was read the article
array:24 [ "pii" => "S2173580823000354" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2023.05.002" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "1653" "copyright" => "Sociedad Española de Neurología" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurologia. 2023;38:e41-e51" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "en" => array:19 [ "pii" => "S0213485321001201" "issn" => "02134853" "doi" => "10.1016/j.nrl.2021.06.005" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "1653" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurologia. 2023;38:e41-e51" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "e41" "paginaFinal" => "e51" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Los biomarcadores neuroinflamatorios miARN en pacientes con COVID-19 con diferente gravedad de la enfermedad" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2986 "Ancho" => 1656 "Tamanyo" => 220756 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">PPARS</span> (a), <span class="elsevierStyleItalic">SOCS1</span> (b), and <span class="elsevierStyleItalic">CEBPA</span> (c) mRNAs in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "R. Keikha, S.M. Hashemi-Shahri, A. Jebali" "autores" => array:3 [ 0 => array:2 [ "nombre" => "R." "apellidos" => "Keikha" ] 1 => array:2 [ "nombre" => "S.M." "apellidos" => "Hashemi-Shahri" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Jebali" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173580823000354" "doi" => "10.1016/j.nrleng.2023.05.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580823000354?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485321001201?idApp=UINPBA00004N" "url" => "/02134853/0000003800000006/v1_202306091047/S0213485321001201/v1_202306091047/en/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2173580823000226" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2020.07.026" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "1512" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Neurologia. 2023;38:419-26" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Management of acute stroke. Specific nursing care and treatments in the stroke unit" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "419" "paginaFinal" => "426" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Manejo del ictus agudo. Tratamientos y cuidados específicos de enfermería en la Unidad de Ictus" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "E. Sanjuan, O. Pancorbo, K. Santana, O. Miñarro, V. Sala, M. Muchada, S. Boned, J.M. Juega, J. Pagola, Á. García-Tornel, M. Requena, N. Rodríguez-Villatoro, D. Rodríguez-Luna, M. Deck, M. Ribo, C.A. Molina, P. Meler, V. Romero, G. Dalmases, M.T. Rodríguez-Samaniego, L. Calleja, T. Gutierrez, L. Peña, J.C. Gallego, E. Lorenzo, Y. Gonzalez, R. Moreno, M. Rubiera" "autores" => array:28 [ 0 => array:2 [ "nombre" => "E." "apellidos" => "Sanjuan" ] 1 => array:2 [ "nombre" => "O." "apellidos" => "Pancorbo" ] 2 => array:2 [ "nombre" => "K." "apellidos" => "Santana" ] 3 => array:2 [ "nombre" => "O." "apellidos" => "Miñarro" ] 4 => array:2 [ "nombre" => "V." "apellidos" => "Sala" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "Muchada" ] 6 => array:2 [ "nombre" => "S." "apellidos" => "Boned" ] 7 => array:2 [ "nombre" => "J.M." "apellidos" => "Juega" ] 8 => array:2 [ "nombre" => "J." "apellidos" => "Pagola" ] 9 => array:2 [ "nombre" => "Á." "apellidos" => "García-Tornel" ] 10 => array:2 [ "nombre" => "M." "apellidos" => "Requena" ] 11 => array:2 [ "nombre" => "N." "apellidos" => "Rodríguez-Villatoro" ] 12 => array:2 [ "nombre" => "D." "apellidos" => "Rodríguez-Luna" ] 13 => array:2 [ "nombre" => "M." "apellidos" => "Deck" ] 14 => array:2 [ "nombre" => "M." "apellidos" => "Ribo" ] 15 => array:2 [ "nombre" => "C.A." "apellidos" => "Molina" ] 16 => array:2 [ "nombre" => "P." "apellidos" => "Meler" ] 17 => array:2 [ "nombre" => "V." "apellidos" => "Romero" ] 18 => array:2 [ "nombre" => "G." "apellidos" => "Dalmases" ] 19 => array:2 [ "nombre" => "M.T." "apellidos" => "Rodríguez-Samaniego" ] 20 => array:2 [ "nombre" => "L." "apellidos" => "Calleja" ] 21 => array:2 [ "nombre" => "T." "apellidos" => "Gutierrez" ] 22 => array:2 [ "nombre" => "L." "apellidos" => "Peña" ] 23 => array:2 [ "nombre" => "J.C." "apellidos" => "Gallego" ] 24 => array:2 [ "nombre" => "E." "apellidos" => "Lorenzo" ] 25 => array:2 [ "nombre" => "Y." "apellidos" => "Gonzalez" ] 26 => array:2 [ "nombre" => "R." "apellidos" => "Moreno" ] 27 => array:2 [ "nombre" => "M." "apellidos" => "Rubiera" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485320302917" "doi" => "10.1016/j.nrl.2020.07.025" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485320302917?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580823000226?idApp=UINPBA00004N" "url" => "/21735808/0000003800000006/v1_202306201000/S2173580823000226/v1_202306201000/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2173580822000748" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2020.10.012" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "1546" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurologia. 2023;38:412-8" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Reperfusion therapy in acute ischaemic stroke due to cervical and cerebral artery dissection: Results from a Spanish multicentre study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "412" "paginaFinal" => "418" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Tratamiento de reperfusión en el ictus isquémico agudo por disección arterial cervicocerebral: descripción de los resultados de un estudio nacional multicéntrico" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1399 "Ancho" => 2169 "Tamanyo" => 158506 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0040" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Flow diagram showing the patient selection process.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">CAD: cervical and cerebral artery dissection; IVT: intravenous thrombolysis; MT: mechanical thrombectomy.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Campo-Caballero, P. de la Riva, A. de Arce, M. Martínez-Zabaleta, J. Rodríguez-Antigüedad, J. Ekiza, P. Iruzubieta, F. Purroy, B. Fuentes, M. de Lera Alfonso, J. Krupinski, J.J. Mengual Chirife, E. Palomeras, D. Guisado-Alonso, M. Rodríguez-Yáñez, X. Ustrell, J. Tejada García, A. de Felipe Mimbrera, M. Paré-Curell, J. Tembl, S. Cajaraville, M. Garcés, J. Serena" "autores" => array:23 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Campo-Caballero" ] 1 => array:2 [ "nombre" => "P." "apellidos" => "de la Riva" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "de Arce" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Martínez-Zabaleta" ] 4 => array:2 [ "nombre" => "J." "apellidos" => "Rodríguez-Antigüedad" ] 5 => array:2 [ "nombre" => "J." "apellidos" => "Ekiza" ] 6 => array:2 [ "nombre" => "P." "apellidos" => "Iruzubieta" ] 7 => array:2 [ "nombre" => "F." "apellidos" => "Purroy" ] 8 => array:2 [ "nombre" => "B." "apellidos" => "Fuentes" ] 9 => array:2 [ "nombre" => "M." "apellidos" => "de Lera Alfonso" ] 10 => array:2 [ "nombre" => "J." "apellidos" => "Krupinski" ] 11 => array:2 [ "nombre" => "J.J." "apellidos" => "Mengual Chirife" ] 12 => array:2 [ "nombre" => "E." "apellidos" => "Palomeras" ] 13 => array:2 [ "nombre" => "D." "apellidos" => "Guisado-Alonso" ] 14 => array:2 [ "nombre" => "M." "apellidos" => "Rodríguez-Yáñez" ] 15 => array:2 [ "nombre" => "X." "apellidos" => "Ustrell" ] 16 => array:2 [ "nombre" => "J." "apellidos" => "Tejada García" ] 17 => array:2 [ "nombre" => "A." "apellidos" => "de Felipe Mimbrera" ] 18 => array:2 [ "nombre" => "M." "apellidos" => "Paré-Curell" ] 19 => array:2 [ "nombre" => "J." "apellidos" => "Tembl" ] 20 => array:2 [ "nombre" => "S." "apellidos" => "Cajaraville" ] 21 => array:2 [ "nombre" => "M." "apellidos" => "Garcés" ] 22 => array:2 [ "nombre" => "J." "apellidos" => "Serena" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485320304308" "doi" => "10.1016/j.nrl.2020.10.016" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485320304308?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580822000748?idApp=UINPBA00004N" "url" => "/21735808/0000003800000006/v1_202306201000/S2173580822000748/v1_202306201000/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "e41" "paginaFinal" => "e51" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "R. Keikha, S.M. Hashemi-Shahri, A. Jebali" "autores" => array:3 [ 0 => array:3 [ "nombre" => "R." "apellidos" => "Keikha" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 1 => array:3 [ "nombre" => "S.M." "apellidos" => "Hashemi-Shahri" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:4 [ "nombre" => "A." "apellidos" => "Jebali" "email" => array:1 [ 0 => "alijebal2011@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Pathology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Los biomarcadores neuroinflamatorios miARN en pacientes con COVID-19 con diferente gravedad de la enfermedad" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3022 "Ancho" => 1674 "Tamanyo" => 277367 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">IL-12p53</span> (a), <span class="elsevierStyleItalic">Stat3</span> (b), and <span class="elsevierStyleItalic">TRAF6</span> (c) mRNAs in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), known as COVID-19, is a new infectious disease first seen in late December 2019 in Wuhan, China, and similar outbreaks occurred in the hospital in neighboring countries. Major clinical symptoms include fever, dry cough, diarrhea, muscle aches, pneumonia, and in severe cases death.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">1,2</span></a> COVID-19 also is associated with neurological manifestations such as encephalopathy and encephalomyelitis, ischemic stroke and intracerebral hemorrhage, anosmia, neuromuscular diseases, and neuroinflammation diseases.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">3</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Since COVID-19 is a new disease, complete information on its etiology, cellular mechanisms, and possible risk factors is not available. COVID-19 may be similar to recent acute respiratory syndromes, such as SARS and MERS.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">4</span></a> Theoretically, after the SARS-CoV-2 enters the human body, different types of immune cells are stimulated. These cells trigger the proper immune response by producing different cytokines, chemokines, antibodies, etc. SARS-CoV-2 can infect the CNS following the entry of the virus into the nose or the eye. The viral particles are transmitted to the olfactory bulb and then to the brainstem, and then all parts of the brain.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">5</span></a> In addition to the direct attack of nerve cells, the SARS-CoV-2 can systematically cross the BBB through the blood vessels and reach the CNS. The main feature of systemic infection in COVID-19 is the massive increase in pro-inflammatory factors in the blood, which is described as a “cytokine stor”.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">6</span></a> This leads to BBB permeability and transmission of SARS-CoV-2 and peripheral immune cells. Once the coronavirus enters the CNS, it is the turn of the astrocytes and microglia to fight it. The immune response of astrocytes and microglia is regulated by different microRNAs (miRNAs). Previous studies showed inflammatory processes in CNS are guided by pro-neuroinflammatory miRNAs (such as <span class="elsevierStyleItalic">mir-155</span>, <span class="elsevierStyleItalic">mir-27b</span>, <span class="elsevierStyleItalic">mir-326</span>) and anti- neuroinflammatory miRNAs (such as <span class="elsevierStyleItalic">mir-146a</span>, <span class="elsevierStyleItalic">mir-124</span>, and <span class="elsevierStyleItalic">mir-21</span>).<a class="elsevierStyleCrossRefs" href="#bib0255"><span class="elsevierStyleSup">7,8</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">This study aimed to analyze the expression of pro-neuroinflammatory miRNAs, anti-neuroinflammatory miRNAs, and their mRNA targets in the serum of COVID-19 patients with different grades.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Materials</span><p id="par0020" class="elsevierStylePara elsevierViewall">All primers were provided from Bioneer, South Korea. MirPremier microRNA isolation kit was sourced from Sigma-Aldrich, USA. Mir-X miRNA First-Strand Synthesis kit and cDNA matermix were purchased from Takara bio inc, USA. SYBR® Green Real-Time Master Mix was from Invitrogen, UK.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Bioinformatics</span><p id="par0025" class="elsevierStylePara elsevierViewall">In this study, to determine the miRNAs associated with the COVID-19, we used online bioinformatics Softwares.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">9</span></a> In the first step, mirTarP (<a href="https://mcube.nju.edu.cn/jwang/mirTar/docs/mirTar/">https://mcube.nju.edu.cn/jwang/mirTar/docs/mirTar/</a>) was used to the list of appropriate miRNAs.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">10,11</span></a> In the second step, to reduce the number of selected miRNAs, we selected some limited pro-neuroinflammatory and anti-neuroinflammatory miRNAs that were previously reported in other studies. In the third step, the miRDB online database (<a href="http://mirdb.org/">http://mirdb.org/</a>) was used to find the target of selected miRNAs.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">12</span></a> Target genes of the differentially regulated miRNAs were predicted using the mirPath tool (version 3.0).<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">13</span></a> KEGG molecular pathways were also retrieved using the same tool.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">14</span></a> Pathways and processes regulated with <span class="elsevierStyleItalic">P</span> values lower than 0.05 were considered significant.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Study groups</span><p id="par0030" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> shows the full characteristics of 6 study groups enrolled in this study. The licensing committee that approved the experiments, including any relevant details was Zahedan University of Medical Sciences, Zahedan, Iran. All experiments were under the guidelines of the National Institute of Health, and the ethics committee of Zahedan University of Medical Sciences, Zahedan, Iran. (Ethical code: IR.ZAUMS.REC.1399.317). Also, informed consent was obtained from all participants. Five ml of whole blood was collected from each person and their serum was separated by centrifugation at 3000<span class="elsevierStyleHsp" style=""></span>rpm/min for 10<span class="elsevierStyleHsp" style=""></span>min at 4<span class="elsevierStyleHsp" style=""></span>°C. In this study, only COVID-19 patients with English variant of SARS-COV-2 (Lineage B.1.1.7; GISAID accession number: EPI-ISL-2227268) were included.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Small RNA isolation, first-strand cDNA synthesis, and quantification of miRNAs and mRNAs by qPCR</span><p id="par0035" class="elsevierStylePara elsevierViewall">Here, Small RNA was isolated from blood samples using mirPremier microRNA isolation kit. Briefly, 1000<span class="elsevierStyleHsp" style=""></span>μL of the lysis buffer was added to 100<span class="elsevierStyleHsp" style=""></span>μL of serum samples, vortexed for 2<span class="elsevierStyleHsp" style=""></span>min, and incubated at 55<span class="elsevierStyleHsp" style=""></span>°C for 5<span class="elsevierStyleHsp" style=""></span>min. The samples were then centrifuged for 5<span class="elsevierStyleHsp" style=""></span>min at 14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> to remove cellular debris, genomic DNA, and large RNA. The lysate supernatant was filtered through the filtration column and binding column. After binding, the column was first washed with 700<span class="elsevierStyleHsp" style=""></span>μL of 100% ethanol and centrifuged at 14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> for 30<span class="elsevierStyleHsp" style=""></span>s and again the flow-through was discarded. The second wash was done by adding 500<span class="elsevierStyleHsp" style=""></span>μl of binding solution into the column and centrifuged at maximum speed (14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>) for 1<span class="elsevierStyleHsp" style=""></span>min. Subsequently, 500<span class="elsevierStyleHsp" style=""></span>ml of the ethanol-diluted wash solution 2 was added to the column for a third wash. After centrifugation at maximum speed (14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>) for 30<span class="elsevierStyleHsp" style=""></span>s, the flow-through was discarded. Next, the column was dried by centrifuging at maximum speed (14,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span>) for 1<span class="elsevierStyleHsp" style=""></span>min. The column-tube assembly was carefully removed from the centrifuge to avoid splashing of the residual flow-through liquid to the dried column. Small RNA was eluted from the column using 50<span class="elsevierStyleHsp" style=""></span>ml elution solution and by centrifugation at 16,000<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">g</span> and the process was repeated to improve small RNA yield. The purity of the RNA samples was analyzed by NanoDrop ND-1000 UV-VIS spectrophotometer. The A260<span class="elsevierStyleHsp" style=""></span>nm/A280<span class="elsevierStyleHsp" style=""></span>nm ratio of all samples was between 1.8 and 2.1. The quantity of RNA samples was analyzed by agarose gel electrophoretic separation. For first-strand cDNA synthesis, small RNAs were polyadenylated and reverse transcribed using the Mir-X miRNA First-Strand Synthesis kit. Briefly, 5<span class="elsevierStyleHsp" style=""></span>μl mRQ buffer (2×), 5<span class="elsevierStyleHsp" style=""></span>μg RNA and 1.25<span class="elsevierStyleHsp" style=""></span>μl mRQ enzyme was mixed in a reaction volume of 10<span class="elsevierStyleHsp" style=""></span>μl and incubated in a thermocycler for 1<span class="elsevierStyleHsp" style=""></span>h at 37<span class="elsevierStyleHsp" style=""></span>°C, then terminate at 85<span class="elsevierStyleHsp" style=""></span>°C for 5<span class="elsevierStyleHsp" style=""></span>min to inactivate the enzymes. After reverse transcription, the cDNA was diluted. For quantification of miRNA by qPCR, Mir-X miRNA qPCR SYBR Kit was used. Briefly, 10<span class="elsevierStyleHsp" style=""></span>μl PCR reaction mixture was prepared to comprise of 1× SYBR advantage premix, 0.2<span class="elsevierStyleHsp" style=""></span>mM of both forward and reverse primers, and 50<span class="elsevierStyleHsp" style=""></span>ng of the first-strand cDNA. qPCR reactions were incubated in a 96 well plate at 95<span class="elsevierStyleHsp" style=""></span>°C for 2<span class="elsevierStyleHsp" style=""></span>min, followed by 40 cycles of 95<span class="elsevierStyleHsp" style=""></span>°C for 10<span class="elsevierStyleHsp" style=""></span>s and 60<span class="elsevierStyleHsp" style=""></span>°C for 20<span class="elsevierStyleHsp" style=""></span>s. Amplification cycles were followed by a melting curve analysis ranging from 56 to 95<span class="elsevierStyleHsp" style=""></span>°C. Finally, the threshold cycle (Ct) values were recorded. For mRNA, total RNA was extracted using an RNA extraction kit. Then, the cDNA was synthesized in the presence of the superscript enzyme and hexamers. For real-time PCR, 2<span class="elsevierStyleHsp" style=""></span>μL of cDNA, 2<span class="elsevierStyleHsp" style=""></span>μL of forward primer, and 2<span class="elsevierStyleHsp" style=""></span>μL of reverse primer of each gene were added to 10<span class="elsevierStyleHsp" style=""></span>μL of SYBR® Green Real-Time Master Mix. In this study, the relative expression of <span class="elsevierStyleItalic">mir-155</span>, <span class="elsevierStyleItalic">mir-27b</span>, <span class="elsevierStyleItalic">mir-326</span>, <span class="elsevierStyleItalic">mir-124</span>, <span class="elsevierStyleItalic">mir-146a</span>, <span class="elsevierStyleItalic">mir-21</span>, <span class="elsevierStyleItalic">IL-12p53</span>, <span class="elsevierStyleItalic">Stat3</span>, <span class="elsevierStyleItalic">TRAF6, PPARS</span>, <span class="elsevierStyleItalic">SOCS1</span>, and <span class="elsevierStyleItalic">CEBPA</span> was analyzed. The expression of microRNA and mRNA was normalized to <span class="elsevierStyleItalic">RNU 48</span> and <span class="elsevierStyleItalic">GAPDH</span>, respectively.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Statistical analysis</span><p id="par0040" class="elsevierStylePara elsevierViewall">All data were reported as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation. To find significant differences between groups, a one-way ANOVA method was applied. A <span class="elsevierStyleItalic">P</span>-value of less than 0.05 was considered statistically significant. Also, Spearman's correlation coefficient was used to correlate the expression of miRNAs and their mRNA targets.</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Results</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Bioinformatics analysis</span><p id="par0045" class="elsevierStylePara elsevierViewall">Five-top human mRNA targets for pro-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-155</span>, <span class="elsevierStyleItalic">mir-27b</span>, and <span class="elsevierStyleItalic">mir-326</span>) and anti- neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-124</span>, <span class="elsevierStyleItalic">mir-146a</span>, and <span class="elsevierStyleItalic">mir-21</span>) are shown in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>. It should be noted that each miRNA has many targets, but here we have listed only 5 important mRNA targets with the highest target score. Theoretically, all of them can be affected by pro-neuroinflammatory and anti-neuroinflammatory miRNAs.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0050" class="elsevierStylePara elsevierViewall">Based on KEGG database (<a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>), we found that both pro-neuroinflammatory miRNAs and anti-neuroinflammatory miRNAs are significantly enriched in important cellular pathways, such as PI3K-Akt signaling pathway, mRNA surveillance pathway, mTOR signaling pathway, MAPK signaling pathway, Wnt signaling pathway, and AMPK signaling pathway.</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">The expression of anti-neuroinflammatory miRNAs and their mRNA targets</span><p id="par0055" class="elsevierStylePara elsevierViewall">We found that the relative expression of anti-neuroinflammatory miRNAs, including <span class="elsevierStyleItalic">mir-21</span>, <span class="elsevierStyleItalic">mir-124</span>, and <span class="elsevierStyleItalic">mir-146a</span>, was significantly decreased with increase of COVID-19 grade (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>(a–c)). Interestingly, the relative expression of human mRNA targets, including <span class="elsevierStyleItalic">IL-12p53</span>, <span class="elsevierStyleItalic">Stat3</span>, and <span class="elsevierStyleItalic">TRAF6</span>, of anti-neuroinflammatory miRNAs was significantly increased with increase of COVID-19 grade (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>(a–c)). A negative significant correlation was seen between the expression of (<span class="elsevierStyleItalic">mir-21</span> and <span class="elsevierStyleItalic">IL-12p53</span> mRNA), (<span class="elsevierStyleItalic">mir-124</span> and <span class="elsevierStyleItalic">Stat3</span> mRNA), and (<span class="elsevierStyleItalic">mir-146a</span> and <span class="elsevierStyleItalic">TRAF6</span> mRNA) in COVID-19 patients at all grades (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>(a–c)).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">The expression of pro-neuroinflammatory miRNAs and their mRNA targets</span><p id="par0060" class="elsevierStylePara elsevierViewall">The relative expression of pro-neuroinflammatory miRNAs, including <span class="elsevierStyleItalic">mir-326</span>, <span class="elsevierStyleItalic">mir-155</span>, and <span class="elsevierStyleItalic">mir-27b</span>, was significantly increased with increase of COVID-19 grade (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>(a–c)). Interestingly, the relative expression of human mRNA targets, including <span class="elsevierStyleItalic">PPARS</span>, <span class="elsevierStyleItalic">SOCS1</span>, and <span class="elsevierStyleItalic">CEBPA</span>, of pro-neuroinflammatory miRNAs was significantly decreased with increase of COVID-19 grade (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>(a–c)). A negative significant correlation was also seen between the expression of (<span class="elsevierStyleItalic">mir-27b</span> and <span class="elsevierStyleItalic">PPARS</span> mRNA), (<span class="elsevierStyleItalic">mir-155</span> and <span class="elsevierStyleItalic">SOCS1</span> mRNA), and (<span class="elsevierStyleItalic">mir-326</span> and <span class="elsevierStyleItalic">CEBPA</span> mRNA) in COVID-19 patients at all grades (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05) (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>(a–c)).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Discussion</span><p id="par0065" class="elsevierStylePara elsevierViewall">This study showed that the relative expression of anti-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-21</span>, <span class="elsevierStyleItalic">mir-124</span>, and <span class="elsevierStyleItalic">mir-146a</span>) was decreased and the relative expression of their target mRNAs (<span class="elsevierStyleItalic">IL-12p53</span>, <span class="elsevierStyleItalic">Stat3</span>, and <span class="elsevierStyleItalic">TRAF6</span>) was increased in COVID-19 patients with increase of disease grade from asymptomatic to critical illness. Also, this study showed that the relative expression of pro-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-326</span>, <span class="elsevierStyleItalic">mir-155</span>, and <span class="elsevierStyleItalic">mir-27b</span>) was increased and the relative expression of their target mRNA (<span class="elsevierStyleItalic">PPARS</span>, <span class="elsevierStyleItalic">SOCS1</span>, and <span class="elsevierStyleItalic">CEBPA</span>) was decreased in COVID-19 patients with increase of disease grade. A negative significant correlation was seen between each miRNA and its target mRNA. Based on bioinformatics analysis, some important pathways are affected by these pro-neuroinflammatory and anti-neuroinflammatory miRNAs, including PI3K-Akt, mRNA surveillance, mTOR, MAPK, Wnt, and AMPK signaling pathways. What we have found is that in patients with high severity of illness, the expression of pro-inflammatory miRNAs is increased, and conversely, the expression of anti-inflammatory miRNAs is decreased. Of course, it is clear that this situation follows a cytokine storm. Unfortunately, we have to say that this special condition not only causes serious damage to the brain but also causes damage to several organs and leads to multiple organ failure. We think that when immune cells are highly stimulated, cytokines and miRNAs can travel through the bloodstream to the whole body. This phenomenon has been mentioned by some researchers.<a class="elsevierStyleCrossRefs" href="#bib0295"><span class="elsevierStyleSup">15,16</span></a></p><p id="par0070" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Mir-155</span> is a central pro-inflammatory mediator in CNS by NF-κB dependent TLR signaling. It is synthesized inside macrophages and microglia.<a class="elsevierStyleCrossRefs" href="#bib0305"><span class="elsevierStyleSup">17–19</span></a><span class="elsevierStyleItalic">mir-155</span> targets anti-inflammatory regulators such as <span class="elsevierStyleItalic">SOCS1</span>,<a class="elsevierStyleCrossRefs" href="#bib0305"><span class="elsevierStyleSup">17,19</span></a><span class="elsevierStyleItalic">SHIP1</span>,<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">20</span></a><span class="elsevierStyleItalic">C/EBP-β</span><a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">21</span></a> and <span class="elsevierStyleItalic">IL13Rα1</span>.<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">22</span></a><span class="elsevierStyleItalic">mir-155</span> inhibits the suppression of anti-inflammatory signaling and induces neuroinflammation. When <span class="elsevierStyleItalic">mir-155</span> is expressed, it stimulates the transcription factor p53, and it targets the c-Maf transcription factor, which induces differentiation and inflammatory responses.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">23</span></a><span class="elsevierStyleItalic">Mir-146a</span> is an anti-inflammatory regulator in nerve cells, microglia, and astrocytes. It activates by NF-κB dependent TLR signaling.<a class="elsevierStyleCrossRefs" href="#bib0340"><span class="elsevierStyleSup">24,25</span></a> The <span class="elsevierStyleItalic">Mir-146a</span> targets MyD88 signaling complex, including IRAK1 and <span class="elsevierStyleItalic">TRAF6</span>, and acts as an NF-κB signaling regulator. In addition, <span class="elsevierStyleItalic">Mir-146a</span> targets other pro-inflammatory mediators including <span class="elsevierStyleItalic">STAT</span>-1,<a class="elsevierStyleCrossRefs" href="#bib0350"><span class="elsevierStyleSup">26,27</span></a><span class="elsevierStyleItalic">IRF-5</span><a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">27</span></a> and <span class="elsevierStyleItalic">CFH</span>.<a class="elsevierStyleCrossRefs" href="#bib0360"><span class="elsevierStyleSup">28,29</span></a> The polarization of macrophages and microglia are also altered by <span class="elsevierStyleItalic">mir-146a</span>.<a class="elsevierStyleCrossRef" href="#bib0370"><span class="elsevierStyleSup">30</span></a><span class="elsevierStyleItalic">mir-124</span> is also an anti-inflammatory miRNA and has a major role in neuronal differentiation<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">31</span></a> and is highly expressed in microglia under normal conditions, but is not expressed in peripheral macrophages.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">32</span></a> Expression of <span class="elsevierStyleItalic">mir-124</span> in microglia leads to anti-inflammatory effects<a class="elsevierStyleCrossRef" href="#bib0385"><span class="elsevierStyleSup">33</span></a> by M2 phenotype.<a class="elsevierStyleCrossRef" href="#bib0390"><span class="elsevierStyleSup">34</span></a> It is clear that <span class="elsevierStyleItalic">mir-124</span> has anti-inflammatory activity by reducing inflammatory mediators and limiting microglia to activity. The role of <span class="elsevierStyleItalic">mir-21</span> is very prominent in different types of CNS cells such as microglia<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">35</span></a> and astrocytes,<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">36</span></a> neurons,<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">37</span></a> and oligodendrocytes.<a class="elsevierStyleCrossRef" href="#bib0410"><span class="elsevierStyleSup">38</span></a><span class="elsevierStyleItalic">Mir-21</span> is an anti-inflammatory regulator activated by TLR signaling. This induces the expression of the anti-inflammatory cytokine such as IL-10.<a class="elsevierStyleCrossRef" href="#bib0415"><span class="elsevierStyleSup">39</span></a> In addition, <span class="elsevierStyleItalic">mir-21</span> decreases TNF-α secretion in macrophages and microglia.<a class="elsevierStyleCrossRef" href="#bib0420"><span class="elsevierStyleSup">40</span></a><span class="elsevierStyleItalic">mir-27b</span> targets an anti-inflammatory transcriptional activator, <span class="elsevierStyleItalic">PPAR</span>-<span class="elsevierStyleItalic">γ</span>; in human macrophages, this interaction blocks the induction of an anti-inflammatory phenotype. Inhibiting <span class="elsevierStyleItalic">mir-27b</span> also limits inflammatory signaling. It leads to produce inflammatory cytokines including IL-6 and TNF-α.<a class="elsevierStyleCrossRef" href="#bib0425"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleItalic">mir-326</span> is another pro-inflammatory miRNAs and can affect on differentiation of IL-17-producing Th17 cells. It was found that silencing <span class="elsevierStyleItalic">mir-326</span> reduced EAE pathology.<a class="elsevierStyleCrossRef" href="#bib0430"><span class="elsevierStyleSup">42</span></a> miRNAs have a cumulative effect on neuronal signaling and act together in inflammatory or anti-inflammatory pathways. For example, both <span class="elsevierStyleItalic">mir-146a</span> and <span class="elsevierStyleItalic">mir-21</span> target different components of the TLR/MyD88/NF-κB and JAK-STAT pathways.<a class="elsevierStyleCrossRefs" href="#bib0350"><span class="elsevierStyleSup">26,28</span></a> In contrast, <span class="elsevierStyleItalic">mir-155</span>, <span class="elsevierStyleItalic">mir-27b</span>, and <span class="elsevierStyleItalic">mir-326</span> activate the JAK-STAT pathway by targeting <span class="elsevierStyleItalic">SOCS1</span> and <span class="elsevierStyleItalic">SHIP1</span>.<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">19</span></a> It is interesting to note that miRNAs are also present in extracellular exosomes and can participate in intercellular communication.<a class="elsevierStyleCrossRef" href="#bib0435"><span class="elsevierStyleSup">43</span></a> For example, <span class="elsevierStyleItalic">mir-124</span>, <span class="elsevierStyleItalic">mir-21</span>, and let-7 are found in exosomes and stimulate and regulate adjacent cells such as microglia and contribute to inflammatory signaling.<a class="elsevierStyleCrossRef" href="#bib0440"><span class="elsevierStyleSup">44</span></a></p><p id="par0075" class="elsevierStylePara elsevierViewall">One of main limitations of this study was to find and to collect COVID-19 patients with no comorbidities, no inflammatory autoimmune diseases, and no drug treatments. Theoretically, these factors can affect the expression of mRNAs and miRNAs. Second limitation was that we did not include COVID-19 patients caused by different variants of SARS-COV-2. Here, only COVID-19 patients with English variant (Lineage B.1.1.7) were included. We think that the expression of mRNAs and miRNAs may also be affected by virus variants. The third limitation was that we evaluated only 6 neuroinflammatory miRNAs in COVID-19 patients and it is suggested that other neuroinflammatory miRNAs could be studied in future studies.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Conclusions</span><p id="par0080" class="elsevierStylePara elsevierViewall">This study showed that the relative expression of anti-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-21</span>, <span class="elsevierStyleItalic">mir-124</span>, and <span class="elsevierStyleItalic">mir-146a</span>) was decreased and the relative expression of their mRNAs (<span class="elsevierStyleItalic">IL-12p53</span>, <span class="elsevierStyleItalic">Stat3</span>, and <span class="elsevierStyleItalic">TRAF6</span>) was increased in COVID-19 patients from asymptomatic to critical illness. Also, this study showed that the relative expression of pro-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-326</span>, <span class="elsevierStyleItalic">mir-155</span>, and <span class="elsevierStyleItalic">mir-27b</span>) was increased and the relative expression of their mRNA (<span class="elsevierStyleItalic">PPARS</span>, <span class="elsevierStyleItalic">SOCS1</span>, and <span class="elsevierStyleItalic">CEBPA</span>) was decreased in COVID-19 patients from asymptomatic to critical illness. A negative significant correlation was seen between <span class="elsevierStyleItalic">mir-21</span> and <span class="elsevierStyleItalic">IL-12p53</span> mRNA, <span class="elsevierStyleItalic">mir-124</span> and <span class="elsevierStyleItalic">Stat3</span>, between <span class="elsevierStyleItalic">mir-146a</span> and <span class="elsevierStyleItalic">TRAF6</span>, between <span class="elsevierStyleItalic">mir-27b</span> and <span class="elsevierStyleItalic">PPARS</span>, between <span class="elsevierStyleItalic">mir-155</span> and <span class="elsevierStyleItalic">SOCS1</span>, and between <span class="elsevierStyleItalic">mir-326</span> and <span class="elsevierStyleItalic">CEBPA</span> mRNA in COVID-19 patients (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05).</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Authors’ contributions</span><p id="par0085" class="elsevierStylePara elsevierViewall">(I) Conception and design: R.K. and A.J., (II) Administrative support: R.K. and A.J., (III) Provision of study materials or patients: R.K., (IV) Collection and assembly of data: A.J., (V) Data analysis and interpretation: R.K. and A.J., (VI) Manuscript writing: All authors, (VII) Final approval of manuscript: All authors.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Ethics approval and consent to participate</span><p id="par0090" class="elsevierStylePara elsevierViewall">“The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.” All experiments were under the guidelines of the National Institute of Health, the provisions of the Declaration of Helsinki,and the ethics committee of Zahedan University of Medical Sciences, Zahedan, Iran. (Ethical code: IR.ZAUMS.REC.1399.317).</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Consent for publication</span><p id="par0095" class="elsevierStylePara elsevierViewall">Not.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Availability of data and material</span><p id="par0100" class="elsevierStylePara elsevierViewall">Not.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Funding</span><p id="par0105" class="elsevierStylePara elsevierViewall">This article was financially supported by <span class="elsevierStyleGrantSponsor" id="gs1">Zahedan University of Medical Sciences</span>, Zahedan, Iran (grant number: <span class="elsevierStyleGrantNumber" refid="gs1">9937</span>).</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Conflict of interest</span><p id="par0110" class="elsevierStylePara elsevierViewall">There is no conflict of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:17 [ 0 => array:3 [ "identificador" => "xres1916567" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1654352" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1916568" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1654353" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Materials" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Bioinformatics" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Study groups" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Small RNA isolation, first-strand cDNA synthesis, and quantification of miRNAs and mRNAs by qPCR" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0040" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Bioinformatics analysis" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "The expression of anti-neuroinflammatory miRNAs and their mRNA targets" ] 2 => array:2 [ "identificador" => "sec0055" "titulo" => "The expression of pro-neuroinflammatory miRNAs and their mRNA targets" ] ] ] 7 => array:2 [ "identificador" => "sec0060" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0065" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "sec0070" "titulo" => "Authors’ contributions" ] 10 => array:2 [ "identificador" => "sec0075" "titulo" => "Ethics approval and consent to participate" ] 11 => array:2 [ "identificador" => "sec0080" "titulo" => "Consent for publication" ] 12 => array:2 [ "identificador" => "sec0085" "titulo" => "Availability of data and material" ] 13 => array:2 [ "identificador" => "sec0090" "titulo" => "Funding" ] 14 => array:2 [ "identificador" => "sec0095" "titulo" => "Conflict of interest" ] 15 => array:2 [ "identificador" => "xack672152" "titulo" => "Acknowledgements" ] 16 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2021-05-07" "fechaAceptado" => "2021-06-27" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1654352" "palabras" => array:4 [ 0 => "miRNAs" 1 => "COVID-19" 2 => "Pro-neuroinflammatory" 3 => "Anti-neuroinflammatory" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1654353" "palabras" => array:4 [ 0 => "miARN" 1 => "COVID-19" 2 => "Pro-neuroinflamatorio" 3 => "Anti-neuroinflamatorio" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The expression of specific miRNAs and their mRNA targets are changed in infectious disease. The aim of this study was to analyze the expression of pro-neuroinflammatory miRNAs, anti-neuroinflammatory miRNAs, and their mRNA targets in the serum of COVID-19 patients with different grades.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">COVID-19 patients with different grades were enrolled in this study and the expression of pro-neuroinflammatory miRNAs, anti-neuroinflammatory miRNAs, and their target mRNAs was analyzed by q-PCR.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">The relative expression of anti- neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-21</span>, <span class="elsevierStyleItalic">mir-124</span>, and <span class="elsevierStyleItalic">mir-146a</span>) was decreased and the relative expression of their target mRNAs (<span class="elsevierStyleItalic">IL-12p53</span>, <span class="elsevierStyleItalic">Stat3</span>, and <span class="elsevierStyleItalic">TRAF6</span>) was increased. Also, the relative expression of pro-neuroinflammatory miRNAs (<span class="elsevierStyleItalic">mir-326</span>, <span class="elsevierStyleItalic">mir-155</span>, and <span class="elsevierStyleItalic">mir-27b</span>) was increased and the relative expression of their target mRNA (<span class="elsevierStyleItalic">PPARS</span>, <span class="elsevierStyleItalic">SOCS1</span>, and <span class="elsevierStyleItalic">CEBPA</span>) was decreased in COVID-19 patients with increase of disease grade. A negative significant correlation was seen between <span class="elsevierStyleItalic">mir-21</span> and <span class="elsevierStyleItalic">IL-12p53</span> mRNA, <span class="elsevierStyleItalic">mir-124</span> and <span class="elsevierStyleItalic">Stat3</span> mRNA, <span class="elsevierStyleItalic">mir-146a</span> and <span class="elsevierStyleItalic">TRAF6</span> mRNA, <span class="elsevierStyleItalic">mir-27b</span> and <span class="elsevierStyleItalic">PPARS</span> mRNA, <span class="elsevierStyleItalic">mir-155</span> and <span class="elsevierStyleItalic">SOCS1</span> mRNA, and between <span class="elsevierStyleItalic">mir-326</span> and <span class="elsevierStyleItalic">CEBPA</span> mRNA in COVID-19 patients (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05).</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">This study showed that the relative expression of anti- neuroinflammatory miRNAs was decreased and the relative expression of their targeted mRNAs was increased in COVID-19 patients from asymptomatic to critical illness. Also, this study showed that the relative expression of pro-neuroinflammatory miRNAs was increased and the relative expression of their targeted mRNA was decreased in COVID-19 patients from asymptomatic to critical illness.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">La expresión de miARN específicos y sus dianas de ARNm se modifican en las enfermedades infecciosas. El objetivo de este estudio fue analizar la expresión de miARN pro-neuroinflamatorios, miARN anti-neuroinflamatorios y sus ARNm dianas en el suero de pacientes con COVID-19 de diferentes grados.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Se incluyeron en este estudio pacientes con COVID-19 de diferentes grados y se analizó la expresión de miARN pro-neuroinflamatorios, miARN anti-neuroinflamatorios y sus ARNm diana mediante q-PCR.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">La expresión relativa de miARN anti-neuroinflamatorios (mir-21, mir-124 y mir-146a) disminuyó y la expresión relativa de sus ARNm diana (IL-12p53, Stat3 y TRAF6) aumentó. Además, la expresión relativa de miARN pro-neuroinflamatorios (mir-326, mir-155 y mir-27b) aumentó y la expresión relativa de su ARNm diana (PPARS, SOCS1 y CEBPA) disminuyó en pacientes con COVID-19 con aumento del grado de enfermedad. Se observó una correlación negativa significativa entre ARNm de mir-21 e IL-12p53, ARNm de mir-124 y Stat3, ARNm de mir-146a y TRAF6, ARNm de mir-27b y PPARS, ARNm de mir-155 y SOCS1, y entre mir-326 y ARNm de CEBPA en pacientes con COVID-19 (p < 0,05).</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Este estudio mostró que la expresión relativa de miARN anti-neuroinflamatorios disminuyó y la expresión relativa de sus ARNm diana se incrementó en pacientes con COVID-19 de enfermedad asintomática a crítica. Además, este estudio mostró que la expresión relativa de miARN pro-neuroinflamatorios aumentó y la expresión relativa de su ARNm diana disminuyó en pacientes con COVID-19 de enfermedad asintomática a crítica.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2850 "Ancho" => 1574 "Tamanyo" => 242958 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">mir-21</span> (a), <span class="elsevierStyleItalic">mir-124</span> (b), and <span class="elsevierStyleItalic">mir-146a</span> (c) in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3022 "Ancho" => 1674 "Tamanyo" => 277367 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">IL-12p53</span> (a), <span class="elsevierStyleItalic">Stat3</span> (b), and <span class="elsevierStyleItalic">TRAF6</span> (c) mRNAs in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2856 "Ancho" => 1666 "Tamanyo" => 315612 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">The correlation between the relative expression of <span class="elsevierStyleItalic">mir-21</span> and <span class="elsevierStyleItalic">IL-12p53</span> mRNA (a), <span class="elsevierStyleItalic">mir-124</span> and <span class="elsevierStyleItalic">Stat3</span> mRNA (b), and <span class="elsevierStyleItalic">mir-146a</span> and <span class="elsevierStyleItalic">TRAF6</span> mRNA (c) in COVID-19 patients with different grades. Spearman's correlation coefficient was used to correlate these parameters.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2984 "Ancho" => 1705 "Tamanyo" => 273588 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">mir-27b</span> (a), <span class="elsevierStyleItalic">mir-155</span> (b), and <span class="elsevierStyleItalic">mir-326</span> (c) in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2968 "Ancho" => 1656 "Tamanyo" => 258923 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">The relative expression of <span class="elsevierStyleItalic">PPARS</span> (a), <span class="elsevierStyleItalic">SOCS1</span> (b), and <span class="elsevierStyleItalic">CEBPA</span> (c) mRNAs in COVID-19 patients with different grades. *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 compared with Mild Illness and Asymptomatic by one-way ANOVA.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2932 "Ancho" => 1637 "Tamanyo" => 330081 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">The correlation between the relative expression of <span class="elsevierStyleItalic">mir-27b</span> and <span class="elsevierStyleItalic">PPARS</span> mRNAs (a), <span class="elsevierStyleItalic">mir-155</span> and <span class="elsevierStyleItalic">SOCS1</span> mRNAs (b), and <span class="elsevierStyleItalic">mir-326</span> and <span class="elsevierStyleItalic">CEBPA</span> mRNA (c) in COVID-19 patients with different grades. Spearman's correlation coefficient was used to correlate these parameters.</p>" ] ] 6 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study group 1 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study group 2 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study group 3 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study group 4 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study group 5 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Control \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Number (<span class="elsevierStyleItalic">n</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age distribution<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>12 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>12 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sex percentage<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (52%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2%)Male (48%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (51%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2%)Male (49%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (50%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3%)Male (50%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (53%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1%)Male (47%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (52%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1%)Male (48%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (50%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>3%)Male (50%<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Severity of illness<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Grade 5</span><span class="elsevierStyleItalic">Critical illness:</span> Individuals who have respiratory failure, septic shock, and/or multiple organ dysfunction. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Grade 4</span><span class="elsevierStyleItalic">Severe illness:</span> Individuals who have SpO<span class="elsevierStyleInf">2</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>94% on room air at sea level, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>)<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>300<span class="elsevierStyleHsp" style=""></span>mm Hg, respiratory frequency ><span class="elsevierStyleHsp" style=""></span>30 breaths/min, or lung infiltrates ><span class="elsevierStyleHsp" style=""></span>50%. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Grade 3</span><span class="elsevierStyleItalic">Moderate illness:</span> Individuals who show evidence of lower respiratory disease during clinical assessment or imaging and who have saturation of oxygen (SpO<span class="elsevierStyleInf">2</span>) ≥94% on room air at sea level. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Grade 2</span><span class="elsevierStyleItalic">Mild illness:</span> Individuals who have any of the various signs and symptoms of COVID-19 (e.g., fever, cough, sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, loss of taste and smell) but who do not have shortness of breath, dyspnea, or abnormal chest imaging. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Grade 1</span><span class="elsevierStyleItalic">Asymptomatic:</span> Individuals who test positive for SARS-CoV-2 using a virologic test (i.e., a nucleic acid amplification test or an antigen test) but who have no symptoms that are consistent with COVID-19. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Healthy people</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Comorbidities \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Inflammatory autoimmune diseases \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Drug treatment \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">No \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] "notaPie" => array:1 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">The severity of COVID-19 was categorized according to NIH guidelines, <span class="elsevierStyleInterRef" id="intr0005" href="https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum">https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum</span>.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">The characteristics of study groups.</p>" ] ] 7 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Target score \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">miRNA Name \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene Symbol \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene description \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SOCS1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Suppressor Of Cytokine Signaling 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ZNF629 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Zinc finger protein 629 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CREBRF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CREB3 regulatory factor \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DENND1B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DENN domain containing 1B \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PTPN21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Protein tyrosine phosphatase, non-receptor type 21 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-27b \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PPARs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peroxisome Proliferator Activated Receptor Gamma \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-27b \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AFF4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AF4/FMR2 family member 4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-27b \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GXYLT1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glucoside xylosyltransferase 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-27b \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ARFGEF1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ADP ribosylation factor guanine nucleotide exchange factor 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-27b \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GCC2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GRIP and coiled-coil domain containing 2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CEBPA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCAAT Enhancer Binding Protein Alpha \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ETS1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ETS proto-oncogene 1, transcription factor \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CEP85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Centrosomal protein 85 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FGF11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fibroblast growth factor 11 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GPD2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glycerol-3-phosphate dehydrogenase 2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-124 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Stat3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Signal Transducer And Activator Of Transcription 3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-124 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">OSBPL3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oxysterol binding protein like 3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-124 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SLC50A1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Solute carrier family 50 member 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-124 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ITGB1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Integrin subunit beta 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-124 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SIX4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SIX homeobox 4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-146a \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TRAF6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TNF Receptor Associated Factor 6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-146a \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FOXC1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Forkhead box C1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-146a \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CPLX2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Complexin 2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-146a \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">STXBP6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Syntaxin binding protein 6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-146a \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ZFX \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Zinc finger protein X-linked \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">IL-12p53 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Interleukin 12 p53 protein \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">STK38L \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Serine/threonine kinase 38 like \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PCDH19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Protocadherin 19 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LAMP1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lysosomal associated membrane protein 1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">99 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">miR-21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GRIA2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glutamate ionotropic receptor AMPA type subunit 2 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">The human gene targets of pro-neuroinflammatory miRNAs and anti- neuroinflammatory miRNAs, obtained from miRDB online database.</p>" ] ] 8 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">KEGG pathway \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">P</span>-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Genes \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">miRNAs \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Adherens junction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Endometrial cancer \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Small cell lung cancer \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">36 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Regulation of actin cytoskeleton \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">56 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bladder cancer \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0002 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PI3K-Akt signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0002 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">105 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Shigellosis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0002 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Thyroid hormone signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.0003 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lysine degradation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-small cell lung cancer \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">mRNA surveillance pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">mTOR signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.002 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oocyte meiosis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.003 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prolactin signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.003 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Melanoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.003 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ubiquitin mediated proteolysis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatty acid metabolism \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatty acid elongation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Arrhythmogenic right ventricular \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.006 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Estrogen signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.006 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Signaling pathways regulating of stem cells \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.007 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Gap junction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sphingolipid signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.009 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Amoebiasis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pantothenate and CoA biosynthesis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MAPK signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Insulin signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Wnt signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Axon guidance \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">37 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pathogenic Escherichia coli infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AMPK signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hepatitis C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Vibrio cholerae infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Epithelial cell signaling in Helicobacter pylori infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">54 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Platelet activation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Steroid biosynthesis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Salmonella infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">Important pathways of pro-neuroinflammatory miRNAs and anti- neuroinflammatory miRNAs, extracted from KEGG molecular pathway.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:44 [ 0 => array:3 [ "identificador" => "bib0225" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H.A. Rothan" 1 => "S.N. Byrareddy" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "J Autoimmun" "fecha" => "2020" "paginaInicial" => "102433" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0230" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Coronavirus disease 2019 (COVID-19): a perspective from China" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Z.Y. Zu" 1 => "M.D. Jiang" 2 => "P.P. Xu" 3 => "W. Chen" 4 => "Q.Q. Ni" 5 => "G.M. Lu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Radiology" "fecha" => "2020" "volumen" => "200490" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0235" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "“Neurological manifestations of COVID-19”-guideline of the German society of neurology" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Berlit" 1 => "J. Bösel" 2 => "G. Gahn" 3 => "S. Isenmann" 4 => "S.G. Meuth" 5 => "C.H. Nolte" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s42466-019-0048-7" "Revista" => array:6 [ "tituloSerie" => "Neurol Res Pract" "fecha" => "2020" "volumen" => "2" "paginaInicial" => "1" "paginaFinal" => "14" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33324907" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0240" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The SARS MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N.C. Peeri" 1 => "N. Shrestha" 2 => "M.S. Rahman" 3 => "R. Zaki" 4 => "Z. Tan" 5 => "S. Bibi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Int J Epidemiol" "fecha" => "2020" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0245" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Li" 1 => "C. Wohlford-Lenane" 2 => "S. Perlman" 3 => "J. Zhao" 4 => "A.K. Jewell" 5 => "L.R. Reznikov" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/infdis/jiv499" "Revista" => array:6 [ "tituloSerie" => "J Infect Dis" "fecha" => "2016" "volumen" => "213" "paginaInicial" => "712" "paginaFinal" => "722" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26486634" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0250" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F. Coperchini" 1 => "L. Chiovato" 2 => "L. Croce" 3 => "F. Magri" 4 => "M. Rotondi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cytogfr.2020.05.003" "Revista" => array:6 [ "tituloSerie" => "Cytokine Growth Factor Rev" "fecha" => "2020" "volumen" => "53" "paginaInicial" => "25" "paginaFinal" => "32" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32446778" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0255" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNAs: roles in regulating neuroinflammation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A.D. Gaudet" 1 => "L.K. Fonken" 2 => "L.R. Watkins" 3 => "R.J. Nelson" 4 => "P.G. Popovich" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1073858417721150" "Revista" => array:6 [ "tituloSerie" => "Neuroscientist" "fecha" => "2018" "volumen" => "24" "paginaInicial" => "221" "paginaFinal" => "245" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28737113" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0260" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.A. Slota" 1 => "S.A. Booth" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/ncrna5020035" "Revista" => array:5 [ "tituloSerie" => "Non-coding RNA" "fecha" => "2019" "volumen" => "5" "paginaInicial" => "35" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31022830" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0265" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Computational methods for microRNA target prediction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S. Ekimler" 1 => "K. Sahin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/genes5030671" "Revista" => array:6 [ "tituloSerie" => "Genes" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "671" "paginaFinal" => "683" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25153283" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0270" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting microRNA mediated gene regulation between human and viruses" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "X. Shu" 1 => "X. Zang" 2 => "X. Liu" 3 => "J. Yang" 4 => "J. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/cells7080100" "Revista" => array:5 [ "tituloSerie" => "Cells" "fecha" => "2018" "volumen" => "7" "paginaInicial" => "100" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30096814" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0275" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of novel SARS-CoV-2 drug targets by host microRNAs and transcription factors co-regulatory interaction network analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Sardar" 1 => "D. Satish" 2 => "D. Gupta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Front Genet" "fecha" => "2020" "volumen" => "11" "paginaInicial" => "1105" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0280" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miRDB: an online resource for microRNA target prediction and functional annotations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "N. Wong" 1 => "X. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gku1104" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2015" "volumen" => "43" "paginaInicial" => "D146" "paginaFinal" => "D152" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25378301" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0285" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "DIANA-miRPath v3.0 deciphering microRNA function with experimental support" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "I.S. Vlachos" 1 => "K. Zagganas" 2 => "M.D. Paraskevopoulou" 3 => "G. Georgakilas" 4 => "D. Karagkouni" 5 => "T. Vergoulis" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gkv403" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2015" "volumen" => "43" "paginaInicial" => "W460" "paginaFinal" => "W466" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25977294" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0290" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The KEGG databases at GenomeNet" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Kanehisa" 1 => "S. Goto" 2 => "S. Kawashima" 3 => "A. Nakaya" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/30.1.42" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2002" "volumen" => "30" "paginaInicial" => "42" "paginaFinal" => "46" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11752249" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0295" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cardiac dysfunction and thrombocytopenia-associated multiple organ failure inflammation phenotype in a severe paediatric case of COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Latimer" 1 => "C. Corriveau" 2 => "R.L. DeBiasi" 3 => "B. Jantausch" 4 => "M. Delaney" 5 => "C. Jacquot" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Lancet Child Adolescent Health" "fecha" => "2020" "volumen" => "4" "paginaInicial" => "552" "paginaFinal" => "554" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0300" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comorbidities and multi-organ injuries in the treatment of COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Wang" 1 => "Z. Du" 2 => "F. Zhu" 3 => "Z. Cao" 4 => "Y. An" 5 => "Y. Gao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(20)30558-4" "Revista" => array:5 [ "tituloSerie" => "Lancet" "fecha" => "2020" "volumen" => "395" "paginaInicial" => "e52" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32171074" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0305" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Wang" 1 => "J. Hou" 2 => "L. Lin" 3 => "C. Wang" 4 => "X. Liu" 5 => "D. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4049/jimmunol.1000491" "Revista" => array:6 [ "tituloSerie" => "J Immunol" "fecha" => "2010" "volumen" => "185" "paginaInicial" => "6226" "paginaFinal" => "6233" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20937844" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0310" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Bala" 1 => "M. Marcos" 2 => "K. Kodys" 3 => "T. Csak" 4 => "D. Catalano" 5 => "P. Mandrekar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M110.145870" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2011" "volumen" => "286" "paginaInicial" => "1436" "paginaFinal" => "1444" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21062749" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0315" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.L. Cardoso" 1 => "J.R. Guedes" 2 => "L. Pereira de Almeida" 3 => "M.C. Pedroso de Lima" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2567.2011.03514.x" "Revista" => array:6 [ "tituloSerie" => "Immunology" "fecha" => "2012" "volumen" => "135" "paginaInicial" => "73" "paginaFinal" => "88" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22043967" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0320" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inositol phosphatase SHIP1 is a primary target of miR-155" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.M. O’Connell" 1 => "A.A. Chaudhuri" 2 => "D.S. Rao" 3 => "D. Baltimore" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.0902636106" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "2009" "volumen" => "106" "paginaInicial" => "7113" "paginaFinal" => "7118" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19359473" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0325" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Worm" 1 => "J. Stenvang" 2 => "A. Petri" 3 => "K.S. Frederiksen" 4 => "S. Obad" 5 => "J. Elmen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gkp577" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2009" "volumen" => "37" "paginaInicial" => "5784" "paginaFinal" => "5792" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19596814" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0330" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Rα1)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.T. Martinez-Nunez" 1 => "F. Louafi" 2 => "T. Sanchez-Elsner" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M110.169367" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2011" "volumen" => "286" "paginaInicial" => "1786" "paginaFinal" => "1794" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21097505" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0335" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W. Su" 1 => "S. Hopkins" 2 => "N.K. Nesser" 3 => "B. Sopher" 4 => "A. Silvestroni" 5 => "S. Ammanuel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4049/jimmunol.1301397" "Revista" => array:6 [ "tituloSerie" => "J Immunol" "fecha" => "2014" "volumen" => "192" "paginaInicial" => "358" "paginaFinal" => "366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24319262" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0340" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.D. Taganov" 1 => "M.P. Boldin" 2 => "K-J. Chang" 3 => "D. Baltimore" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "2006" "volumen" => "103" "paginaInicial" => "12481" "paginaFinal" => "12486" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0345" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.G. Cui" 1 => "Y.Y. Li" 2 => "Y. Zhao" 3 => "S. Bhattacharjee" 4 => "W.J. Lukiw" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M110.178848" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2010" "volumen" => "285" "paginaInicial" => "38951" "paginaFinal" => "38960" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20937840" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0350" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. He" 1 => "R. Tang" 2 => "Y. Sun" 3 => "Y-G. Wang" 4 => "K-Y. Zhen" 5 => "Zhang D-M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ebiom.2016.10.024" "Revista" => array:6 [ "tituloSerie" => "EBioMedicine" "fecha" => "2016" "volumen" => "13" "paginaInicial" => "339" "paginaFinal" => "347" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27780686" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0355" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Tang" 1 => "X. Luo" 2 => "H. Cui" 3 => "X. Ni" 4 => "M. Yuan" 5 => "Y. Guo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/art.24436" "Revista" => array:6 [ "tituloSerie" => "Arthritis Rheumat" "fecha" => "2009" "volumen" => "60" "paginaInicial" => "1065" "paginaFinal" => "1075" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19333922" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0360" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y.Y. Li" 1 => "J.G. Cui" 2 => "P. Dua" 3 => "A.I. Pogue" 4 => "S. Bhattacharjee" 5 => "W.J. Lukiw" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neulet.2011.05.044" "Revista" => array:6 [ "tituloSerie" => "Neurosci Lett" "fecha" => "2011" "volumen" => "499" "paginaInicial" => "109" "paginaFinal" => "113" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21640790" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0365" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "W.J. Lukiw" 1 => "Y. Zhao" 2 => "J.G. Cui" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M805371200" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2008" "volumen" => "283" "paginaInicial" => "31315" "paginaFinal" => "31322" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18801740" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0370" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264 7 macrophages" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Huang" 1 => "X-j. Liu" 2 => "J. Xie" 3 => "T-t. Ma" 4 => "X-m. Meng" 5 => "J. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.intimp.2016.01.009" "Revista" => array:6 [ "tituloSerie" => "Int Immunopharmacol" "fecha" => "2016" "volumen" => "32" "paginaInicial" => "46" "paginaFinal" => "54" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26800097" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0375" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E.V. Makeyev" 1 => "J. Zhang" 2 => "M.A. Carrasco" 3 => "T. Maniatis" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.molcel.2007.07.015" "Revista" => array:7 [ "tituloSerie" => "Mol Cell" "fecha" => "2007" "volumen" => "27" "paginaInicial" => "435" "paginaFinal" => "448" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17679093" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0883944113000713" "estado" => "S300" "issn" => "08839441" ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0380" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU. 1 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "E.D. Ponomarev" 1 => "T. Veremeyko" 2 => "N. Barteneva" 3 => "A.M. Krichevsky" 4 => "H.L. Weiner" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nm.2266" "Revista" => array:6 [ "tituloSerie" => "Nat Med" "fecha" => "2011" "volumen" => "17" "paginaInicial" => "64" "paginaFinal" => "70" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21131957" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0385" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Ma" 1 => "Y. Li" 2 => "M. Li" 3 => "G. Deng" 4 => "X. Wu" 5 => "J. Zeng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.molimm.2014.06.014" "Revista" => array:6 [ "tituloSerie" => "Mol Immunol" "fecha" => "2014" "volumen" => "62" "paginaInicial" => "150" "paginaFinal" => "158" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24995397" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0390" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T. Veremeyko" 1 => "S. Siddiqui" 2 => "I. Sotnikov" 3 => "A. Yung" 4 => "E.D. Ponomarev" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0081774" "Revista" => array:5 [ "tituloSerie" => "PLoS ONE" "fecha" => "2013" "volumen" => "8" "paginaInicial" => "e81774" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24358127" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0395" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "L. Zhang" 1 => "L.Y. Dong" 2 => "Y.J. Li" 3 => "Z. Hong" 4 => "W.S. Wei" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/glia.22404" "Revista" => array:6 [ "tituloSerie" => "Glia" "fecha" => "2012" "volumen" => "60" "paginaInicial" => "1888" "paginaFinal" => "1895" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22907769" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0400" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H.-J. Li" 1 => "Y.-B. Pan" 2 => "Z.-L. Sun" 3 => "Y.-Y. Sun" 4 => "X.-T. Yang" 5 => "D.-F. Feng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuropharm.2018.04.028" "Revista" => array:6 [ "tituloSerie" => "Neuropharmacology" "fecha" => "2018" "volumen" => "137" "paginaInicial" => "33" "paginaFinal" => "49" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29709341" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0405" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z. Han" 1 => "F. Chen" 2 => "X. Ge" 3 => "J. Tan" 4 => "P. Lei" 5 => "J. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.brainres.2014.07.045" "Revista" => array:6 [ "tituloSerie" => "Brain Res" "fecha" => "2014" "volumen" => "1582" "paginaInicial" => "12" "paginaFinal" => "20" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25108037" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0410" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-21: expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.J. Miguel-Hidalgo" 1 => "K.O. Hall" 2 => "H. Bonner" 3 => "A.M. Roller" 4 => "M. Syed" 5 => "C.J. Park" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pnpbp.2017.08.009" "Revista" => array:6 [ "tituloSerie" => "Prog Neuropsychopharmacol Biol Psychiatry" "fecha" => "2017" "volumen" => "79" "paginaInicial" => "503" "paginaFinal" => "514" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28802862" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0415" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F.J. Sheedy" 1 => "E. Palsson-McDermott" 2 => "E.J. Hennessy" 3 => "C. Martin" 4 => "J.J. O’leary" 5 => "Q. Ruan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ni.1828" "Revista" => array:6 [ "tituloSerie" => "Nat Immunol" "fecha" => "2010" "volumen" => "11" "paginaInicial" => "141" "paginaFinal" => "147" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19946272" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0420" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.E. Barnett" 1 => "D.J. Conklin" 2 => "L. Ryan" 3 => "R.C. Keskey" 4 => "V. Ramjee" 5 => "E.A. Sepulveda" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1189/jlb.4A1014-489R" "Revista" => array:6 [ "tituloSerie" => "J Leukoc Biol" "fecha" => "2016" "volumen" => "99" "paginaInicial" => "361" "paginaFinal" => "371" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26382295" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0425" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C. Jennewein" 1 => "A. von Knethen" 2 => "T. Schmid" 3 => "B. Brüne" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M109.066399" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2010" "volumen" => "285" "paginaInicial" => "11846" "paginaFinal" => "11853" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20164187" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0430" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA miR-326 regulates T H-17 differentiation and is associated with the pathogenesis of multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Du" 1 => "C. Liu" 2 => "J. Kang" 3 => "G. Zhao" 4 => "Z. Ye" 5 => "S. Huang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ni.1798" "Revista" => array:5 [ "tituloSerie" => "Nat Immunol" "fecha" => "2009" "volumen" => "10" "paginaInicial" => "1252" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19838199" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0435" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cell-to-cell communication: microRNAs as hormones" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Bayraktar" 1 => "K. Van Roosbroeck" 2 => "Calin G.A" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/1878-0261.12144" "Revista" => array:7 [ "tituloSerie" => "Mol Oncol" "fecha" => "2017" "volumen" => "11" "paginaInicial" => "1673" "paginaFinal" => "1686" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29024380" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0091674913017090" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0440" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exosomes from NSC-34 cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations in microglia phenotype" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Pinto" 1 => "C. Cunha" 2 => "M. Barbosa" 3 => "A.R. Vaz" 4 => "D. Brites" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fnins.2017.00273" "Revista" => array:5 [ "tituloSerie" => "Front Neurosci" "fecha" => "2017" "volumen" => "11" "paginaInicial" => "273" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28567000" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack672152" "titulo" => "Acknowledgements" "texto" => "<p id="par0115" class="elsevierStylePara elsevierViewall">We thank the Reference Laboratory of Zahedan University of Medical Sciences.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/21735808/0000003800000006/v1_202306201000/S2173580823000354/v1_202306201000/en/main.assets" "Apartado" => array:4 [ "identificador" => "9491" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735808/0000003800000006/v1_202306201000/S2173580823000354/v1_202306201000/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580823000354?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 2 | 4 |
2024 October | 18 | 6 | 24 |
2024 September | 26 | 5 | 31 |
2024 August | 34 | 5 | 39 |
2024 July | 27 | 8 | 35 |
2024 June | 15 | 1 | 16 |
2024 May | 35 | 5 | 40 |
2024 April | 27 | 5 | 32 |
2024 March | 48 | 6 | 54 |
2024 February | 38 | 6 | 44 |
2024 January | 29 | 11 | 40 |
2023 December | 34 | 7 | 41 |
2023 November | 29 | 7 | 36 |
2023 October | 62 | 13 | 75 |
2023 September | 61 | 7 | 68 |
2023 August | 19 | 5 | 24 |
2023 July | 34 | 7 | 41 |
2023 June | 17 | 7 | 24 |