was read the article
array:25 [ "pii" => "S2173580818300117" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2016.05.010" "estado" => "S300" "fechaPublicacion" => "2018-04-01" "aid" => "910" "copyright" => "Sociedad Española de Neurología" "copyrightAnyo" => "2016" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Neurologia. 2018;33:177-86" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1886 "formatos" => array:3 [ "EPUB" => 46 "HTML" => 1100 "PDF" => 740 ] ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0213485316300652" "issn" => "02134853" "doi" => "10.1016/j.nrl.2016.05.001" "estado" => "S300" "fechaPublicacion" => "2018-04-01" "aid" => "910" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Neurologia. 2018;33:177-86" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4895 "formatos" => array:3 [ "EPUB" => 74 "HTML" => 3344 "PDF" => 1477 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">REVISIÓN</span>" "titulo" => "Vitamina D y remielinización en la esclerosis múltiple" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "177" "paginaFinal" => "186" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Vitamin D and remyelination in multiple sclerosis" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "J. Matías-Guíu, C. Oreja-Guevara, J.A. Matias-Guiu, U. Gomez-Pinedo" "autores" => array:4 [ 0 => array:2 [ "nombre" => "J." "apellidos" => "Matías-Guíu" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Oreja-Guevara" ] 2 => array:2 [ "nombre" => "J.A." "apellidos" => "Matias-Guiu" ] 3 => array:2 [ "nombre" => "U." "apellidos" => "Gomez-Pinedo" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173580818300117" "doi" => "10.1016/j.nrleng.2016.05.010" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580818300117?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485316300652?idApp=UINPBA00004N" "url" => "/02134853/0000003300000003/v1_201803271020/S0213485316300652/v1_201803271020/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S2173580818300075" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2017.02.001" "estado" => "S300" "fechaPublicacion" => "2018-04-01" "aid" => "1049" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Neurologia. 2018;33:187-91" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1415 "formatos" => array:3 [ "EPUB" => 35 "HTML" => 1109 "PDF" => 271 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "187" "paginaFinal" => "191" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Enfermedad cerebral, conectividad, plasticidad y terapia cognitiva. Una visión neurológica del trastorno mental" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1212 "Ancho" => 1675 "Tamanyo" => 175509 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">The effects of cognitive stimulation on healthy and injured brains.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "G. Lubrini, A. Martín-Montes, O. Díez-Ascaso, E. Díez-Tejedor" "autores" => array:4 [ 0 => array:2 [ "nombre" => "G." "apellidos" => "Lubrini" ] 1 => array:2 [ "nombre" => "A." "apellidos" => "Martín-Montes" ] 2 => array:2 [ "nombre" => "O." "apellidos" => "Díez-Ascaso" ] 3 => array:2 [ "nombre" => "E." "apellidos" => "Díez-Tejedor" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485317301433" "doi" => "10.1016/j.nrl.2017.02.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485317301433?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580818300075?idApp=UINPBA00004N" "url" => "/21735808/0000003300000003/v1_201804060407/S2173580818300075/v1_201804060407/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S2173580817301475" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2015.03.021" "estado" => "S300" "fechaPublicacion" => "2018-04-01" "aid" => "736" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Neurologia. 2018;33:165-76" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1462 "formatos" => array:3 [ "EPUB" => 81 "HTML" => 937 "PDF" => 444 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Pharmacogenetics of adverse reactions to antiepileptic drugs" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "165" "paginaFinal" => "176" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Farmacogenética de reacciones adversas a fármacos antiepilépticos" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1844 "Ancho" => 2500 "Tamanyo" => 216812 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Participation of the ABCB1 and ABCC2 transporters at the blood-brain barrier (BBB) in the development of adverse reactions to antiepileptic drugs.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "I. Fricke-Galindo, H. Jung-Cook, A. LLerena, M. López-López" "autores" => array:4 [ 0 => array:2 [ "nombre" => "I." "apellidos" => "Fricke-Galindo" ] 1 => array:2 [ "nombre" => "H." "apellidos" => "Jung-Cook" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "LLerena" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "López-López" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485315000560" "doi" => "10.1016/j.nrl.2015.03.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485315000560?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580817301475?idApp=UINPBA00004N" "url" => "/21735808/0000003300000003/v1_201804060407/S2173580817301475/v1_201804060407/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Vitamin D and remyelination in multiple sclerosis" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "177" "paginaFinal" => "186" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "J. Matías-Guíu, C. Oreja-Guevara, J.A. Matias-Guiu, U. Gomez-Pinedo" "autores" => array:4 [ 0 => array:4 [ "nombre" => "J." "apellidos" => "Matías-Guíu" "email" => array:1 [ 0 => "matiasguiu@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Oreja-Guevara" ] 2 => array:2 [ "nombre" => "J.A." "apellidos" => "Matias-Guiu" ] 3 => array:2 [ "nombre" => "U." "apellidos" => "Gomez-Pinedo" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Servicio de Neurología, Hospital Clinico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, Spain" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Vitamina D y remielinización en la esclerosis múltiple" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Vitamin D (VD) is a group of hormones including vitamin D<span class="elsevierStyleInf">2</span>, or ergocalciferol, and vitamin D<span class="elsevierStyleInf">3</span>, or cholecalciferol. VD is acquired mainly from the diet and through exposure to sunlight. Several analytical epidemiological studies have suggested an association between VD deficiency and multiple sclerosis (MS).<a class="elsevierStyleCrossRefs" href="#bib0660"><span class="elsevierStyleSup">1–6</span></a> The biological basis of this association is unknown. Hypotheses include causal mechanisms, the interaction between genetic and environmental factors, or simply the combination of multiple environmental factors. Research on the topic has focused on the role of VD and its metabolites in experimental allergic encephalomyelitis (EAE) in in vitro and animal studies.<a class="elsevierStyleCrossRefs" href="#bib0690"><span class="elsevierStyleSup">7,8</span></a> Most researchers have analysed the association between VD and the risk of inflammation, while others have evaluated the role of VD in myelination and remyelination.<a class="elsevierStyleCrossRef" href="#bib0700"><span class="elsevierStyleSup">9</span></a> The present review addresses the latter topic.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Vitamin D deficiency</span><p id="par0010" class="elsevierStylePara elsevierViewall">VD levels are usually determined by measuring plasma 25-hydroxyvitamin D (25[OH]D) concentration, due to the long half-life of this metabolite (15-35 days). However, the suitability of using total 25(OH)D levels to determine VD sufficiency has been questioned in recent years: detractors propose determining levels of the active forms or the free fraction, given that protein-bound metabolites may be inactive and may therefore not constitute adequate markers.<a class="elsevierStyleCrossRef" href="#bib0705"><span class="elsevierStyleSup">10</span></a> Circulating VD may be either free or bound to albumin or to vitamin D-binding protein (DBP). The free fraction of VD constitutes a very small proportion of circulating metabolites (below 1%) and may have a different biological function from that of the protein-bound fraction.<a class="elsevierStyleCrossRefs" href="#bib0710"><span class="elsevierStyleSup">11,12</span></a> The concepts of VD sufficiency or deficiency are therefore difficult to define. Furthermore, the plasma concentration of circulating 25(OH)D varies depending on the patient's health status and certain genetic factors.<a class="elsevierStyleCrossRef" href="#bib0720"><span class="elsevierStyleSup">13</span></a> The issue is further complicated by the fact that the free fraction of circulating VD is usually calculated through mathematical estimation rather than by direct measurement<a class="elsevierStyleCrossRef" href="#bib0725"><span class="elsevierStyleSup">14</span></a>; these 2 methods deliver considerably different results. The terminology used in the literature is also potentially confusing. The term “bioavailable” 25(OH)D is used for circulating 25(OH)D which is not bound to DBP, that is the free and albumin-bound fractions; this represents approximately 10% of total circulating 25(OH)D; this should not be mistaken for free 25(OH)D. These methodological aspects make it difficult to determine the role of VD deficiency as a risk factor for MS in general, and even more difficult in individual patients.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Plasma transport of vitamin D and transformation into active metabolites</span><p id="par0015" class="elsevierStylePara elsevierViewall">As mentioned previously, VD is transported to cells and tissues via transport proteins (DBP and albumin). DBP is produced in the liver. In addition to transporting VD, this protein promotes the conversion of the prohormone 25(OH)D, an inactive circulating metabolite, into the active metabolite, 1,25-dihydroxyvitamin D (1,25[OH]<span class="elsevierStyleInf">2</span>D). This requires the action of 25-hydroxyvitamin D-1α-hydroxylase, also known as cytochrome p450 27B1 (CYP27B1) or simply 1-α-hydroxylase, which is encoded by the <span class="elsevierStyleItalic">CYP27B1</span> gene. This enzyme is expressed in renal tubule cells and other types of cells, such as immune and central nervous system (CNS) cells. It catalyses the conversion of 25(OH)D to 1,25(OH)<span class="elsevierStyleInf">2</span>D. This metabolite acts on the VD receptor (VDR), the nuclear receptor for 1,25(OH)<span class="elsevierStyleInf">2</span>D. As mentioned previously, 99% of circulating 25(OH)D is bound either to DBP or to albumin,<a class="elsevierStyleCrossRef" href="#bib0730"><span class="elsevierStyleSup">15</span></a> and only a small fraction is free.<a class="elsevierStyleCrossRef" href="#bib0735"><span class="elsevierStyleSup">16</span></a> 25(OH)D is a lipophilic molecule; therefore, it is capable of passively penetrating cell membranes. The idea that the free fraction is the active form, as occurs with other hormones, is debated for 2 main reasons. Firstly, serum concentrations of the free fraction of 1,25(OH)<span class="elsevierStyleInf">2</span>D are 10<span class="elsevierStyleSup">−13</span><span class="elsevierStyleHsp" style=""></span>M, nearly 1000 times lower than the concentration necessary for binding to VDR.<a class="elsevierStyleCrossRef" href="#bib0740"><span class="elsevierStyleSup">17</span></a> Secondly, megalin, also known as low-density lipoprotein-related protein 2 (LRP2), has been shown to play an important role in VD metabolism. This transmembrane protein acts as a multiligand receptor in various tissues and binds to DBP, creating a compound that is internalised by endocytosis into the proximal tubule cells, where 1-α-hydroxylase is expressed. Megalin acts as an endocytic receptor which binds to extracellular ligands and internalises them by endocytosis, leading to the activation of certain signalling pathways involving lipoproteins, hormones, drugs, and DBP itself, which are dependent on binding with adaptor proteins that recognise specific cytoplasmic domains of megalin. These pathways are involved in protein trafficking,<a class="elsevierStyleCrossRef" href="#bib0745"><span class="elsevierStyleSup">18</span></a> interaction with cytoskeletal or cytoplasmic proteins, and SHH signalling.<a class="elsevierStyleCrossRef" href="#bib0750"><span class="elsevierStyleSup">19</span></a> Megalin may be phosphorylated by GSK3, PKC, CK-II, or PKA for endosomal recycling.<a class="elsevierStyleCrossRef" href="#bib0755"><span class="elsevierStyleSup">20</span></a> As occurs with vitamin D-deficient mice, megalin-deficient mice develop the bone phenotype of rickets.<a class="elsevierStyleCrossRef" href="#bib0760"><span class="elsevierStyleSup">21</span></a> In addition to megalin, the proteins cubilin<a class="elsevierStyleCrossRef" href="#bib0765"><span class="elsevierStyleSup">22</span></a> and Dab2 adaptor protein<a class="elsevierStyleCrossRef" href="#bib0770"><span class="elsevierStyleSup">23</span></a> also bind to DBP. Megalin is expressed not only in the kidney but also in the nervous system and in such other tissues as the placenta, mammary glands, and parathyroid glands. It has therefore been suggested that VD binds to megalin in these tissues.</p><p id="par0020" class="elsevierStylePara elsevierViewall">In healthy brains, megalin is preferentially expressed in the ependymal cells lining the ventricular wall, capillaries, and choroid plexus,<a class="elsevierStyleCrossRef" href="#bib0775"><span class="elsevierStyleSup">24</span></a> but has also been observed in the central and peripheral nervous systems. Inactivation of the megalin gene results in developmental alterations of the forebrain, absence of the olfactory apparatus, and craniofacial malformations,<a class="elsevierStyleCrossRef" href="#bib0780"><span class="elsevierStyleSup">25</span></a> whereas a mutation in the gene results in abnormalities in the dorsal diencephalon, with hypertrophy of the choroid plexus of the third ventricle.<a class="elsevierStyleCrossRef" href="#bib0785"><span class="elsevierStyleSup">26</span></a> In the CNS, megalin is expressed in neurons and astrocytes.<a class="elsevierStyleCrossRef" href="#bib0790"><span class="elsevierStyleSup">27</span></a> Astrocytes need megalin to internalise albumin, which is in turn necessary for the synthesis of neurotrophic factors by nearby neurons.<a class="elsevierStyleCrossRef" href="#bib0795"><span class="elsevierStyleSup">28</span></a> Megalin has also been found in retinal ganglion cells, where it interacts with metallothionein-IIA, enabling the activation of various intracellular signalling pathways involved in neuroprotection.<a class="elsevierStyleCrossRef" href="#bib0800"><span class="elsevierStyleSup">29</span></a> Megalin has also been found in different neuronal populations of the cortex, hippocampus, striatum, thalamus, olfactory bulb, and cerebellum of healthy human, monkey, rat, and mouse brains. The protein is upregulated in damaged neurons in patients with Alzheimer disease.<a class="elsevierStyleCrossRef" href="#bib0805"><span class="elsevierStyleSup">30</span></a> In the brain, megalin is involved in the endocytosis and internalisation of apolipoprotein E and the amyloid precursor protein (APP).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Internalisation of vitamin D metabolites</span><p id="par0025" class="elsevierStylePara elsevierViewall">The internalisation of VD metabolites is mediated by the DBP-megalin complex in various tissues. If the VD–DBP complex is present in high concentrations, more VD metabolites will be available for megalin-mediated internalisation and, consequently, the free fraction available for passive diffusion will be smaller. DBP concentration influences the availability of the free fraction of VD; an increase in the levels of circulating VD may result in a decrease in the free fraction available. On the other hand, lower DBP concentrations may increase the concentration of free VD metabolites at the cell membrane, promoting passive diffusion of these molecules. This is not always the case, however: some cells may internalise DBP by mechanisms involving proteins other than megalin, internalising bound rather than free VD metabolites. B-lymphocytes may internalise 25(OH)D by binding DBP without the presence of megalin; this may involve Fc γ receptors, which also associate with immunoglobulins. Some tissues do not express megalin, which suggests that they internalise free 25(OH)D. It has been hypothesised that free 25(OH)D especially affects immune cells (e.g. monocytes, macrophages, and dendritic cells). In vitro studies have shown that monocytes exposed to increasing doses of 25(OH)D in the presence of DBP display dose-dependent induction of antibacterial proteins. In the absence of DBP, however, this response is much more marked; the capacity of 25(OH)D to promote monocyte antibacterial activity is dependent on both serum concentration and DBP genotype.<a class="elsevierStyleCrossRef" href="#bib0810"><span class="elsevierStyleSup">31</span></a> Similar observations have been made for regulatory T cells. However, this inverse relationship also involves other variables. Thus, VD metabolites may also bind serum albumin, although the affinity of 25(OH)D and 1,25(OH)<span class="elsevierStyleInf">2</span>D for albumin is considerably lower. Furthermore, due to the relative abundance of serum albumin (650<span class="elsevierStyleHsp" style=""></span>μM) compared to DBP (5<span class="elsevierStyleHsp" style=""></span>μM), we should consider the possibility that VD metabolites may be transported by albumin in certain situations. As a result, part of the DBP in the serum may not be bound to any metabolite. Therefore, the binding of 25(OH)D and 1,25(OH)<span class="elsevierStyleInf">2</span>D to albumin may also have an impact on the free fraction. Less than 0.1% of total circulating 25(OH)D is free. Dietary changes may decrease the binding affinity of DBP for VD metabolites; for example, polyunsaturated fatty acids can decrease this affinity, resulting in changes in the bioavailability of VD metabolites. The behaviour of free 25(OH)D in patients receiving oral and parenteral VD supplementation is unknown. However, the correlation between serum 25(OH)D and DBP concentrations seems to suggest that these supplements do not modify either total or free 25(OH)D concentrations. Total serum 25(OH)D, 1,25(OH)<span class="elsevierStyleInf">2</span>D, and DBP concentrations do not change at the onset of treatment with vitamin D<span class="elsevierStyleInf">3</span> or vitamin D<span class="elsevierStyleInf">2</span> supplementation. At the end of treatment, however, the serum concentration of 25(OH)D<span class="elsevierStyleInf">3</span> increases significantly more than that of 25(OH)D<span class="elsevierStyleInf">2</span>; serum DBP concentrations also change, whereas free and bioavailable 25(OH)D levels are similar in patients receiving vitamin D<span class="elsevierStyleInf">2</span> or vitamin D<span class="elsevierStyleInf">3</span> supplements. The lower efficiency of vitamin D<span class="elsevierStyleInf">2</span>, compared to vitamin D<span class="elsevierStyleInf">3</span>, in increasing total serum 25(OH)D levels has been attributed to the weaker affinity of 25(OH)D<span class="elsevierStyleInf">2</span> for DBP.</p><p id="par0030" class="elsevierStylePara elsevierViewall">A third factor in the association between DBP and the free fraction is that DBP has phenotypic variations that may influence its affinity for VD metabolites. The different forms of DBP (group-specific component [Gc]1F, Gc1S, and Gc2) are associated with polymorphisms in the <span class="elsevierStyleItalic">DBP</span> gene or the <span class="elsevierStyleItalic">Gc</span> gene. These DBP variants result from changes in the protein's amino acid sequence, altering the binding affinity of DBP for VD metabolites; Gc1F displays the greatest affinity and Gc2 the lowest.<a class="elsevierStyleCrossRefs" href="#bib0815"><span class="elsevierStyleSup">32,33</span></a> This is compensated for by changes in serum DBP levels, with Gc2 levels being the highest and Gc1F levels the lowest,<a class="elsevierStyleCrossRef" href="#bib0825"><span class="elsevierStyleSup">34</span></a> meaning that DBP concentration increases with lower affinity, and vice versa. Gc allele variability is associated with racial differences: in black and Asian populations, the Gc1F form of DBP is more prevalent, whereas Gc1S is more prevalent in white populations. Gc2, which has lower affinity for VD metabolites, is more frequent in white populations and has rarely been observed in black populations; DBP affinity is therefore linked to skin pigmentation. The phenotypic variations of DBP also include those caused by such single-nucleotide polymorphisms (SNP) as rs7041 and rs4588. These 2 SNPs are associated with lower 25(OH)D levels, and are more frequent in Hispanic and African-American populations.<a class="elsevierStyleCrossRef" href="#bib0830"><span class="elsevierStyleSup">35</span></a> Combinations of these alleles may alter DBP concentration and affinity for 25(OH)D and 25(OH).<a class="elsevierStyleCrossRefs" href="#bib0835"><span class="elsevierStyleSup">36,37</span></a> Santos et al.<a class="elsevierStyleCrossRef" href="#bib0845"><span class="elsevierStyleSup">38</span></a> report that the rs4588 and rs7044 SNPs are associated with lower 25(OH)D concentrations in young healthy women. Cheung et al.<a class="elsevierStyleCrossRef" href="#bib0850"><span class="elsevierStyleSup">39</span></a> identified 4 SNPs (rs2282679, rs10741657, rs12785878, and rs6013897) linked to 25(OH)D concentration, and found that rs2282679 was associated with low serum 25(OH)D levels whereas rs12785878 was associated with VD deficiency only.</p><p id="par0035" class="elsevierStylePara elsevierViewall">The idea that internalisation is megalin-independent in most immune cells is relevant, since it means that the internalisation of VD metabolites into these cells may be dependent on Fc γ receptors or the free fraction of VD, which has an inverse relationship with plasma DBP concentration, and consequently with plasma circulating VD concentration. This is the opposite of what occurs in CNS cells, where VD internalisation is megalin-mediated. We may therefore hypothesise that low DBP concentrations may result in a high level of internalisation into immune cells and a low level into CNS cells.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Enzymes involved in vitamin D metabolism</span><p id="par0040" class="elsevierStylePara elsevierViewall">Multiple enzymes are involved in VD metabolism.<a class="elsevierStyleCrossRef" href="#bib0855"><span class="elsevierStyleSup">40</span></a> The first of these, CYP2R1, converts VD into 25(OH)D.<a class="elsevierStyleCrossRef" href="#bib0860"><span class="elsevierStyleSup">41</span></a> The enzyme 1-α-hydroxylase (CYP27B1), encoded by the <span class="elsevierStyleItalic">CYP27B1</span> gene, catalyses the hydroxylation of 25(OH)D into 1,25(OH)<span class="elsevierStyleInf">2</span>D, which subsequently binds to VDR. The third enzyme, 1,25-dihydroxyvitamin D-24-hydroxylase (24-hydroxylase, CYP24A1), is encoded by the <span class="elsevierStyleItalic">CYP24A1</span> gene. It is involved in VD degradation via 1,25(OH)<span class="elsevierStyleInf">2</span>D hydroxylation, acting in the opposite direction. The 3 enzymes are members of the cytochrome P450 superfamily of enzymes. No association has been found between MS and different variants of the gene coding for DBP.<a class="elsevierStyleCrossRef" href="#bib0865"><span class="elsevierStyleSup">42</span></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">The vitamin D receptor</span><p id="par0045" class="elsevierStylePara elsevierViewall">The VD metabolite 1,25(OH)<span class="elsevierStyleInf">2</span>D binds to VDR, a nuclear receptor. Under pathological conditions, VDR is located mainly in the cytoplasm.<a class="elsevierStyleCrossRef" href="#bib0870"><span class="elsevierStyleSup">43</span></a> The interaction between VDR and its ligand, 1,25(OH)<span class="elsevierStyleInf">2</span>D, results in 2 independent protein interaction surfaces on the VDR, promoting interaction with the retinoid X receptor (RXR), which is necessary for DNA binding, and the recruitment of co-regulators involved in gene modulation.<a class="elsevierStyleCrossRef" href="#bib0875"><span class="elsevierStyleSup">44</span></a> After dimerising with RXR, the VDR-1,25(OH)<span class="elsevierStyleInf">2</span>D complex translocates to the nucleus, where it binds to vitamin D response elements (VDRE) in VD responsive genes. Target genes may act as co-activators or co-repressors; the VDR-RXR complex induces or represses gene transcription in a process involving ATPases and proteins participating in RNA polymerase II recruitment.<a class="elsevierStyleCrossRef" href="#bib0880"><span class="elsevierStyleSup">45</span></a> In addition to this VDRE-regulated mechanism, VDR may also inhibit genes by antagonising certain transcription factors.<a class="elsevierStyleCrossRefs" href="#bib0885"><span class="elsevierStyleSup">46,47</span></a> There are several alleles of the <span class="elsevierStyleItalic">VDR</span> gene. Certain variants have been associated with increased susceptibility to infections and a greater incidence of such autoimmune diseases as MS and cancer, which may be due to a decrease in VDR mRNA stability, and consequently to a decrease in VDR expression. Some variants of the <span class="elsevierStyleItalic">VDR</span> gene result in a non-functional receptor.<a class="elsevierStyleCrossRef" href="#bib0895"><span class="elsevierStyleSup">48</span></a> The literature describes several polymorphisms in the gene coding for VDR (Apa-I, Taq-I, Fok-I, and Bsm-I). While some studies have found significant associations between these polymorphisms and MS,<a class="elsevierStyleCrossRefs" href="#bib0900"><span class="elsevierStyleSup">49–51</span></a> others have not.<a class="elsevierStyleCrossRefs" href="#bib0915"><span class="elsevierStyleSup">52–57</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Vitamin D metabolism in the central nervous system</span><p id="par0050" class="elsevierStylePara elsevierViewall">Although VD has traditionally been considered to participate in bone metabolism, its presence in the CNS suggests that it is also involved in some CNS functions; it is even considered a neurosteroid.<a class="elsevierStyleCrossRef" href="#bib0945"><span class="elsevierStyleSup">58</span></a> A CSF study of both patients with MS and controls revealed presence of 25(OH)D, which was positively correlated with serum 25(OH)D.<a class="elsevierStyleCrossRef" href="#bib0950"><span class="elsevierStyleSup">59</span></a> DBP was also observed in the CSF of controls, although it was more frequently found in patients with MS.<a class="elsevierStyleCrossRef" href="#bib0955"><span class="elsevierStyleSup">60</span></a> This confirms that VD and its main transport protein enter the CNS. VDR mRNA and CYP27B1 mRNA expression in the CNS is greater in animals with EAE than in controls.<a class="elsevierStyleCrossRef" href="#bib0960"><span class="elsevierStyleSup">61</span></a> Considering that VDR and CYP27B1 are expressed in the neurons and astrocytes of healthy individuals, it may be hypothesised that VD plays a role in certain functions of the CNS.<a class="elsevierStyleCrossRef" href="#bib0965"><span class="elsevierStyleSup">62</span></a> In vitro studies of glial cell cultures have reported that 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> supplementation has an anti-inflammatory effect,<a class="elsevierStyleCrossRef" href="#bib0970"><span class="elsevierStyleSup">63</span></a> which supports the therapeutic potential of VD in MS. Considering that 1,25(OH)<span class="elsevierStyleInf">2</span>D can cross the blood-brain barrier and that most CNS cells, including the microglia,<a class="elsevierStyleCrossRef" href="#bib0975"><span class="elsevierStyleSup">64</span></a> express VDR, it seems plausible to consider that VD acts directly on the CNS. VD has recently been observed to act on histones, causing epigenetic changes<a class="elsevierStyleCrossRef" href="#bib0980"><span class="elsevierStyleSup">65</span></a> that have been associated with MS.<a class="elsevierStyleCrossRefs" href="#bib0985"><span class="elsevierStyleSup">66,67</span></a> As mentioned previously, VDR is present in neurons and glial cells.<a class="elsevierStyleCrossRefs" href="#bib0995"><span class="elsevierStyleSup">68,69</span></a> An animal model found that 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> increases VDR nRNA and CYP27B1 mRNA expression in female mice with EAE, compared to controls.<a class="elsevierStyleCrossRef" href="#bib0960"><span class="elsevierStyleSup">61</span></a> CYP24A1 mRNA expression increases with exposure to 1,25(OH)<span class="elsevierStyleInf">2</span>D in C6 glioma and rat primary glial cell cultures.<a class="elsevierStyleCrossRef" href="#bib1005"><span class="elsevierStyleSup">70</span></a> IFN-γ alters CYP24A1 expression in macrophages.<a class="elsevierStyleCrossRef" href="#bib1010"><span class="elsevierStyleSup">71</span></a> TNF and interleukin-1β production have been found to decrease in a microglial cell line exposed to 1,25(OH)<span class="elsevierStyleInf">2</span>D.<a class="elsevierStyleCrossRef" href="#bib1015"><span class="elsevierStyleSup">72</span></a> Likewise, 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> has been shown to reduce TNF nRNA and expression of the macrophage colony-stimulating factor in primary rat astrocytes and glioma cells.<a class="elsevierStyleCrossRef" href="#bib1020"><span class="elsevierStyleSup">73</span></a> Furthermore, MHC class II immunoreactivity decreases in EAE after treatment with 1,25(OH)<span class="elsevierStyleInf">2</span>D.<a class="elsevierStyleCrossRef" href="#bib1025"><span class="elsevierStyleSup">74</span></a></p><p id="par0055" class="elsevierStylePara elsevierViewall">A study by Smolders et al.<a class="elsevierStyleCrossRef" href="#bib1030"><span class="elsevierStyleSup">75</span></a> extrapolates VD metabolism in the CNS of healthy individuals to patients with MS. The researchers confirm VDR expression in the nuclei of all neurons, including in the hypothalamus. CYP24A1 is expressed in the cytoplasm of virtually all neurons, including those of the hypothalamus, and especially in the cells of the supraoptic and periventricular nuclei; in the hypothalamus, CYP24A1 co-localises with cortisol-releasing hormone, vasopressin, and oxytocin. Normal-appearing white matter of MS patients and controls shows VDR nuclear activity in oligodendrocytes. Microglia also display VDR expression, but no CYP24A expression. Astrocytes show both nuclear VDR and cytoplasmic CYP24A expression. However, some patients show cytoplasmic expression of VDR, especially in glial cells displaying increased GFAP expression. In normal-appearing white matter, glial expression of VDR mRNA and CYP27B1 mRNA is similar to that found in peripheral mononuclear cells, whereas CYP24A1 mRNA and LRP2 mRNA expression is increased in controls. VDR mRNA expression is significantly greater in patients with MS than in controls, whereas expression of CYP24A1 mRNA, CYP27B1 mRNA, and megalin mRNA is similar. The researchers observed cytoplasmic VDR expression in glial cells at the core of chronic, inactive MS lesions as well as in some cells in the perilesional white matter. VDR mRNA and CYP27B1 mRNA expression is greater in chronic, active lesions than in normal-appearing white matter. However, the researchers found no differences between chronic, inactive lesions and normal-appearing white matter. Megalin mRNA expression is lower in chronic, active and inactive lesions than in normal-appearing white matter.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The researchers include a series of in vitro experiments demonstrating the effects of VD in certain CNS cell lines. In vitro 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> supplementation in a culture of SH-SY5Y neuroblastoma cell line, which mainly includes neurons, induces CYP24A mRNA expression.<a class="elsevierStyleCrossRef" href="#bib1030"><span class="elsevierStyleSup">75</span></a> In vitro exposure of primary human astrocytes and astroglioma cell lines (U343 and U373) to 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> showed dose-dependent VDR mRNA and CYP24A1 mRNA upregulation, but had no effect on CYP27B1 mRNA expression. Primary astrocyte and microglia cultures were exposed to IFN-γ, TNF, and 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span>. IFN-γ and TNF were found to upregulate CYP27B1 mRNA both in astrocytes and in microglia. CYP27B1 mRNA expression was lower in cells exposed to IFN-γ or TNF and treated with 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> than in those not treated with 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span>. CYP27B1 and CYP24A1 upregulation secondary to exposure to IFN-γ/TNF and 1,25(OH)<span class="elsevierStyleInf">2</span>D<span class="elsevierStyleInf">3</span> was more marked in astrocytes than in microglia. Immunohistochemical studies have found megalin in the choroidal plexus and the endothelium of brain microvessels,<a class="elsevierStyleCrossRef" href="#bib1035"><span class="elsevierStyleSup">76</span></a> which suggests that megalin transports DBP and VD into the CNS. Furthermore, megalin mRNA expression has been observed to be lower in both active and inactive MS lesions. The mechanism by which 1,25(OH)<span class="elsevierStyleInf">2</span>D promotes neuronal differentiation is unclear. It is hypothesised that the mechanism involves growth factors, based on observations that 1,25(OH)<span class="elsevierStyleInf">2</span>D upregulates the expression of NT-3 and NGF,<a class="elsevierStyleCrossRef" href="#bib1040"><span class="elsevierStyleSup">77</span></a> GDNF,<a class="elsevierStyleCrossRef" href="#bib1045"><span class="elsevierStyleSup">78</span></a> CNTF, or BDNF.<a class="elsevierStyleCrossRef" href="#bib1050"><span class="elsevierStyleSup">79</span></a></p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Vitamin D metabolism and remyelination in multiple sclerosis</span><p id="par0065" class="elsevierStylePara elsevierViewall">Myelination is the process by which axons are wrapped in myelin. Remyelination of demyelinated lesions has been observed in the early stages of MS<a class="elsevierStyleCrossRefs" href="#bib1055"><span class="elsevierStyleSup">80–82</span></a>; this is supported by neuroimaging findings.<a class="elsevierStyleCrossRefs" href="#bib1070"><span class="elsevierStyleSup">83–89</span></a> However, remyelination is incomplete<a class="elsevierStyleCrossRef" href="#bib1105"><span class="elsevierStyleSup">90</span></a> and eventually ceases,<a class="elsevierStyleCrossRef" href="#bib1110"><span class="elsevierStyleSup">91</span></a> perhaps due to the inability of oligodendrocyte precursor cells (OPC) to migrate and reach the site of demyelination,<a class="elsevierStyleCrossRef" href="#bib1115"><span class="elsevierStyleSup">92</span></a> or to a lack of suitable conditions for differentiation.<a class="elsevierStyleCrossRef" href="#bib1120"><span class="elsevierStyleSup">93</span></a> Post mortem studies of patients with MS show that depletion of the OPCs available for remyelination is not a likely explanation of remyelination failure.<a class="elsevierStyleCrossRefs" href="#bib1125"><span class="elsevierStyleSup">94–97</span></a> Remyelination decreases with age, regardless of health status.<a class="elsevierStyleCrossRefs" href="#bib1145"><span class="elsevierStyleSup">98,99</span></a> The most likely explanation of this phenomenon is the inability of OPCs to mature into oligodendrocytes, probably because the microenvironment prevents OPC differentiation and subsequent axon remyelination. This is relevant for MS treatment since current treatments are effective only in controlling immune mechanisms (that is, in the early stages of the disease) but have no effect on remyelination.</p><p id="par0070" class="elsevierStylePara elsevierViewall">Little is known about the role of VD in myelination. According to a number of studies, however, VD may be involved in myelination and remyelination at different levels (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).<a class="elsevierStyleCrossRefs" href="#bib1155"><span class="elsevierStyleSup">100–108</span></a> Combined treatment with myelin peptides and VD protects against EAE<a class="elsevierStyleCrossRefs" href="#bib1170"><span class="elsevierStyleSup">103,104</span></a> and an animal model of Krabbe disease.<a class="elsevierStyleCrossRef" href="#bib1180"><span class="elsevierStyleSup">105</span></a> Given that VD decreases inducible nitric acid synthase expression in the microglia, it may have an impact on the balance between the inflammatory and anti-inflammatory mechanisms involved in remyelination. VD also increases microglial activation, promoting the clearance of myelin debris and, as a consequence, remyelination.<a class="elsevierStyleCrossRef" href="#bib1185"><span class="elsevierStyleSup">106</span></a> In OPC cell cultures, VD upregulates the transcription of VDR and NGF mRNA, but not of myelin basic protein or proteolipid protein mRNA. As mentioned previously, oligodendrocytes express VDR, and 1,25(OH)<span class="elsevierStyleInf">2</span>D depletion results in reduced differentiation into oligodendrocytes and demyelination<a class="elsevierStyleCrossRef" href="#bib1190"><span class="elsevierStyleSup">107</span></a>; VD and VDR therefore positively regulate OPC differentiation. VDR expression has been observed in OPCs in MS tissue cultures.<a class="elsevierStyleCrossRefs" href="#bib1195"><span class="elsevierStyleSup">108,109</span></a> In OPCs, VDR heterodimerises with RXR-γ and participates in OPC differentiation; RXR-γ is expressed in OPCs during remyelination.<a class="elsevierStyleCrossRef" href="#bib1205"><span class="elsevierStyleSup">110</span></a> In vitro studies show that blocking VDR reduces OPC differentiation, myelination, and remyelination, whereas activating VDR via VD increases differentiation.<a class="elsevierStyleCrossRef" href="#bib1210"><span class="elsevierStyleSup">111</span></a> Likewise, neural stem cells (NSC) express VDR and 1,25(OH)<span class="elsevierStyleInf">2</span>D. The latter increases NSC proliferation and differentiation into neurons and oligodendrocytes, reducing astrogliosis.<a class="elsevierStyleCrossRef" href="#bib1215"><span class="elsevierStyleSup">112</span></a> VD promotes NSC proliferation.<a class="elsevierStyleCrossRef" href="#bib1220"><span class="elsevierStyleSup">113</span></a> It has been suggested that Spp1, a VD-regulated cytokine, plays a role in MS.<a class="elsevierStyleCrossRef" href="#bib1225"><span class="elsevierStyleSup">114</span></a> Spp1 boosts myelin formation in vitro<a class="elsevierStyleCrossRef" href="#bib1230"><span class="elsevierStyleSup">115</span></a>; and its expression has been shown to increase during remyelination in an animal model of toxin-induced demyelination.<a class="elsevierStyleCrossRef" href="#bib1235"><span class="elsevierStyleSup">116</span></a></p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0075" class="elsevierStylePara elsevierViewall">VD-induced microglial activation promotes phagocytosis of amyloid-β peptides (Aβ),<a class="elsevierStyleCrossRef" href="#bib1240"><span class="elsevierStyleSup">117</span></a> thus preventing axon damage: Aβ expression is increased in demyelinating plaques,<a class="elsevierStyleCrossRefs" href="#bib1245"><span class="elsevierStyleSup">118–120</span></a> which, although initially beneficial, may cause toxicity at later stages. Megalin is involved in APP and Aβ endocytosis and internalisation.<a class="elsevierStyleCrossRef" href="#bib9000"><span class="elsevierStyleSup">121</span></a> A megalin-APP-Fe65 complex has been found in hippocampal neurons; this complex would act as a regulator of Aβ toxicity.<a class="elsevierStyleCrossRef" href="#bib1265"><span class="elsevierStyleSup">122</span></a> We have recently studied the potential role of APP and its signalling pathway<a class="elsevierStyleCrossRef" href="#bib1270"><span class="elsevierStyleSup">123</span></a> based on PET imaging findings of amyloid tracer uptake in myelin.<a class="elsevierStyleCrossRef" href="#bib1275"><span class="elsevierStyleSup">124</span></a> APP is upregulated in demyelinated axons, which activates the amyloid cascade, promoting Aβ production.<a class="elsevierStyleCrossRefs" href="#bib1280"><span class="elsevierStyleSup">125,126</span></a> APP expression also increases after spinal white matter compression injury in rats.<a class="elsevierStyleCrossRef" href="#bib1290"><span class="elsevierStyleSup">127</span></a> VD increases APP expression in rats<a class="elsevierStyleCrossRef" href="#bib1295"><span class="elsevierStyleSup">128</span></a> and is thought to play a role in remyelination.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Conclusions</span><p id="par0080" class="elsevierStylePara elsevierViewall">In advanced stages of MS, the ability to remyelinate axons is lost.<a class="elsevierStyleCrossRefs" href="#bib1060"><span class="elsevierStyleSup">81,129</span></a> This is relevant to MS treatment: current treatments control immune mechanisms and are therefore effective only in the early stages of the disease; they have no effect on remyelination and consequently on sequelae.<a class="elsevierStyleCrossRefs" href="#bib1305"><span class="elsevierStyleSup">130,131</span></a> VD metabolism is present in the CNS, participates in myelination, and may be influenced by such external factors as diet, sun exposure, or VD supplementation. Understanding the role of VD in myelination may eventually allow us to better manage patients with MS and VD deficiency.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Conflicts of interest</span><p id="par0085" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:15 [ 0 => array:3 [ "identificador" => "xres1012477" "titulo" => "Abstract" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Development" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec971645" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1012476" "titulo" => "Resumen" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0020" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0025" "titulo" => "Desarrollo" ] 2 => array:2 [ "identificador" => "abst0030" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec971646" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Vitamin D deficiency" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Plasma transport of vitamin D and transformation into active metabolites" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Internalisation of vitamin D metabolites" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Enzymes involved in vitamin D metabolism" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "The vitamin D receptor" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Vitamin D metabolism in the central nervous system" ] 11 => array:2 [ "identificador" => "sec0040" "titulo" => "Vitamin D metabolism and remyelination in multiple sclerosis" ] 12 => array:2 [ "identificador" => "sec0045" "titulo" => "Conclusions" ] 13 => array:2 [ "identificador" => "sec0050" "titulo" => "Conflicts of interest" ] 14 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2016-05-08" "fechaAceptado" => "2016-05-12" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec971645" "palabras" => array:6 [ 0 => "Myelin" 1 => "Vitamin D" 2 => "Vitamin D receptor" 3 => "Oligodendrocyte" 4 => "Oligodendrocyte progenitor cells" 5 => "Multiple sclerosis" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec971646" "palabras" => array:6 [ 0 => "Mielina" 1 => "Vitamina D" 2 => "Receptor de Vitamina D" 3 => "Oligodendrocito" 4 => "Células precursoras de oligodendrocitos" 5 => "Esclerosis multiple" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Development</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Conclusions</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency.</p></span>" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Development" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Introducción</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Diferentes estudios han asociado la deficiencia en VD a la esclerosis múltiple lo que ha llevado a plantear su potencial papel en la respuesta inmune. Existe menos información sobre su papel en la remielinización.</p></span> <span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Desarrollo</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">En las células del SNC existe el receptor VD así como las enzimas que transforman los metabolitos de la VD para poder activar este receptor, lo que plantea un potencial efecto de la VD. Tanto estudios in vitro como modelos animales han mostrado que la VD puede tener un papel sobre la mielinización actuando en factores que influyen en el microambiente que favorece la mielinización como en la proliferación y diferenciación tanto de las células madre neuronales en células precursoras de oligodendrocitos como en éstas en oligodendrocitos. No se conoce si los mecanismos de internalización de la VD en el SNC son sinérgicos o antagónicos a los que permiten la entrada de los metabolitos de la VD en las células inmunes.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conclusiones</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">La VD debe tener un papel en el SNC y se puede hipotetizar si actúa en la remielinización. El conocimiento de los mecanismos básicos de los efectos de la VD en la mielinización parece necesario para poder aconsejar a los pacientes con esclerosis múltiple ante deficiencias de VD en la clínica.</p></span>" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "abst0020" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0025" "titulo" => "Desarrollo" ] 2 => array:2 [ "identificador" => "abst0030" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U. Vitamina D y remielinización en la esclerosis múltiple. Neurología. 2018;33:177–186.</p>" ] ] "multimedia" => array:1 [ 0 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Level \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">General action \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Role of vitamin D \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Immediate consequence \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " rowspan="4" align="left" valign="top">Microenvironment</td><td class="td" title="table-entry " align="left" valign="top">Promoting a suitable environment for remyelination \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increasing microglial activation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Clearance of myelin debris \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Preventing toxic effects on axons \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increasing microglial activation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Clearance of amyloid-β \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Promoting remyelination \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increasing Spp1 expression \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Myelin production \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Promoting remyelination \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increasing APP expression \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Myelin production \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Promoting proliferation and differentiation into oligodendrocytes \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Promoting OPC differentiation into oligodendrocytes \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">VDR upregulation in OPCs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Heterodimerisation of VDR with RXR-γ \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="3" align="left" valign="top">Promoting proliferation and differentiation into OPCs</td><td class="td" title="table-entry " align="left" valign="top">Promoting NSC differentiation into OPCs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Activating VDR in NSCs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Greater numbers of OPCs \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Promoting NSC proliferation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Activating VDR in NSCs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Greater numbers of NSCs and subsequently of OPCs \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Reducing NSC differentiation into astrocytes \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Activating VDR in NSCs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Reduction in astrocytosis \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1714633.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Potential roles of vitamin D at different levels of the remyelination process.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:131 [ 0 => array:3 [ "identificador" => "bib0660" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D intake and incidence of multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurology" "fecha" => "2004" "volumen" => "62" "paginaInicial" => "60" "paginaFinal" => "65" "link" => array:1 [ …1] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0665" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jama.296.23.2832" "Revista" => array:6 [ "tituloSerie" => "JAMA" "fecha" => "2006" "volumen" => "296" "paginaInicial" => "2832" "paginaFinal" => "2838" "link" => array:1 [ …1] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0670" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D and risk of multiple sclerosis: a Mendelian randomization study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pmed.1001866" "Revista" => array:5 [ "tituloSerie" => "PLoS Med" "fecha" => "2015" "volumen" => "12" "paginaInicial" => "e1001866" "link" => array:1 [ …1] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0675" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D as an early predictor of multiple sclerosis activity and progression" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jamaneurol.2013.5993" "Revista" => array:6 [ "tituloSerie" => "JAMA Neurol" "fecha" => "2014" "volumen" => "71" "paginaInicial" => "306" "paginaFinal" => "314" "link" => array:1 [ …1] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0680" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1756285612473513" "Revista" => array:6 [ "tituloSerie" => "Ther Adv Neurol Disord" "fecha" => "2013" "volumen" => "6" "paginaInicial" => "81" "paginaFinal" => "116" "link" => array:1 [ …1] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0685" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Immunomodulatory effects of vitamin D in multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/brain/awp033" "Revista" => array:6 [ "tituloSerie" => "Brain" "fecha" => "2009" "volumen" => "132" "paginaInicial" => "1146" "paginaFinal" => "1160" "link" => array:1 [ …1] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0690" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/JCI115072" "Revista" => array:6 [ "tituloSerie" => "J Clin Invest" "fecha" => "1991" "volumen" => "87" "paginaInicial" => "1103" "paginaFinal" => "1107" "link" => array:1 [ …1] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0695" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25 Dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neuropathol Exp Neurol" "fecha" => "1996" "volumen" => "55" "paginaInicial" => "904" "paginaFinal" => "914" "link" => array:1 [ …1] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0700" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D3 potentiates myelination and recovery after facial nerve injury" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00405-014-3305-y" "Revista" => array:6 [ "tituloSerie" => "Eur Arch Otorhinolaryngol" "fecha" => "2015" "volumen" => "272" "paginaInicial" => "2815" "paginaFinal" => "2823" "link" => array:1 [ …1] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0705" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The free hormone hypothesis: a physiologically based mathematical model" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/edrv-10-3-232" "Revista" => array:6 [ "tituloSerie" => "Endocr Rev" "fecha" => "1989" "volumen" => "10" "paginaInicial" => "232" "paginaFinal" => "274" "link" => array:1 [ …1] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0710" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/JCI111617" "Revista" => array:6 [ "tituloSerie" => "J Clin Invest" "fecha" => "1984" "volumen" => "74" "paginaInicial" => "1966" "paginaFinal" => "1971" "link" => array:1 [ …1] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0715" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jcem-61-5-969" "Revista" => array:7 [ "tituloSerie" => "J Clin Endocr Metab" "fecha" => "1985" "volumen" => "61" "paginaInicial" => "969" "paginaFinal" => "975" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0720" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D-binding protein and vitamin D status of black Americans and white Americans" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa1306357" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2013" "volumen" => "369" "paginaInicial" => "1991" "paginaFinal" => "2000" "link" => array:1 [ …1] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0725" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A critical evaluation of simple methods for the estimation of free testosterone in serum" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jcem.84.10.6079" "Revista" => array:6 [ "tituloSerie" => "J Clin Endocr Metab" "fecha" => "1999" "volumen" => "84" "paginaInicial" => "3666" "paginaFinal" => "3672" "link" => array:1 [ …1] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0730" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D binding protein (Gc-globulin)" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/edrv-10-3-294" "Revista" => array:6 [ "tituloSerie" => "Endocr Rev" "fecha" => "1989" "volumen" => "10" "paginaInicial" => "294" "paginaFinal" => "307" "link" => array:1 [ …1] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0735" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3. Significance of the free 1,25-dihydroxyvitamin D3 concentration" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/JCI110072" "Revista" => array:7 [ "tituloSerie" => "J Clin Invest" "fecha" => "1981" "volumen" => "67" "paginaInicial" => "589" "paginaFinal" => "596" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0740" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Simple method for determining specific binding capacity of vitamin D-binding protein and its use to calculate the concentration of “free” 1,25-dihydroxyvitamin D" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Clin Chem" "fecha" => "1994" "volumen" => "40" "paginaInicial" => "435" "paginaFinal" => "441" "link" => array:1 [ …1] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0745" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.taap.2008.02.008" "Revista" => array:6 [ "tituloSerie" => "Toxicol Appl Pharmacol" "fecha" => "2008" "volumen" => "230" "paginaInicial" => "78" "paginaFinal" => "85" "link" => array:1 [ …1] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0750" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.devcel.2011.11.023" "Revista" => array:7 [ "tituloSerie" => "Dev Cell" "fecha" => "2012" "volumen" => "22" "paginaInicial" => "268" "paginaFinal" => "278" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0755" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A cytoplasmic PPPSP motif determines megalin's phosphorylation and regulates receptor's recycling and surface expression" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-0854.2007.00601.x" "Revista" => array:6 [ "tituloSerie" => "Traffic" "fecha" => "2007" "volumen" => "8" "paginaInicial" => "1215" "paginaFinal" => "1230" "link" => array:1 [ …1] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0760" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajprenal.2001.280.4.F562" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Renal Physiol" "fecha" => "2001" "volumen" => "280" "paginaInicial" => "F562" "paginaFinal" => "F573" "link" => array:1 [ …1] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0765" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3)" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.241516998" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2001" "volumen" => "98" "paginaInicial" => "13895" "paginaFinal" => "21390" "link" => array:1 [ …1] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0770" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/emboj/21.7.1555" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "2002" "volumen" => "21" "paginaInicial" => "1555" "paginaFinal" => "1564" "link" => array:1 [ …1] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0775" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Glycoprotein 330/megalin (LRP-2) has low prevalence as mRNA and protein in brain microvessels and choroid plexus" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/exnr.1999.7052" "Revista" => array:6 [ "tituloSerie" => "Exp Neurol" "fecha" => "1999" "volumen" => "157" "paginaInicial" => "194" "paginaFinal" => "201" "link" => array:1 [ …1] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0780" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overlapping expression patterns of the multiligand endocyte receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.modgep.2005.04.014" "Revista" => array:6 [ "tituloSerie" => "Gene Expr Patterns" "fecha" => "2005" "volumen" => "6" "paginaInicial" => "69" "paginaFinal" => "78" "link" => array:1 [ …1] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0785" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A focused and efficient genetic screening strategy in the mouse: identification of mutations that disrupt cortical development" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Biol" "fecha" => "2004" "volumen" => "2" "paginaInicial" => "1179" "paginaFinal" => "1187" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0790" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1471-4159.2008.05462.x" "Revista" => array:6 [ "tituloSerie" => "J Neurochem" "fecha" => "2008" "volumen" => "106" "paginaInicial" => "1149" "paginaFinal" => "1159" "link" => array:1 [ …1] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0795" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Albumin endocytosis via megalin in astrocytes is caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic factor oleic acid" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1471-4159.2009.06304.x" "Revista" => array:6 [ "tituloSerie" => "J Neurochem" "fecha" => "2009" "volumen" => "111" "paginaInicial" => "49" "paginaFinal" => "60" "link" => array:1 [ …1] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0800" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metallothionein-IIA promotes neurite growth via the megalin receptor" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00221-007-1032-y" "Revista" => array:6 [ "tituloSerie" => "Exp Brain Res" "fecha" => "2007" "volumen" => "183" "paginaInicial" => "171" "paginaFinal" => "180" "link" => array:1 [ …1] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0805" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Abeta stabilization" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/JCI119536" "Revista" => array:7 [ "tituloSerie" => "J Clin Invest" "fecha" => "1997" "volumen" => "100" "paginaInicial" => "310" "paginaFinal" => "320" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0810" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D and DBP: the free hormone hypothesis revisited" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jsbmb.2013.09.012" "Revista" => array:7 [ "tituloSerie" => "J Steroid Biochem Mol Biol" "fecha" => "2014" "volumen" => "144" "numero" => "Pt A" "paginaInicial" => "132" "paginaFinal" => "137" "link" => array:1 [ …1] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0815" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparative study of the affinity of the serum vitamin D-binding protein" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Ster Biochem" "fecha" => "1980" "volumen" => "13" "paginaInicial" => "1029" "paginaFinal" => "1034" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0820" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP)" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Hum Gen" "fecha" => "1993" "volumen" => "92" "paginaInicial" => "183" "paginaFinal" => "188" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0825" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Clin Chem" "fecha" => "2001" "volumen" => "47" "paginaInicial" => "753" "paginaFinal" => "756" "link" => array:1 [ …1] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0830" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic and environmental determinants of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels in hispanic and African Americans" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jc.2007-2702" "Revista" => array:6 [ "tituloSerie" => "J Clin Endocr Metab" "fecha" => "2008" "volumen" => "93" "paginaInicial" => "3381" "paginaFinal" => "3388" "link" => array:1 [ …1] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0835" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Common genetic determinants of vitamin D insufficiency: a genome-wide association study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(10)60588-0" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2010" "volumen" => "376" "paginaInicial" => "180" "paginaFinal" => "188" "link" => array:1 [ …1] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0840" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jama.2012.17304" "Revista" => array:6 [ "tituloSerie" => "JAMA" "fecha" => "2012" "volumen" => "308" "paginaInicial" => "1898" "paginaFinal" => "1905" "link" => array:1 [ …1] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0845" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Variations in the vitamin D-binding protein (DBP) gene are related to lower 25-hydroxyvitamin D levels in healthy girls: a cross-sectional study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Horm Res Paediatrics" "fecha" => "2013" "volumen" => "79" "paginaInicial" => "162" "paginaFinal" => "168" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0850" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic variant in vitamin D binding protein is associated with serum 25-hydroxyvitamin D and vitamin D insufficiency in southern Chinese" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/jhg.2013.84" "Revista" => array:6 [ "tituloSerie" => "J Hum Genet" "fecha" => "2013" "volumen" => "58" "paginaInicial" => "749" "paginaFinal" => "751" "link" => array:1 [ …1] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0855" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current understanding of the molecular actions of vitamin D" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/physrev.1998.78.4.1193" "Revista" => array:6 [ "tituloSerie" => "Physiol Rev" "fecha" => "1998" "volumen" => "78" "paginaInicial" => "1193" "paginaFinal" => "1231" "link" => array:1 [ …1] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0860" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.0402490101" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2004" "volumen" => "101" "paginaInicial" => "7711" "paginaFinal" => "7715" "link" => array:1 [ …1] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0865" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D receptor gene polymorphism in multiple sclerosis and the association with HLA class II alleles" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurol Sci" "fecha" => "2000" "volumen" => "177" "paginaInicial" => "65" "paginaFinal" => "71" "link" => array:1 [ …1] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0870" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noncalcemic actions of vitamin D receptor ligands" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/er.2004-0002" "Revista" => array:6 [ "tituloSerie" => "Endocr Rev" "fecha" => "2005" "volumen" => "26" "paginaInicial" => "662" "paginaFinal" => "687" "link" => array:1 [ …1] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0875" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regulation of target gene expression by the vitamin D receptor – an update on mechanisms" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11154-011-9198-9" "Revista" => array:6 [ "tituloSerie" => "Rev Endocr Metab Disord" "fecha" => "2012" "volumen" => "13" "paginaInicial" => "45" "paginaFinal" => "55" "link" => array:1 [ …1] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0880" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular mechanisms of vitamin D action" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00223-012-9619-0" "Revista" => array:6 [ "tituloSerie" => "Calcif Tissue Int" "fecha" => "2013" "volumen" => "92" "paginaInicial" => "77" "paginaFinal" => "98" "link" => array:1 [ …1] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0885" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Mol Cell Biol" "fecha" => "1995" "volumen" => "15" "paginaInicial" => "5789" "paginaFinal" => "5799" "link" => array:1 [ …1] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0890" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha, 25-dihydroxyvitamin D3-mediated effects" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Immunol" "fecha" => "1998" "volumen" => "160" "paginaInicial" => "209" "paginaFinal" => "218" "link" => array:1 [ …1] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0895" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic disorders and defects in vitamin D action" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecl.2010.02.004" "Revista" => array:6 [ "tituloSerie" => "Endocrinol Metab Clin North Am" "fecha" => "2010" "volumen" => "39" "paginaInicial" => "333" "paginaFinal" => "346" "link" => array:1 [ …1] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0900" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Variation in the vitamin D receptor gene is associated with multiple sclerosis in an Australian population" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/01677060590949692" "Revista" => array:6 [ "tituloSerie" => "J Neurogenet" "fecha" => "2005" "volumen" => "19" "paginaInicial" => "25" "paginaFinal" => "38" "link" => array:1 [ …1] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0905" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurol Sci" "fecha" => "1999" "volumen" => "166" "paginaInicial" => "47" "paginaFinal" => "52" …1 ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0910" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Past environmental sun exposure and risk of multiple sclerosis: a role for the Cdx-2 vitamin D receptor variant in this interaction" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1352458509102459" "Revista" => array:6 [ …6] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0915" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic analysis of vitamin D related genes in Canadian multiple sclerosis patients" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ …5] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0920" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Four single nucleotide polymorphisms from the vitamin D receptor gene in UK multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00415-004-0425-0" "Revista" => array:6 [ …6] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0925" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jneuroim.2008.12.011" "Revista" => array:6 [ …6] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0930" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Susceptibility and outcome in MS: associations with polymorphisms in pigmentation-related genes" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0935" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1352458509355069" "Revista" => array:6 [ …6] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0940" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D metabolic pathway genes and risk of multiple sclerosis in Canadians" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jns.2011.02.032" "Revista" => array:6 [ …6] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0945" "etiqueta" => "58" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D as a neurosteroid affecting the developing and adult brain" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev-nutr-071813-105557" "Revista" => array:6 [ …6] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0950" "etiqueta" => "59" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "25-hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1352458509107008" "Revista" => array:6 [ …6] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0955" "etiqueta" => "60" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/pmic.200300715" "Revista" => array:6 [ …6] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0960" "etiqueta" => "61" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0965" "etiqueta" => "62" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jchemneu.2004.08.006" "Revista" => array:6 [ …6] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0970" "etiqueta" => "63" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D in the healthy and inflamed central nervous system: access and function" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jns.2011.07.033" "Revista" => array:6 [ …6] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0975" "etiqueta" => "64" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1523/JNEUROSCI.1860-14.2014" "Revista" => array:6 [ …6] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0980" "etiqueta" => "65" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D has wide regulatory effects on histone demethylase genes" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4161/cc.11.6.19508" "Revista" => array:6 [ …6] ] ] ] ] ] 65 => array:3 [ "identificador" => "bib0985" "etiqueta" => "66" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic changes in patients with multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrneurol.2012.226" "Revista" => array:6 [ …6] ] ] ] ] ] 66 => array:3 [ "identificador" => "bib0990" "etiqueta" => "67" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetics of multiple sclerosis: an updated review" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ …5] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib0995" "etiqueta" => "68" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 68 => array:3 [ "identificador" => "bib1000" "etiqueta" => "69" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25-Dihydroxyvitamin D receptors in the central nervous system of the rat embryo" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 69 => array:3 [ "identificador" => "bib1005" "etiqueta" => "70" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression of 25(OH) vitamin D3 24-hydroxylase gene in glial cells" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 70 => array:3 [ "identificador" => "bib1010" "etiqueta" => "71" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "β-Interferon-induced resistance to 1,25-(OH)2 D3 in human monocytes and macrophages: a mechanism for the hypercalcemia of various granulomatoses" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jcem.82.7.4074" "Revista" => array:6 [ …6] ] ] ] ] ] 71 => array:3 [ "identificador" => "bib1015" "etiqueta" => "72" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jnr.10491" "Revista" => array:6 [ …6] ] ] ] ] ] 72 => array:3 [ "identificador" => "bib1020" "etiqueta" => "73" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differential expression of M-CSF LIF, and TNF-alpha genes in normal and malignant rat glial cells: regulation by lipopolysaccharide and vitamin D" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/(SICI)1097-4547(19961101)46:3<360::AID-JNR9>3.0.CO;2-I" "Revista" => array:6 [ …6] ] ] ] ] ] 73 => array:3 [ "identificador" => "bib1025" "etiqueta" => "74" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00401-002-0663-0" "Revista" => array:6 [ …6] ] ] ] ] ] 74 => array:3 [ "identificador" => "bib1030" "etiqueta" => "75" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/NEN.0b013e31827f4fcc" "Revista" => array:6 [ …6] ] ] ] ] ] 75 => array:3 [ "identificador" => "bib1035" "etiqueta" => "76" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP)" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/42.4.7510321" "Revista" => array:6 [ …6] ] ] ] ] ] 76 => array:3 [ "identificador" => "bib1040" "etiqueta" => "77" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 77 => array:3 [ "identificador" => "bib1045" "etiqueta" => "78" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25-Dihydroxyvitamin D<span class="elsevierStyleInf">3</span>, an inducer of glial cell line-derived neurotrophic factor" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 78 => array:3 [ "identificador" => "bib1050" "etiqueta" => "79" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1523/JNEUROSCI.4267-13.2014" "Revista" => array:6 [ …6] ] ] ] ] ] 79 => array:3 [ "identificador" => "bib1055" "etiqueta" => "80" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Remyelination in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ …5] ] ] ] ] ] 80 => array:3 [ "identificador" => "bib1060" "etiqueta" => "81" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Why does remyelination fail in multiple sclerosis?" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrn917" "Revista" => array:6 [ …6] ] ] ] ] ] 81 => array:3 [ "identificador" => "bib1065" "etiqueta" => "82" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Remyelination is extensive in a subset of multiple sclerosis patients" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/brain/awl217" "Revista" => array:6 [ …6] ] ] ] ] ] 82 => array:3 [ "identificador" => "bib1070" "etiqueta" => "83" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ …5] ] ] ] ] ] 83 => array:3 [ "identificador" => "bib1075" "etiqueta" => "84" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Remyelination in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 84 => array:3 [ "identificador" => "bib1080" "etiqueta" => "85" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Imaging of remyelination and neuronal health" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 85 => array:3 [ "identificador" => "bib1085" "etiqueta" => "86" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Measuring myelin repair and axonal loss with diffusion tensor imaging" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3174/ajnr.A2238" "Revista" => array:6 [ …6] ] ] ] ] ] 86 => array:3 [ "identificador" => "bib1090" "etiqueta" => "87" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cortical pathology in multiple sclerosis: experimental approaches to studies on the mechanisms of demyelination and remyelination" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ …5] ] ] ] ] ] 87 => array:3 [ "identificador" => "bib1095" "etiqueta" => "88" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroimage.2012.10.059" "Revista" => array:6 [ …6] ] ] ] ] ] 88 => array:3 [ "identificador" => "bib1100" "etiqueta" => "89" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuroprotection and repair in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrneurol.2012.200" "Revista" => array:6 [ …6] ] ] ] ] ] 89 => array:3 [ "identificador" => "bib1105" "etiqueta" => "90" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 90 => array:3 [ "identificador" => "bib1110" "etiqueta" => "91" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regulation of remyelination in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.febslet.2011.03.048" "Revista" => array:6 [ …6] ] ] ] ] ] 91 => array:3 [ "identificador" => "bib1115" "etiqueta" => "92" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regeneration and repair in multiple sclerosis: the role of cell transplantation" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neulet.2008.03.097" "Revista" => array:6 [ …6] ] ] ] ] ] 92 => array:3 [ "identificador" => "bib1120" "etiqueta" => "93" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overcoming remyelination failure in multiple sclerosis and other myelin disorders" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.expneurol.2009.12.020" "Revista" => array:6 [ …6] ] ] ] ] ] 93 => array:3 [ "identificador" => "bib1125" "etiqueta" => "94" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 94 => array:3 [ "identificador" => "bib1130" "etiqueta" => "95" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 95 => array:3 [ "identificador" => "bib1135" "etiqueta" => "96" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Endogeneous remyelination: findings in human studies" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ …7] ] ] ] ] ] 96 => array:3 [ "identificador" => "bib1140" "etiqueta" => "97" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa010994" "Revista" => array:6 [ …6] ] ] ] ] ] 97 => array:3 [ "identificador" => "bib1145" "etiqueta" => "98" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Remyelination occurs as extensively but more slowly in old rats compared to young rats following fliotoxin-induced CNS demyelination" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 98 => array:3 [ "identificador" => "bib1150" "etiqueta" => "99" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Remyelination capacity of the MS brain decreases with disease chronicity" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1212/WNL.0b013e3181a8260a" "Revista" => array:6 [ …6] ] ] ] ] ] 99 => array:3 [ "identificador" => "bib1155" "etiqueta" => "100" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10571-009-9451-x" "Revista" => array:6 [ …6] ] ] ] ] ] 100 => array:3 [ "identificador" => "bib1160" "etiqueta" => "101" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dietary vitamin D3 supplements reduce demyelination in the cuprizone model" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0026262" "Revista" => array:5 [ …5] ] ] ] ] ] 101 => array:3 [ "identificador" => "bib1165" "etiqueta" => "102" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone model" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/apm.12281" "Revista" => array:6 [ …6] ] ] ] ] ] 102 => array:3 [ "identificador" => "bib1170" "etiqueta" => "103" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment with vitamin D/MOG association suppresses experimental autoimmune encephalomyelitis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ …4] ] ] ] ] ] 103 => array:3 [ "identificador" => "bib1175" "etiqueta" => "104" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroscience.2015.12.053" "Revista" => array:6 [ …6] ] ] ] ] ] 104 => array:3 [ "identificador" => "bib1180" "etiqueta" => "105" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of vitamin D3 intake on the onset of disease in a murine model of human Krabbe disease" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jnr.23476" "Revista" => array:6 [ …6] ] ] ] ] ] 105 => array:3 [ "identificador" => "bib1185" "etiqueta" => "106" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1523/JNEUROSCI.2615-05.2006" "Revista" => array:6 [ …6] ] ] ] ] ] 106 => array:3 [ "identificador" => "bib1190" "etiqueta" => "107" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D and Parkinson's disease—a hypothesis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mds.21317" "Revista" => array:6 [ …6] ] ] ] ] ] 107 => array:3 [ "identificador" => "bib1195" "etiqueta" => "108" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3)" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 108 => array:3 [ "identificador" => "bib1200" "etiqueta" => "109" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distribution of the vitamin D receptor and 1 α-hydroxylase in human brain" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jchemneu.2004.08.006" "Revista" => array:6 [ …6] ] ] ] ] ] 109 => array:3 [ "identificador" => "bib1205" "etiqueta" => "110" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "receptor gamma signaling accelerates CNS remyelination" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nn.2702" "Revista" => array:6 [ …6] ] ] ] ] ] 110 => array:3 [ "identificador" => "bib1210" "etiqueta" => "111" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1083/jcb.201505119" "Revista" => array:6 [ …6] ] ] ] ] ] 111 => array:3 [ "identificador" => "bib1215" "etiqueta" => "112" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.yexmp.2015.02.004" "Revista" => array:6 [ …6] ] ] ] ] ] 112 => array:3 [ "identificador" => "bib1220" "etiqueta" => "113" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of vitamin D in regulating the neural stem cells of mouse model with multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ …7] ] ] ] ] ] 113 => array:3 [ "identificador" => "bib1225" "etiqueta" => "114" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1062960" "Revista" => array:6 [ …6] ] ] ] ] ] 114 => array:3 [ "identificador" => "bib1230" "etiqueta" => "115" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mcn.2003.12.014" "Revista" => array:6 [ …6] ] ] ] ] ] 115 => array:3 [ "identificador" => "bib1235" "etiqueta" => "116" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cholecalciferol (vitamin D) improves myelination and recovery after nerve injury" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0065034" "Revista" => array:5 [ …5] ] ] ] ] ] 116 => array:3 [ "identificador" => "bib1240" "etiqueta" => "117" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "1α,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-β clearance by macrophages of Alzheimer's disease patients" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3233/JAD-2009-1080" "Revista" => array:6 [ …6] ] ] ] ] ] 117 => array:3 [ "identificador" => "bib1245" "etiqueta" => "118" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer's disease" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00702-011-0607-8" "Revista" => array:6 [ …6] ] ] ] ] ] 118 => array:3 [ "identificador" => "bib1250" "etiqueta" => "119" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Axonal transection in the lesions of multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJM199801293380502" "Revista" => array:6 [ …6] ] ] ] ] ] 119 => array:3 [ "identificador" => "bib1255" "etiqueta" => "120" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Axonal damage in acute multiple sclerosis lesions" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 120 => array:3 [ "identificador" => "bib9000" "etiqueta" => "121" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer's disease" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuron.2010.08.018" "Revista" => array:6 [ …6] ] ] ] ] ] 121 => array:3 [ "identificador" => "bib1265" "etiqueta" => "122" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Megalin interacts with APP and the intracellular adaptor protein Fe65 in neurons" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mcn.2010.07.005" "Revista" => array:6 [ …6] ] ] ] ] ] 122 => array:3 [ "identificador" => "bib1270" "etiqueta" => "123" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amyloid proteins and their role in multiple sclerosis. Considerations in the use of amyloid-PET imaging" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fneur.2016.00053" "Revista" => array:5 [ …5] ] ] ] ] ] 123 => array:3 [ "identificador" => "bib1275" "etiqueta" => "124" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amyloid PET imaging in multiple sclerosis: an <span class="elsevierStyleSup">18</span>F-florbetaben study" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ …3] ] ] ] ] ] 124 => array:3 [ "identificador" => "bib1280" "etiqueta" => "125" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jnr.23440" "Revista" => array:6 [ …6] ] ] ] ] ] 125 => array:3 [ "identificador" => "bib1285" "etiqueta" => "126" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An animal model of cortical and callosal pathology in multiple sclerosis" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1750-3639.2010.00444.x" "Revista" => array:6 [ …6] ] ] ] ] ] 126 => array:3 [ "identificador" => "bib1290" "etiqueta" => "127" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A characterization of white matter pathology following spinal cord compression injury in the rat" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroscience.2013.12.024" "Revista" => array:6 [ …6] ] ] ] ] ] 127 => array:3 [ "identificador" => "bib1295" "etiqueta" => "128" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impact of Vitamin D on amyloid precursor protein processing and amyloid-β peptide degradation in Alzheimer's disease" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000355462" "Revista" => array:7 [ …7] ] ] ] ] ] 128 => array:3 [ "identificador" => "bib1300" "etiqueta" => "129" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multiple sclerosis—remyelination failure as a cause of disease progression" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.14670/HH-27.277" "Revista" => array:6 [ …6] ] ] ] ] ] 129 => array:3 [ "identificador" => "bib1305" "etiqueta" => "130" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Managing MS in a changing treatment landscape" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00415-011-6009-x" "Revista" => array:6 [ …6] ] ] ] ] ] 130 => array:3 [ "identificador" => "bib1310" "etiqueta" => "131" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s12016-011-8287-6" "Revista" => array:6 [ …6] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735808/0000003300000003/v1_201804060407/S2173580818300117/v1_201804060407/en/main.assets" "Apartado" => array:4 [ "identificador" => "9423" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Review articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735808/0000003300000003/v1_201804060407/S2173580818300117/v1_201804060407/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580818300117?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 10 | 4 | 14 |
2024 October | 90 | 17 | 107 |
2024 September | 102 | 20 | 122 |
2024 August | 62 | 16 | 78 |
2024 July | 60 | 5 | 65 |
2024 June | 51 | 7 | 58 |
2024 May | 67 | 12 | 79 |
2024 April | 61 | 21 | 82 |
2024 March | 90 | 9 | 99 |
2024 February | 95 | 20 | 115 |
2024 January | 94 | 12 | 106 |
2023 December | 64 | 29 | 93 |
2023 November | 107 | 31 | 138 |
2023 October | 84 | 17 | 101 |
2023 September | 75 | 23 | 98 |
2023 August | 40 | 28 | 68 |
2023 July | 53 | 16 | 69 |
2023 June | 62 | 36 | 98 |
2023 May | 94 | 29 | 123 |
2023 April | 60 | 21 | 81 |
2023 March | 93 | 55 | 148 |
2023 February | 93 | 18 | 111 |
2023 January | 42 | 18 | 60 |
2022 December | 34 | 6 | 40 |
2022 November | 42 | 11 | 53 |
2022 October | 30 | 9 | 39 |
2022 September | 35 | 9 | 44 |
2022 August | 33 | 8 | 41 |
2022 July | 34 | 13 | 47 |
2022 June | 41 | 14 | 55 |
2022 May | 47 | 10 | 57 |
2022 April | 33 | 6 | 39 |
2022 March | 32 | 6 | 38 |
2022 February | 30 | 10 | 40 |
2022 January | 47 | 11 | 58 |
2021 December | 40 | 11 | 51 |
2021 November | 29 | 11 | 40 |
2021 October | 52 | 24 | 76 |
2021 September | 24 | 18 | 42 |
2021 August | 25 | 15 | 40 |
2021 July | 55 | 14 | 69 |
2021 June | 27 | 4 | 31 |
2021 May | 111 | 30 | 141 |
2021 April | 145 | 51 | 196 |
2021 March | 92 | 30 | 122 |
2021 February | 59 | 24 | 83 |
2021 January | 71 | 33 | 104 |
2020 December | 64 | 31 | 95 |
2020 November | 58 | 30 | 88 |
2020 October | 62 | 26 | 88 |
2020 September | 76 | 41 | 117 |
2020 August | 74 | 19 | 93 |
2020 July | 51 | 31 | 82 |
2020 June | 52 | 25 | 77 |
2020 May | 53 | 24 | 77 |
2020 April | 62 | 20 | 82 |
2020 March | 54 | 23 | 77 |
2020 February | 39 | 25 | 64 |
2020 January | 56 | 25 | 81 |
2019 December | 46 | 82 | 128 |
2019 November | 55 | 131 | 186 |
2019 October | 74 | 37 | 111 |
2019 September | 52 | 20 | 72 |
2019 August | 35 | 15 | 50 |
2019 July | 47 | 23 | 70 |
2019 June | 118 | 34 | 152 |
2019 May | 169 | 83 | 252 |
2019 April | 74 | 64 | 138 |
2019 March | 42 | 27 | 69 |
2019 February | 47 | 34 | 81 |
2019 January | 47 | 43 | 90 |
2018 December | 17 | 12 | 29 |
2018 November | 31 | 22 | 53 |
2018 October | 34 | 23 | 57 |
2018 September | 40 | 5 | 45 |
2018 August | 24 | 9 | 33 |
2018 July | 14 | 11 | 25 |
2018 June | 12 | 3 | 15 |
2018 May | 20 | 6 | 26 |
2018 April | 22 | 8 | 30 |
2018 March | 0 | 9 | 9 |