "doi" => "10.1016/j.nrleng.2016.03.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580817301372?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485316300251?idApp=UINPBA00004N" "url" => "/02134853/0000003200000009/v1_201711130924/S0213485316300251/v1_201711130924/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S2173580817301414" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2016.03.006" "estado" => "S300" "fechaPublicacion" => "2017-11-01" "aid" => "900" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2017;32:587-94" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 953 "formatos" => array:3 [ "EPUB" => 55 "HTML" => 751 "PDF" => 147 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "587" "paginaFinal" => "594" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La interleucina-1β aumenta la muerte neuronal en el giro dentado del hipocampo asociada al estado epiléptico en la rata en desarrollo" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 809 "Ancho" => 2262 "Tamanyo" => 101882 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Concentration–response curve for the effect of IL-1β on status epilepticus-induced neuronal cell death in the hippocampal dentate gyrus (DG) ipsilateral (left panel) and contralateral (right panel) to the injection site. Bars represent mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SEM number of eosinophilic cells in the vehicle group and for the different concentrations of IL-1β (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 per group). <span class="elsevierStyleSup">*</span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs vehicle group.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. Rincón-López, A. Tlapa-Pale, J.-S. Medel-Matus, J. Martínez-Quiroz, J.F. Rodríguez-Landa, M.-L. López-Meraz" "autores" => array:6 [ 0 => array:2 [ "nombre" => "C." "apellidos" => "Rincón-López" ] 1 => array:2 [ "nombre" => "A." "apellidos" => "Tlapa-Pale" ] 2 => array:2 [ "nombre" => "J.-S." "apellidos" => "Medel-Matus" ] 3 => array:2 [ "nombre" => "J." "apellidos" => "Martínez-Quiroz" ] 4 => array:2 [ "nombre" => "J.F." "apellidos" => "Rodríguez-Landa" ] 5 => array:2 [ "nombre" => "M.-L." "apellidos" => "López-Meraz" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485316300445" "doi" => "10.1016/j.nrl.2016.03.013" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485316300445?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580817301414?idApp=UINPBA00004N" "url" => "/21735808/0000003200000009/v1_201711100039/S2173580817301414/v1_201711100039/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S2173580817301384" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2016.03.003" "estado" => "S300" "fechaPublicacion" => "2017-11-01" "aid" => "892" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2017;32:568-78" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 924 "formatos" => array:3 [ "EPUB" => 45 "HTML" => 628 "PDF" => 251 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Phenotype in patients with intellectual disability and pathological results in array CGH" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "568" "paginaFinal" => "578" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Fenotipo en pacientes con discapacidad intelectual y array-CGH patológico" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1539 "Ancho" => 1701 "Tamanyo" => 123919 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Final sample size.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V. Caballero Pérez, F.J. López Pisón, M.D. Miramar Gallart, A. González Álvarez, M.C. García Jiménez, J.P. García Iñiguez, C. Orden Rueda, I. Gil Hernández, C. Fuertes Rodrigo, R. Fernando Martínez, A. Rodríguez Valle, M.J. Alcaine Villarroya" "autores" => array:12 [ 0 => array:2 [ "nombre" => "V." "apellidos" => "Caballero Pérez" ] 1 => array:2 [ "nombre" => "F.J." "apellidos" => "López Pisón" ] 2 => array:2 [ "nombre" => "M.D." "apellidos" => "Miramar Gallart" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "González Álvarez" ] 4 => array:2 [ "nombre" => "M.C." "apellidos" => "García Jiménez" ] 5 => array:2 [ "nombre" => "J.P." "apellidos" => "García Iñiguez" ] 6 => array:2 [ "nombre" => "C." "apellidos" => "Orden Rueda" ] 7 => array:2 [ "nombre" => "I." "apellidos" => "Gil Hernández" ] 8 => array:2 [ "nombre" => "C." "apellidos" => "Fuertes Rodrigo" ] 9 => array:2 [ "nombre" => "R." "apellidos" => "Fernando Martínez" ] 10 => array:2 [ "nombre" => "A." "apellidos" => "Rodríguez Valle" ] 11 => array:2 [ "nombre" => "M.J." "apellidos" => "Alcaine Villarroya" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485316300275" "doi" => "10.1016/j.nrl.2016.03.006" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485316300275?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580817301384?idApp=UINPBA00004N" "url" => "/21735808/0000003200000009/v1_201711100039/S2173580817301384/v1_201711100039/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "579" "paginaFinal" => "586" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "F. Hernández-López, J.F. Rodríguez-Landa, A. Puga-Olguín, L.J. Germán-Ponciano, E. Rivadeneyra-Domínguez, B. Bernal-Morales" "autores" => array:6 [ 0 => array:3 [ "nombre" => "F." "apellidos" => "Hernández-López" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:4 [ "nombre" => "J.F." "apellidos" => "Rodríguez-Landa" "email" => array:1 [ 0 => "juarodriguez@uv.mx" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "A." "apellidos" => "Puga-Olguín" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "L.J." "apellidos" => "Germán-Ponciano" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "E." "apellidos" => "Rivadeneyra-Domínguez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "B." "apellidos" => "Bernal-Morales" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Posgrado en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Análisis de la actividad y coordinación motora en ratas con cirugía estereotáxica e implante de cánula en el hipocampo dorsal" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1925 "Ancho" => 1719 "Tamanyo" => 231979 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">(a) Image of the rat brain showing the site of cannula implantation at the anteroposterior level (dashed line) and a coronal section of the brain showing the site of cannula injection (white arrow). (b) Diagram of brain coronal sections, displaying the site of cannula implantation into hippocampal CA1 (black circles). Based on Paxinos and Watson's rat brain atlas (1998 edition).</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Stereotactic surgery is a technique enabling brain structures to be located for electrode or cannula implantation, with the ultimate aim of exploring brain function.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">1</span></a> These procedures have enabled the identification of neuroanatomical and neurochemical circuits involved in brain function and certain neurological disorders (epilepsy, movement disorders, and neurodegenerative diseases),<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">2–5</span></a> learning and memory impairment,<a class="elsevierStyleCrossRefs" href="#bib0260"><span class="elsevierStyleSup">6,7</span></a> and emotional<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,9</span></a> and affective disorders.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">10</span></a> Furthermore, stereotactic surgery is used to explore the therapeutic potential and action mechanisms of potentially effective substances for the treatment of the previously mentioned disorders in humans.<a class="elsevierStyleCrossRefs" href="#bib0275"><span class="elsevierStyleSup">9,11–14</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">The hippocampus is one of the most frequently studied brain structures due to its involvement in the neurobiology of multiple neurological, cognitive, emotional, and affective disorders. Intrahippocampal microinjection of such substances as kainic acid or pilocarpine<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">3,4</span></a> has been used to experimentally reproduce temporal lobe epilepsy, which is associated with a reduction in the number of neurons in the hippocampal CA1 region.<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">15</span></a> Under these experimental conditions, status epilepticus leads to memory and learning impairment,<a class="elsevierStyleCrossRefs" href="#bib0310"><span class="elsevierStyleSup">16,17</span></a> which may be minimised by administering anticonvulsants.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">14</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">Other studies have explored the role of the hippocampus in neurological disorders associated with consumption of certain foods. Intrahippocampal microinjection of such neurotoxins as methylazoxymethanol, present in cycad seeds (<span class="elsevierStyleItalic">Dioon spinulosum</span>),<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">2</span></a> or linamarin, found in cassava root (<span class="elsevierStyleItalic">Manihot esculenta</span> Crantz),<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">18</span></a> promotes the loss of motor coordination and reduces the number of neurons in the hippocampal CA1 in rats.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">18</span></a> These experimentally-induced alterations seem to be analogous to some of the neurological symptoms associated with consumption of cycad seeds or cassava root in humans (amyotrophic lateral sclerosis-parkinsonian dementia, tropical ataxic neuropathy, and konzo).<a class="elsevierStyleCrossRefs" href="#bib0325"><span class="elsevierStyleSup">19–21</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">Experimental models of locomotor impairment are used to evaluate the effects of intrahippocampal microinjection of neurotoxic compounds and substances that are potentially beneficial in humans (for example, as treatments for some neurological or psychiatric disorders).<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">2,11,14,15</span></a> However, very few studies have used specific tests to evaluate the intrinsic locomotory impact of stereotactic surgery. This study aimed to evaluate the effects of stereotactic surgery on locomotor activity and coordination in female rats in order to confirm or rule out any associated neurological alterations that may interfere with the interpretation of results in studies employing this type of experimental manipulation.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Subjects</span><p id="par0025" class="elsevierStylePara elsevierViewall">We used 56 3-month-old female Wistar rats weighing between 250 and 300<span class="elsevierStyleHsp" style=""></span>g at the beginning of the study. Rats were housed in acrylic cages (4-5 rats per cage) in a vivarium. They were kept at room temperature (25<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>°C) with a 12:12 light–dark cycle (lights on at 7:00<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleSmallCaps">am</span>) and had ad libitum access to food and water. Rats were managed following the international ethical standards established in the <span class="elsevierStyleItalic">Guide for care and use of laboratory animals</span>,<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">22</span></a> and the Mexican official guidelines for the care and use of laboratory animals.<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">23</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Vaginal smears</span><p id="par0030" class="elsevierStylePara elsevierViewall">Prior to behavioural tests, vaginal smears were obtained once daily from each rat. Only the rats with 3 consecutive regular cycles (4-5 days) were included in our study. After behavioural tests, we obtained vaginal smears with cotton buds dampened in saline solution to determine the phase of the oestrus cycle. Vaginal discharge was examined under a light microscope (40×). Rats were divided into 2 groups based on vaginal smear results<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">24</span></a>: pro-oestrus/oestrus phase, characterised by high levels of ovarian hormones, and metoestrus/dioestrus phase, with low levels of these hormones.<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">25</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Experimental groups</span><p id="par0035" class="elsevierStylePara elsevierViewall">Two experiments were conducted. In the first, rats were randomly allocated to 2 groups: 1) an intact group (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14), where rats did not undergo stereotactic surgery, and 2) a surgery group (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14), with rats undergoing stereotactic surgery plus dorsal hippocampal microinjection of a vehicle used in various experimental protocols (0.3<span class="elsevierStyleHsp" style=""></span>μL of cyclodextrin solution 35%). Rats in both groups were evaluated using the forced swim and locomotor activity tests. The second experiment included 2 groups: 1) an intact group (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14) and 2) a surgery group (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>14), with rats undergoing surgery and vehicle microinjection. Both groups were assessed using the rotarod test.</p><p id="par0040" class="elsevierStylePara elsevierViewall">After all behavioural tests were completed, vaginal smears were obtained to identify the phase of the oestrus cycle. Rats were then classified in 2 groups according to the level of ovarian hormones (high in pro-oestrus and oestrus phases and low in metoestrus and dioestrus phases) to minimise the influence of hormonal differences on the analysis of the results.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Stereotactic surgery</span><p id="par0045" class="elsevierStylePara elsevierViewall">Rats were administered 0.05<span class="elsevierStyleHsp" style=""></span>mg/kg atropine sulfate i.p. (Sigma–Aldrich Co.; St. Louis, MO, USA) and subsequently anaesthetised<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">26</span></a> with pentobarbital sodium (50<span class="elsevierStyleHsp" style=""></span>mg/kg<span class="elsevierStyleHsp" style=""></span>i.p.; Anestesal<span class="elsevierStyleSup">®</span>, Pfizer; Mexico City, Mexico). During deep anaesthesia, the rats’ heads were placed in a stereotactic apparatus (Stoelting; Wood Dale, IL, USA). The cranium was exposed and a dental lab drill (35<span class="elsevierStyleHsp" style=""></span>000<span class="elsevierStyleHsp" style=""></span>rpm; Saeshin Dental Lab, South Korea) was used to drill a hole to implant a cannula into the dorsal hippocampus (AP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−3.8<span class="elsevierStyleHsp" style=""></span>mm; ML<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−2<span class="elsevierStyleHsp" style=""></span>mm; DV<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−2<span class="elsevierStyleHsp" style=""></span>mm) according to the stereotactic coordinates of Paxinos and Watson's<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">1</span></a> rat brain atlas (1998 edition). A stainless steel guide cannula (8<span class="elsevierStyleHsp" style=""></span>mm long, 0.7<span class="elsevierStyleHsp" style=""></span>mm in diameter) was subsequently implanted and secured to the skull with dental acrylic (Arias Distribuidora Dental; Tlalnepantla, Mexico). After surgery, lidocaine (Laboratorios PISA; Mexico City, Mexico) was applied topically to the area surrounding the cannula implant. For the first 3 days after surgery, an analgesic agent (dipyrone 50, Virbac; Guadalajara, Mexico) was administered intraperitoneally to reduce pain. Rats were allowed to recover from surgery for 4 days before behavioural tests were conducted.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Microinjection</span><p id="par0050" class="elsevierStylePara elsevierViewall">A vehicle was injected through the stainless steel cannula, which was connected to a 10<span class="elsevierStyleHsp" style=""></span>μL Hamilton syringe by means of a polyethylene tube. An automatic infusion pump (KD Scientific; Holliston, MA, USA) was used to microinject 0.3<span class="elsevierStyleHsp" style=""></span>μL of vehicle over 5 minutes (speed: 0.06<span class="elsevierStyleHsp" style=""></span>μL/min). Rats were able to move freely during this procedure. Rats were left to rest for 5 minutes after microinjection to prevent the vehicle from returning by capillarity. The rats were then evaluated with a series of behavioural tests.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Locomotor activity test</span><p id="par0055" class="elsevierStylePara elsevierViewall">Each rat was placed for 5 minutes inside an acrylic cage (44<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>33<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>20<span class="elsevierStyleHsp" style=""></span>cm) whose base was divided into squares measuring 11<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>11<span class="elsevierStyleHsp" style=""></span>cm. We assessed the following: 1) number of squares crossed (the rat was considered to have crossed a square when at least three-fourths of its body passed from one square to another); 2) vertical time in seconds (total time spent in a rearing position), and 3) grooming time in seconds (total time spent grooming, including elliptical movements of both front legs over the nose, ears, body, and genital area following a cephalocaudal direction).<a class="elsevierStyleCrossRef" href="#bib0365"><span class="elsevierStyleSup">27</span></a></p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Forced swim test</span><p id="par0060" class="elsevierStylePara elsevierViewall">Each rat was placed for 5 minutes inside a glass tank (26<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>29<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>50<span class="elsevierStyleHsp" style=""></span>cm) filled with water at a temperature of 25<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1<span class="elsevierStyleHsp" style=""></span>°C (water level: 30<span class="elsevierStyleHsp" style=""></span>cm). This test evaluated the following variables: 1) latency to first episode of immobility, in seconds (time elapsed from the moment when the rat was placed inside the container to the first episode of immobility); 2) total immobility time (sum of all immobility episodes; rats were considered to be immobile when they made only the necessary movements to keep the head above water); 3) total lateral swimming time, in seconds (sum of all episodes of uncoordinated swimming on one side); and 4) total number of spins (total number of episodes of rats turning on their own axes while swimming).<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">2,28</span></a></p><p id="par0065" class="elsevierStylePara elsevierViewall">We recorded video footage of all sessions. Variables were quantified by 2 independent observers using software specifically designed for recording rat behaviour.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Rotarod test</span><p id="par0070" class="elsevierStylePara elsevierViewall">Rats completed 4 training sessions (one session daily) on an accelerating rotarod (speed 4 to 20<span class="elsevierStyleHsp" style=""></span>rpm; LE 8300, LSI Letica, Panlab Scientific Instruments; Barcelona, Spain); each session lasted 5 minutes. Stereotactic surgery was performed after training was complete. Four days later, rats were placed on an accelerating rotarod (speed 4 to 20<span class="elsevierStyleHsp" style=""></span>rpm), completing 5 sessions with 3-minute resting periods between sessions. We evaluated latency to fall, that is, the time it took for the rat to fall from the rod. This variable is used to identify any alterations in motor coordination and balance.<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">29</span></a></p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Verification of the site of cannula implantation and microinjection</span><p id="par0075" class="elsevierStylePara elsevierViewall">After the completion of behavioural tests, vaginal smears were obtained and animals euthanised with pentobarbital overdose (PISA-Agropecuaria; Guadalajara, Mexico). The cannula was used to mark the injection site with Evans blue (Sigma–Aldrich Co.; St. Louis, MO, USA). Rats’ brains were perfusion fixed, extracted, and sliced. The site of cannula implantation was checked with a light microscope; Paxinos and Watson's<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">1</span></a> rat brain atlas was used for reference. The statistical analysis included only data from those rats in which cannulas were found to have been implanted correctly in the hippocampal CA1 region.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Statistical analysis</span><p id="par0080" class="elsevierStylePara elsevierViewall">Data were analysed using 2-way ANOVA for independent samples; factors were surgical condition (intact or subjected to stereotactic surgery) and phase of oestrus cycle (pro-oestrus/oestrus and metoestrus/dioestrus). Given <span class="elsevierStyleItalic">P</span>-values ≤.05, we applied the post hoc Student–Newman–Keuls test. Results were expressed as means<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD.</p></span></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Results</span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Phase of the oestrus cycle</span><p id="par0085" class="elsevierStylePara elsevierViewall">According to the analysis of vaginal smears, 7 rats were in the pro-oestrus/oestrus phase and 7 in the metoestrus/dioestrus phase in each of the experimental groups.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Site of cannula implantation</span><p id="par0090" class="elsevierStylePara elsevierViewall">Of all rats included in the study, 2 were excluded from statistical analysis (one rat in the pro-oestrus/oestrus phase in experiment 1 and another one in the metoestrus/dioestrus phase in experiment 2), due to the presence of oedema in the area surrounding the implantation site and extending from the dorsal hippocampus to the cerebral cortex. In the remaining rats, the histological study confirmed correct cannula implantation into the dorsal hippocampus (CA1) between coordinates AP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−3.3 and AP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−4.6<span class="elsevierStyleHsp" style=""></span>mm from bregma (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Open-field test</span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Crossed squares</span><p id="par0095" class="elsevierStylePara elsevierViewall">No significant difference in the number of crossed squares was observed between the intact and surgery groups (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.38; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.25) (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>a). We did, however, find statistically significant differences between rats in the pro-oestrus/oestrus and in the metoestrus/dioestrus phases (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6.58; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.02). According to the post hoc test, rats in the metoestrus/dioestrus phase crossed a higher number of squares than those in the pro-oestrus/oestrus phase (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>b). Factor interaction revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.42; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.25) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 33.28<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.19; sham-operated rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 33.34<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.07; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 43.71<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.23; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 37.14<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.62).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Grooming</span><p id="par0100" class="elsevierStylePara elsevierViewall">No significant differences in grooming time were observed between intact and sham-operated rats (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleInf">23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.63; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.43; intact: 40.06<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.47<span class="elsevierStyleHsp" style=""></span>s vs surgery: 41.51<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.23<span class="elsevierStyleHsp" style=""></span>s) or related to phase of the oestrus cycle (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.89; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.10; pro-oestrus/oestrus: 39.23<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.37<span class="elsevierStyleHsp" style=""></span>s vs metoestrus/dioestrus: 42.34<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.24<span class="elsevierStyleHsp" style=""></span>s). Likewise, interaction between factors revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.42; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.25) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 37.17<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.09<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in pro-oestrus/oestrus phase [n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 41.29<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.35<span class="elsevierStyleHsp" style=""></span>s; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 42.94<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.51<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 42.74<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.06<span class="elsevierStyleHsp" style=""></span>s).</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Vertical behaviour</span><p id="par0105" class="elsevierStylePara elsevierViewall">No significant differences in vertical time were observed between intact and sham-operated rats (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.43; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.24; intact: 65.66<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.79<span class="elsevierStyleHsp" style=""></span>s vs surgery: 68.47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.49<span class="elsevierStyleHsp" style=""></span>s) or in terms of phase of the oestrus cycle (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.18; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.15; pro-oestrus/oestrus: 65.33<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.07<span class="elsevierStyleHsp" style=""></span>s vs metoestrus/dioestrus: 68.79<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.14<span class="elsevierStyleHsp" style=""></span>s). Factor interaction revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.14; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.70) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 63.47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.03<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 67.17<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.83<span class="elsevierStyleHsp" style=""></span>s; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 67.84<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.79<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 69.75<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.43<span class="elsevierStyleHsp" style=""></span>s).</p></span></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0160">Forced swim test</span><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0165">Lateral swimming time and number of spins</span><p id="par0110" class="elsevierStylePara elsevierViewall">All animals, whether intact or sham-operated, showed a normal swimming pattern in the forced swim test; none displayed lateral swimming or spinning behaviour.</p></span><span id="sec0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0170">Latency to first immobility episode</span><p id="par0115" class="elsevierStylePara elsevierViewall">We observed no significant differences in latency to the first episode of immobility between intact and sham-operated rats (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.04; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.83; intact: 26.84<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.25<span class="elsevierStyleHsp" style=""></span>s vs surgery: 27.53<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.42<span class="elsevierStyleHsp" style=""></span>s) or in terms of phase of the oestrus cycle (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.07; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.16; pro-oestrus/oestrus: 29.54<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.84<span class="elsevierStyleHsp" style=""></span>s vs metoestrus/dioestrus: 24.84<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.52<span class="elsevierStyleHsp" style=""></span>s). Factor interaction revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.39; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.53) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 30.22<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.68<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 28.86<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.73<span class="elsevierStyleHsp" style=""></span>s; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 23.47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.32<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 26.21<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.96<span class="elsevierStyleHsp" style=""></span>s).</p></span><span id="sec0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0175">Total immobility time</span><p id="par0120" class="elsevierStylePara elsevierViewall">No significant difference in total immobility time was observed between the intact and sham-operated groups (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>21.06; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.62) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>a). However, there were statistically significant differences between rats in the pro-oestrus/oestrus phase and the metoestrus/dioestrus phase (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>90.95; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.001). According to the post hoc test, rats in the pro-oestrus/oestrus phase were immobile for less time than those in the metoestrus/dioestrus phase (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>b). Nevertheless, factor interaction revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>77.21; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.35) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 44.00<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>6.61<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 42.38<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>7.75<span class="elsevierStyleHsp" style=""></span>s; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 74.91<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>9.07<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 80.07<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10.68<span class="elsevierStyleHsp" style=""></span>s).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span></span><span id="sec0120" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0180">Rotarod test</span><span id="sec0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0185">Latency to fall</span><p id="par0125" class="elsevierStylePara elsevierViewall">We observed no significant difference in latency to fall between the intact and sham-operated groups (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.03; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.85; intact: 151.47<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>5.36<span class="elsevierStyleHsp" style=""></span>s vs surgery: 149.92<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>6.64<span class="elsevierStyleHsp" style=""></span>s) or in terms of the phase of the oestrus cycle (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3.40; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.07; pro-oestrus/oestrus: 142.10<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2.94<span class="elsevierStyleHsp" style=""></span>s vs metoestrus/dioestrus: 158.29<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>7.11<span class="elsevierStyleHsp" style=""></span>s). Factor interaction revealed no significant differences (<span class="elsevierStyleItalic">F</span><span class="elsevierStyleInf">[1, 23]</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.14; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>.70) (intact rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 142.32<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3.78<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in pro-oestrus/oestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 143.10<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>4.96<span class="elsevierStyleHsp" style=""></span>s; intact rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7]: 160.62<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>9.08<span class="elsevierStyleHsp" style=""></span>s; sham-operated rats in metoestrus/dioestrus phase [<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6]: 155.29<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>11.61<span class="elsevierStyleHsp" style=""></span>s).</p></span></span></span><span id="sec0130" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0190">Discussion</span><p id="par0130" class="elsevierStylePara elsevierViewall">In our study, stereotactic surgery for cannula implantation plus vehicle microinjection into the hippocampal CA1 region had no negative impact on activity and motor coordination. All Wistar rats displayed the behavioural patterns typical of their oestrus cycle phase regardless of whether they had undergone stereotactic surgery.</p><p id="par0135" class="elsevierStylePara elsevierViewall">The locomotor activity test is frequently used to quantify variables of displacement, exploration, and emotional status under experimental circumstances.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,31</span></a> In our study, the locomotor activity test was used to confirm that the experimental manipulation (stereotactic surgery for cannula implantation through the motor cortex plus vehicle microinjection into the dorsal hippocampus) caused no motor hyper- or hypoactivity (larger or smaller numbers of crossed squares), changes in exploration behaviour (vertical time), or changes in motivation (grooming time). Our results support the hypothesis that surgical manipulation and microinjection do not cause neurological damage. In line with this idea, neurotoxic lesions to the dorsal hippocampus have been reported to cause motor hyperactivity.<a class="elsevierStyleCrossRefs" href="#bib0285"><span class="elsevierStyleSup">11,18</span></a> Similarly, large quantities of cassava or cycad seeds have been observed to cause neurological alterations in humans.<a class="elsevierStyleCrossRefs" href="#bib0255"><span class="elsevierStyleSup">5,20,21,32</span></a> Our findings suggest that stereotactic surgery, cannula implantation, and microinjection in rats do not cause brain damage with potential to impair locomotor activity. Changes in motor activity were found to be associated with the phase of the oestrus cycle, but not with surgical manipulation. Rats in the metoestrus/dioestrus phase crossed a higher number of squares than rats in the pro-oestrus/oestrus phase. This increase in motor activity may be associated with higher levels of anxiety during the metoestrus/dioestrus phase, which is characterised by low concentrations of ovarian hormones.<a class="elsevierStyleCrossRefs" href="#bib0355"><span class="elsevierStyleSup">25,33</span></a></p><p id="par0140" class="elsevierStylePara elsevierViewall">Grooming is regarded as a marker of emotional and motivational status in rats. Grooming time increases in rats experiencing mild stress<a class="elsevierStyleCrossRefs" href="#bib0400"><span class="elsevierStyleSup">34,35</span></a> and decreases under severe stress<a class="elsevierStyleCrossRefs" href="#bib0410"><span class="elsevierStyleSup">36,37</span></a> compared to intact rats. Our study found no significant differences in grooming time between intact and sham-operated rats, which suggests that stereotactic surgery and cannula implantation into the dorsal hippocampus have no impact on emotionality and motivation in rats. Likewise, our study revealed no association between vertical time and surgery or the phase of the oestrus cycle. Vertical behaviour is considered to be an indicator of exploration,<a class="elsevierStyleCrossRefs" href="#bib0420"><span class="elsevierStyleSup">38,39</span></a> which requires a high level of motor coordination. Vertical behaviour increases in rats with neuronal damage to the dorsal hippocampus, which is probably associated with hyperactivity and poor motor coordination.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">18</span></a> Rats that underwent surgery displayed no behavioural changes, suggesting that the surgical procedures described in this study cause no brain damage.</p><p id="par0145" class="elsevierStylePara elsevierViewall">Rats with vestibular lesions<a class="elsevierStyleCrossRef" href="#bib0430"><span class="elsevierStyleSup">40</span></a> or neurological impairment associated with the consumption of foods containing neurotoxic compounds<a class="elsevierStyleCrossRefs" href="#bib0320"><span class="elsevierStyleSup">18,19</span></a> display lateral swimming and spinning behaviour due to poor motor coordination. In our study, however, none of the rats (whether intact or sham-operated) displayed an abnormal swimming pattern, which rules out the possibility of surgery-related neurological damage. Latency to first immobility period and total immobility time in the forced swim test were similar in both groups (intact and sham-operated). Differences in total immobility time were linked only to the phase of the oestrus cycle. Rats in the metoestrus/dioestrus phase were immobile for a longer total time than rats in the pro-oestrus/oestrus phase. Our findings are consistent with results reported in the literature: rats in the metoestrus/dioestrus phase are more vulnerable to stress and are immobile for a longer time during the forced swim test, whereas rats in the pro-oestrus/oestrus phase, with high concentrations of ovarian hormones, are immobile for a shorter time, as occurs after administration of such hormones as progesterone and allopregnanolone.<a class="elsevierStyleCrossRefs" href="#bib0435"><span class="elsevierStyleSup">41,42</span></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">The rotarod test assesses motor coordination and balance.<a class="elsevierStyleCrossRef" href="#bib0445"><span class="elsevierStyleSup">43</span></a> Intact (healthy) animals will be able to remain on the rotating rod for longer periods due to preserved limb coordination and balance.<a class="elsevierStyleCrossRef" href="#bib0450"><span class="elsevierStyleSup">44</span></a> In contrast, animals with neurological alterations or receiving neurotoxic compounds or sedatives usually display shorter latencies to fall.<a class="elsevierStyleCrossRefs" href="#bib0455"><span class="elsevierStyleSup">45,46</span></a> In our study, rats that underwent stereotactic surgery for cannula implantation into the dorsal hippocampus displayed no significant difference in latency to fall compared to intact rats. Likewise, no differences were found between rats in the pro-oestrus/oestrus phase and those in the metoestrus/dioestrus phase. This suggests that experimental manipulations caused no neurological alterations potentially affecting motor coordination and activity.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Our results show that stereotactic surgery and cannula implantation into the dorsal hippocampus cause no alterations in locomotor activity and coordination in rats, ruling out the possibility that this type of manipulation may cause neurological impairment interfering with the interpretation of results from experimental studies.</p></span><span id="sec0135" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0195">Funding</span><p id="par0160" class="elsevierStylePara elsevierViewall">This study was funded by grants I010/458/2013, C-703/2013 and I010/152/2014, C-133/2014.</p></span><span id="sec0140" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0200">Conflicts of interest</span><p id="par0165" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres937609" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec911448" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres937610" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec911449" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Methods" "secciones" => array:10 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Subjects" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Vaginal smears" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Experimental groups" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Stereotactic surgery" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Microinjection" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Locomotor activity test" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Forced swim test" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Rotarod test" ] 8 => array:2 [ "identificador" => "sec0055" "titulo" => "Verification of the site of cannula implantation and microinjection" ] 9 => array:2 [ "identificador" => "sec0060" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0065" "titulo" => "Results" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0070" "titulo" => "Phase of the oestrus cycle" ] 1 => array:2 [ "identificador" => "sec0075" "titulo" => "Site of cannula implantation" ] 2 => array:3 [ "identificador" => "sec0080" "titulo" => "Open-field test" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0085" "titulo" => "Crossed squares" ] 1 => array:2 [ "identificador" => "sec0090" "titulo" => "Grooming" ] 2 => array:2 [ "identificador" => "sec0095" "titulo" => "Vertical behaviour" ] ] ] 3 => array:3 [ "identificador" => "sec0100" "titulo" => "Forced swim test" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0105" "titulo" => "Lateral swimming time and number of spins" ] 1 => array:2 [ "identificador" => "sec0110" "titulo" => "Latency to first immobility episode" ] 2 => array:2 [ "identificador" => "sec0115" "titulo" => "Total immobility time" ] ] ] 4 => array:3 [ "identificador" => "sec0120" "titulo" => "Rotarod test" "secciones" => array:1 [ 0 => array:2 [ "identificador" => "sec0125" "titulo" => "Latency to fall" ] ] ] ] ] 7 => array:2 [ "identificador" => "sec0130" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0135" "titulo" => "Funding" ] 9 => array:2 [ "identificador" => "sec0140" "titulo" => "Conflicts of interest" ] 10 => array:2 [ "identificador" => "xack316724" "titulo" => "Acknowledgements" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-02-07" "fechaAceptado" => "2016-03-08" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec911448" "palabras" => array:6 [ 0 => "Stereotactic surgery" 1 => "Cannula placement" 2 => "Hippocampus" 3 => "Motor coordination" 4 => "Locomotor activity" 5 => "Microinjection" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec911449" "palabras" => array:6 [ 0 => "Cirugía estereotáxica" 1 => "Implante de cánula" 2 => "Hipocampo" 3 => "Coordinación motriz" 4 => "Actividad locomotora" 5 => "Microinyección" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Stereotactic surgery is used to place electrodes or cannulas in the brain in order to study the function of several brain structures in preclinical research. The hippocampus has been extensively studied with this methodology due to its involvement in a wide range of neurological, cognitive, emotional, and affective disorders. However, the effects of stereotactic surgery on coordination and motor activity should be evaluated in order to determine whether this surgical procedure causes any neurological alterations that may bias the results of studies incorporating this technique.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">We evaluated the effects of stereotactic surgery and implantation of a cannula into the hippocampus of female Wistar rats on the motor activity, forced swim, and rotarod tests. The stage of the oestrous cycle was included in the statistical analysis.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Stereotactic surgery had no impact on any of the motor activity variables assessed in the open field (squares crossed, time spent in grooming, and rearing), forced swim (turning behaviour, lateral swimming, latency to first immobility, and time spent immobile), and rotarod (latency to fall) tests, compared with intact rats. Regardless of surgical manipulation, rats in the metestrus and diestrus stages crossed a greater number of squares and displayed longer immobility times than those in the proestrus and estrus stages.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusion</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Stereotactic surgery for cannula placement in the dorsal hippocampus does not affect coordination and motor activity in rats. We can therefore conclude that this procedure has no neurological complications that may interfere in the interpretation of results of studies applying this technique.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">La cirugía estereotáxica permite el implante de electrodos o cánulas para estudiar el funcionamiento de diversas estructuras cerebrales a nivel preclínico. El hipocampo ha sido ampliamente estudiado con esta metodología, debido a su participación en desórdenes neurológicos, cognitivos, emocionales y afectivos. Sin embargo, el efecto <span class="elsevierStyleItalic">per se</span> de esta metodología sobre la coordinación y la actividad motora, para identificar o descartar alteraciones neurológicas que pudieran influir en los resultados de protocolos que la utilizan, requiere ser explorado.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Se evaluó el efecto de la cirugía estereotáxica y el implante de cánula en el hipocampo de ratas hembra Wistar en las pruebas de actividad locomotora, nado y Rota-rod. El análisis estadístico consideró la fase del ciclo estral de las ratas.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Ninguna de las variables evaluadas en las pruebas de actividad locomotora (cuadros cruzados, tiempo de acicalamiento y conducta vertical), nado (giros, nado lateral, latencia a la primera inmovilidad y tiempo de inmovilidad) o Rota-rod (latencia a la caída), fueron modificadas por la manipulación quirúrgica, en relación con ratas intactas. Independientemente de la manipulación quirúrgica, las ratas en metaestro-diestro cruzaron más cuadros y tuvieron mayor tiempo de inmovilidad, que las ratas en proestro-estro.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusión</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">La cirugía estereotáxica y el implante de cánula en el hipocampo dorsal carecen de efectos sobre la coordinación y la actividad locomotora de la rata, por lo que se descarta algún daño neurológico que pudiera interferir en la interpretación de resultados en protocolos que incluyen esta manipulación experimental.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Hernández-López F, Rodríguez-Landa JF, Puga-Olguín A, Germán-Ponciano LJ, Rivadeneyra-Domínguez E, Bernal-Morales B. Análisis de la actividad y coordinación motora en ratas con cirugía estereotáxica e implante de cánula en el hipocampo dorsal. Neurología. 2017;32:579–586.</p>" ] ] "multimedia" => array:3 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1925 "Ancho" => 1719 "Tamanyo" => 231979 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">(a) Image of the rat brain showing the site of cannula implantation at the anteroposterior level (dashed line) and a coronal section of the brain showing the site of cannula injection (white arrow). (b) Diagram of brain coronal sections, displaying the site of cannula implantation into hippocampal CA1 (black circles). Based on Paxinos and Watson's rat brain atlas (1998 edition).</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2102 "Ancho" => 1295 "Tamanyo" => 79117 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Number of crossed squares in the locomotor activity test. (a) Surgery caused no significant changes in the number of crossed squares compared to intact rats. (b) Rats in the metoestrus/dioestrus (M/D) phase crossed a significantly higher number of squares than rats in the pro-oestrus/oestrus phase (P/O).</p> <p id="spar0055" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">*</span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs P/O.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2112 "Ancho" => 1277 "Tamanyo" => 73000 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Total immobility time in the forced swim test. (a) Surgery caused no significant changes in this variable compared to intact rats. (b) Rats in the metoestrus/dioestrus (M/D) phase remained immobile for a longer time than rats in the pro-oestrus/oestrus phase (P/O).</p> <p id="spar0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">*</span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs P/O.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:46 [ 0 => array:3 [ "identificador" => "bib0235" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The rat brain in stereotaxic coordinates" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Paxinos" 1 => "C. Watson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1998" "editorial" => "Academic Press" "editorialLocalizacion" => "San Diego" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0240" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alteraciones motoras inducidas por la microinyección intrahipocampal de metilazoximetanol en ratas macho forzadas a nadar" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Saavedra" 1 => "E. Rivadeneyra-Domínguez" 2 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Arch Neurocien (Méx)" "fecha" => "2011" "volumen" => "16" "paginaInicial" => "186" "paginaFinal" => "192" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0245" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Behavioral, morphologic and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M.A. Furtado" 1 => "G.K. Braga" 2 => "J.A. Oliveira" 3 => "F. del Vecchio" 4 => "N. Garcia-Cairasco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Epilepsia" "fecha" => "2002" "volumen" => "43" "paginaInicial" => "37" "paginaFinal" => "39" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12190978" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673613622308" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0250" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Bragin" 1 => "A. Azizyan" 2 => "J. Almajano" 3 => "C.L. Wilson" 4 => "J. Engel Jr." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1528-1167.2005.00268.x" "Revista" => array:7 [ "tituloSerie" => "Epilepsia" "fecha" => "2005" "volumen" => "46" "paginaInicial" => "1592" "paginaFinal" => "1598" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16190929" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1470204514700671" "estado" => "S300" "issn" => "14702045" ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0255" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cycads, their association with certain neurodegenerative diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nrl.2013.03.005" "Revista" => array:6 [ "tituloSerie" => "Neurología" "fecha" => "2014" "volumen" => "29" "paginaInicial" => "517" "paginaFinal" => "522" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23725821" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0260" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of the dorsal and ventral hippocampus in fear and memory of a shock-probe experience" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. McEown" 1 => "D. Treit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.brainres.2008.11.041" "Revista" => array:6 [ "tituloSerie" => "Brain Res" "fecha" => "2009" "volumen" => "1251" "paginaInicial" => "185" "paginaFinal" => "194" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19061870" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0265" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inactivation of the dorsal or ventral hippocampus with muscimol differentially affects fear and memory" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. McEown" 1 => "D. Treit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.brainres.2010.07.030" "Revista" => array:6 [ "tituloSerie" => "Brain Res" "fecha" => "2010" "volumen" => "1353" "paginaInicial" => "145" "paginaFinal" => "151" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20647005" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0270" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "α2 GABA<span class="elsevierStyleInf">A</span> receptor sub-units in the ventral hippocampus and α5 GABA<span class="elsevierStyleInf">A</span> receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. McEown" 1 => "D. Treit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroscience.2013.08.012" "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "2013" "volumen" => "252" "paginaInicial" => "169" "paginaFinal" => "177" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23962649" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0275" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of hippocampus in anxiety: intracerebral infusion studies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E. Engin" 1 => "D. Treit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/FBP.0b013e3282de7929" "Revista" => array:6 [ "tituloSerie" => "Behav Pharmacol" "fecha" => "2007" "volumen" => "18" "paginaInicial" => "365" "paginaFinal" => "374" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17762507" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0280" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.D. Luo" 1 => "S.C. An" 2 => "X. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.brainresbull.2008.05.010" "Revista" => array:7 [ "tituloSerie" => "Brain Res Bull" "fecha" => "2008" "volumen" => "77" "paginaInicial" => "8" "paginaFinal" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18579108" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673608616979" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0285" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.A. Frye" 1 => "A.A. Walf" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/hbeh.2002.1763" "Revista" => array:7 [ "tituloSerie" => "Horm Behav" "fecha" => "2002" "volumen" => "41" "paginaInicial" => "306" "paginaFinal" => "315" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11971664" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673614610539" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0290" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Antidepressant effect and changes of GABA<span class="elsevierStyleInf">A</span> receptor γ2 subunit <span class="elsevierStyleItalic">m</span>RNA after hippocampal administration of allopregnanolone in rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.S. Nin" 1 => "F.B. Salles" 2 => "L.A. Azeredo" 3 => "A.P.G. Frazon" 4 => "R. Gomez" 5 => "H.M.T. Barros" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/0269881107081525" "Revista" => array:6 [ "tituloSerie" => "J Psychopharmacol" "fecha" => "2008" "volumen" => "22" "paginaInicial" => "477" "paginaFinal" => "485" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18308780" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0295" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABA<span class="elsevierStyleInf">A</span> receptor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.F. Rodríguez-Landa" 1 => "C.M. Contreras" 2 => "R.I. García-Ríos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/FBP.0b013e328331b9f2" "Revista" => array:6 [ "tituloSerie" => "Behav Pharmacol" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "614" "paginaFinal" => "622" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19752723" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0300" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuroprotective effects of diazepam, carbamazepine, phenytoin and ketamine after pilocarpine-induced status epilepticus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.O.S. Cunha" 1 => "M.R. Mortari" 2 => "J.L. Liberato" 3 => "W.F. dos Santos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1742-7843.2009.00403.x" "Revista" => array:6 [ "tituloSerie" => "Basic Clin Pharmacol Toxicol" "fecha" => "2009" "volumen" => "104" "paginaInicial" => "470" "paginaFinal" => "477" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19371260" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0305" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M.A. Furtado" 1 => "O.W. Castro" 2 => "F. del Vecchio" 3 => "J.A. de Oliveira" 4 => "N. Garcia-Cairasco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.yebeh.2010.11.024" "Revista" => array:6 [ "tituloSerie" => "Epilepsy Behav" "fecha" => "2011" "volumen" => "20" "paginaInicial" => "257" "paginaFinal" => "266" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21237720" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0310" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Memory disorders in rats after impairment of the dorsal hippocampal CA3 field with kainic acid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.Y. Gordon" 1 => "M.V. Kapralova" 2 => "O.V. Godukhin" 3 => "V.I. Arkhipov" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Bull Exp Biol Med" "fecha" => "2013" "volumen" => "155" "paginaInicial" => "805" "paginaFinal" => "809" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24288771" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1470204513700081" "estado" => "S300" "issn" => "14702045" ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0315" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Blockade of the dorsal hippocampal dopamine D1 receptors inhibits the scopolamine-induced state-dependent learning in rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Piri" 1 => "M. Rostampour" 2 => "M. Nasehi" 3 => "M.R. Zarrindast" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroscience.2013.08.003" "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "2013" "volumen" => "252" "paginaInicial" => "460" "paginaFinal" => "467" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23933216" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0320" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "[in press]" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Aleraciones motoras inducidas por la microinyección de linamarina en el hipocampo dorsal de la rata Wistar" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nrl.2014.10.018" "Revista" => array:2 [ "tituloSerie" => "Neurología" "fecha" => "2014" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0325" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurotoxic effect of linamarin in rats associated with cassava (<span class="elsevierStyleItalic">Manihot esculenta</span> Crantz) consumption" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "A. Vázquez-Luna" 2 => "J.F. Rodríguez-Landa" 3 => "R. Díaz- Sobac" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.fct.2013.06.004" "Revista" => array:6 [ "tituloSerie" => "Food Chem Toxicol" "fecha" => "2013" "volumen" => "59" "paginaInicial" => "230" "paginaFinal" => "235" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23778051" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0330" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Etiology of Konzo, epidemic spastic paraparesis associated with cyanigenic glycosides in cassava: role of thiamine deficiency" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Adamolekun" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jns.2010.06.016" "Revista" => array:6 [ "tituloSerie" => "J Neurol Sci" "fecha" => "2010" "volumen" => "296" "paginaInicial" => "30" "paginaFinal" => "33" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20619859" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0335" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurological disorders associated with cassava diet: a review of putative etiological mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Adamolekum" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11011-011-9237-y" "Revista" => array:6 [ "tituloSerie" => "Metab Brain Dis" "fecha" => "2011" "volumen" => "26" "paginaInicial" => "79" "paginaFinal" => "85" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21327546" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0340" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guide for the care and use of laboratory animals: a report of the Institute of Laboratory Animal Resource Committee on the care and use of laboratory animals. NIH Publication No. 85-23" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "National Research Council" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1996" "editorial" => "U.S. Department of Health and Human Services" "editorialLocalizacion" => "Washington, DC" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0345" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Norma Oficial Mexicana NOM-062-ZOO-1999" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1999" "editorial" => "Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación" "editorialLocalizacion" => "México, DF" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0350" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estrous cycle influences on sexual diergism of HPA axis responses to cholinergic stimulation in rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.E. Rhodes" 1 => "M.E. Balestreire" 2 => "R.K. Czambel" 3 => "R.T. Rubin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Brain Res Bull" "fecha" => "2002" "volumen" => "59" "paginaInicial" => "217" "paginaFinal" => "225" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12431752" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0355" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The actions of diazepam and serotonergic anxiolytics vary according to the gender and the estrous cycle phase" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Fernández-Guasti" 1 => "O. Picazo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Pharmacol Biochem Behav" "fecha" => "1990" "volumen" => "37" "paginaInicial" => "77" "paginaFinal" => "81" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1979876" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0360" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The laboratory rat" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.E. Sharp" 1 => "M.C. La Regina" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2000" "editorial" => "CRC Press" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0365" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Grooming analysis algorithm for neurobehavioural stress research" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.V. Kalueff" 1 => "P. Touhimaa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Brain Res Prot" "fecha" => "2004" "volumen" => "13" "paginaInicial" => "151" "paginaFinal" => "158" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0370" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "El tratamiento con progesterona previene las alteraciones motoras inducidas por la intoxicación con semillas de cícada (<span class="elsevierStyleItalic">Dioon spinulosum</span>) en la rata macho" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "M. Saavedra" 2 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Toxicol" "fecha" => "2009" "volumen" => "26" "paginaInicial" => "36" "paginaFinal" => "40" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0375" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anxiolytic-like actions of fatty acids identified in human amniotic fluid" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.I. García-Ríos" 1 => "J.F. Rodríguez-Landa" 2 => "C.M. Contreras" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2013/823289" "Revista" => array:4 [ "tituloSerie" => "Scientific World J" "fecha" => "2013" "volumen" => "2013" "paginaInicial" => "823289" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0380" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Open-field behavior of house mice selectively bred for high voluntary wheel-running" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.M. Bronikowski" 1 => "P.A. Carter" 2 => "J.G. Swallow" 3 => "I.A. Girard" 4 => "J.S. Rhodes" 5 => "T. Garland" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Behav Genet" "fecha" => "2001" "volumen" => "31" "paginaInicial" => "309" "paginaFinal" => "316" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11699603" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0385" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of chloroquine on the open field locomotion in adult Wistar rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.O. Adjene" 1 => "E.B. Ezenwanne" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Afr Scientist" "fecha" => "2008" "volumen" => "9" "paginaInicial" => "25" "paginaFinal" => "30" "itemHostRev" => array:3 [ "pii" => "S1473309915000067" "estado" => "S300" "issn" => "14733099" ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0390" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "¿Neuropatía atáxica tropical y konzo asociado al consumo excesivo de yuca?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "J.F. Rodríguez-Landa" 2 => "D.R. Salas-Montero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Arch Neurocien (Mex)" "fecha" => "2012" "volumen" => "17" "paginaInicial" => "35" "paginaFinal" => "42" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0395" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Montanoa frutescens and <span class="elsevierStyleItalic">Montanoa grandiflora</span> extracts reduce anxiety-like behavior during the metestrus-diestrus phase of the ovarian cycle in Wistar rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J.F. Rodríguez-Landa" 1 => "J. Vicente-Serna" 2 => "L.A. Rodríguez-Blanco" 3 => "M.J. Rovirosa-Hernández" 4 => "F. García-Orduña" 5 => "M. Carro-Juárez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2014/938060" "Revista" => array:5 [ "tituloSerie" => "Biomed Res Int" "fecha" => "2014" "volumen" => "2014" "paginaInicial" => "938060" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24800255" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0400" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of prenatal alprazolam exposure on anxiety patterns in rat offspring" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.K. Jaiswal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Indian J Exp Biol" "fecha" => "2002" "volumen" => "40" "paginaInicial" => "35" "paginaFinal" => "39" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12561965" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0168827814005261" "estado" => "S300" "issn" => "01688278" ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0405" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Grooming and yawning trace adjustment to unfamiliar environments in laboratory Sprague–Dawley rats (<span class="elsevierStyleItalic">Rattus norvergicus</span>)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Moyaho" 1 => "J. Valencia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Comp Psychol" "fecha" => "2002" "volumen" => "116" "paginaInicial" => "263" "paginaFinal" => "269" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12234076" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0410" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inescapable footshocks induce progressive and long-lasting behavioural changes in male rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.H. Van Dijken" 1 => "J.A.M. van der Heyden" 2 => "J. Mos" 3 => "F.J.H. Tilders" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Physiol Behav" "fecha" => "1992" "volumen" => "51" "paginaInicial" => "787" "paginaFinal" => "794" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1594677" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0415" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sex and repeated restraint stress interact to affect cat odor-induced defensive behavior in adult rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T.S. Perrot-Sinal" 1 => "A. Gregus" 2 => "D. Boudreau" 3 => "L.E. Kalynchuk" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.brainres.2004.08.056" "Revista" => array:6 [ "tituloSerie" => "Brain Res" "fecha" => "2004" "volumen" => "1027" "paginaInicial" => "161" "paginaFinal" => "172" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15494167" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0420" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Possible anxiolytic effect of two extracts of <span class="elsevierStyleItalic">Passiflora quadrangularis</span> L in experimental models" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P.C. De Castro" 1 => "A. Hoshino" 2 => "J.C. da Silva" 3 => "F.R. Mendes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ptr.2079" "Revista" => array:6 [ "tituloSerie" => "Phytother Res" "fecha" => "2007" "volumen" => "21" "paginaInicial" => "481" "paginaFinal" => "484" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17295387" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0425" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.F. Rodríguez-Landa" 1 => "J.D. Hernández-Figueroa" 2 => "B.C. Hernández-Calderón" 3 => "M. Saavedra" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Prog Neuropsychopharmacol Biol Psychiatr" "fecha" => "2009" "volumen" => "33" "paginaInicial" => "367" "paginaFinal" => "372" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0430" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inmunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Ritcher" 1 => "U. Ebert" 2 => "J.N. Nobrega" 3 => "J.J. Vallbacka" 4 => "M. Fedrowitz" 5 => "W. Loscher" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "1999" "volumen" => "89" "paginaInicial" => "461" "paginaFinal" => "471" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10077328" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0435" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Desipramine restricts estral cycle oscillations in swimming" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.M. Contreras" 1 => "L. Martínez-Mota" 2 => "M. Saavedra" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Prog Neuropsychopharmacol Biol Psychiatr" "fecha" => "1998" "volumen" => "22" "paginaInicial" => "1121" "paginaFinal" => "1128" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0440" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Timing of progesterone and allopregnanolone effects in a serial forced swim test" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C.M. Contreras" 1 => "J.F. Rodríguez-Landa" 2 => "B. Bernal-Morales" 3 => "A.G. Gutiérrez-García" 4 => "M. Saavedra" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Salud Mental" "fecha" => "2011" "volumen" => "34" "paginaInicial" => "309" "paginaFinal" => "314" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0445" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Terapia celular para el tratamiento del daño cerebral traumático: utilidad de diferentes escalas de valoración funcional" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Bonilla" 1 => "L. Otero" 2 => "C. Aguayo" 3 => "A. Rodríguez" 4 => "M. Zurita" 5 => "J. Vaquero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Trauma" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "234" "paginaFinal" => "242" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0450" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Motor coordination and balance in rodents" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.J. Carter" 1 => "J. Morton" 2 => "S.B. Dunnet" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/0471142301.ns0808s04" "Revista" => array:6 [ "tituloSerie" => "Curr Protoc Neurosci" "fecha" => "2001" "volumen" => "8" "paginaInicial" => "8" "paginaFinal" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18428549" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0455" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Measuring motor coordination in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.J. Deacon-Robert" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3791/2609" "Revista" => array:4 [ "tituloSerie" => "J Vis Exp" "fecha" => "2013" "volumen" => "75" "paginaInicial" => "e2609" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0460" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for Huntington disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y.K. Abada" 1 => "H.P. Nguyen" 2 => "R. Schreiber" 3 => "B. Ellenbroek" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0068584" "Revista" => array:5 [ "tituloSerie" => "PLOS ONE" "fecha" => "2013" "volumen" => "8" "paginaInicial" => "e68584" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23874679" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack316724" "titulo" => "Acknowledgements" "texto" => "<p id="par0170" class="elsevierStylePara elsevierViewall">We would like to thank the Mexican National Council of Science and Technology (<span class="elsevierStyleGrantSponsor" id="gs1">CONACyT</span>) for financial support for postgraduate research in neuroethology, granted to the first, third, and fourth authors (scholarships 272294, 297410, and 297560, respectively).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/21735808/0000003200000009/v1_201711100039/S2173580817301372/v1_201711100039/en/main.assets" "Apartado" => array:4 [ "identificador" => "9491" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735808/0000003200000009/v1_201711100039/S2173580817301372/v1_201711100039/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580817301372?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 8 | 3 | 11 |
2024 October | 29 | 3 | 32 |
2024 September | 42 | 9 | 51 |
2024 August | 46 | 4 | 50 |
2024 July | 55 | 6 | 61 |
2024 June | 66 | 10 | 76 |
2024 May | 75 | 1 | 76 |
2024 April | 93 | 11 | 104 |
2024 March | 64 | 12 | 76 |
2024 February | 87 | 16 | 103 |
2024 January | 97 | 10 | 107 |
2023 December | 99 | 11 | 110 |
2023 November | 93 | 12 | 105 |
2023 October | 100 | 13 | 113 |
2023 September | 50 | 3 | 53 |
2023 August | 56 | 8 | 64 |
2023 July | 72 | 5 | 77 |
2023 June | 69 | 11 | 80 |
2023 May | 137 | 12 | 149 |
2023 April | 61 | 6 | 67 |
2023 March | 98 | 7 | 105 |
2023 February | 89 | 12 | 101 |
2023 January | 80 | 11 | 91 |
2022 December | 45 | 7 | 52 |
2022 November | 64 | 14 | 78 |
2022 October | 64 | 17 | 81 |
2022 September | 55 | 11 | 66 |
2022 August | 67 | 17 | 84 |
2022 July | 45 | 8 | 53 |
2022 June | 35 | 17 | 52 |
2022 May | 53 | 12 | 65 |
2022 April | 61 | 12 | 73 |
2022 March | 57 | 7 | 64 |
2022 February | 66 | 7 | 73 |
2022 January | 118 | 13 | 131 |
2021 December | 62 | 14 | 76 |
2021 November | 66 | 14 | 80 |
2021 October | 57 | 15 | 72 |
2021 September | 58 | 9 | 67 |
2021 August | 55 | 4 | 59 |
2021 July | 48 | 9 | 57 |
2021 June | 43 | 10 | 53 |
2021 May | 76 | 6 | 82 |
2021 April | 97 | 10 | 107 |
2021 March | 39 | 6 | 45 |
2021 February | 30 | 6 | 36 |
2021 January | 44 | 13 | 57 |
2020 December | 47 | 9 | 56 |
2020 November | 51 | 7 | 58 |
2020 October | 33 | 3 | 36 |
2020 September | 40 | 11 | 51 |
2020 August | 47 | 11 | 58 |
2020 July | 35 | 10 | 45 |
2020 June | 43 | 12 | 55 |
2020 May | 51 | 15 | 66 |
2020 April | 46 | 3 | 49 |
2020 March | 45 | 7 | 52 |
2020 February | 39 | 8 | 47 |
2020 January | 58 | 5 | 63 |
2019 December | 62 | 12 | 74 |
2019 November | 40 | 7 | 47 |
2019 October | 40 | 8 | 48 |
2019 September | 44 | 14 | 58 |
2019 August | 36 | 3 | 39 |
2019 July | 52 | 11 | 63 |
2019 June | 55 | 23 | 78 |
2019 May | 93 | 31 | 124 |
2019 April | 83 | 8 | 91 |
2019 March | 27 | 18 | 45 |
2019 February | 32 | 5 | 37 |
2019 January | 30 | 4 | 34 |
2018 December | 16 | 4 | 20 |
2018 November | 26 | 3 | 29 |
2018 October | 51 | 5 | 56 |
2018 September | 62 | 6 | 68 |
2018 August | 48 | 7 | 55 |
2018 July | 29 | 3 | 32 |
2018 June | 33 | 6 | 39 |
2018 May | 39 | 14 | 53 |
2018 April | 32 | 10 | 42 |
2018 March | 22 | 5 | 27 |
2018 February | 33 | 4 | 37 |
2018 January | 33 | 0 | 33 |
2017 December | 24 | 2 | 26 |
2017 November | 21 | 5 | 26 |
2017 October | 0 | 1 | 1 |