metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) How to repair an ischemic brain injury? Value of experimental models in search o...
Journal Information
Vol. 26. Issue 2.
Pages 65-73 (January 2011)
Share
Share
Download PDF
More article options
Vol. 26. Issue 2.
Pages 65-73 (January 2011)
Editorial
Full text access
How to repair an ischemic brain injury? Value of experimental models in search of answers
¿Cómo reparar el daño cerebral isquémico? Utilidad de los modelos experimentales en la búsqueda de respuestas
Visits
1350
R. Prieto-Arribasa,
Corresponding author
rprieto29@hotmail.com

Corresponding author.
, J.M. Pascual-Garvib, F. González-Llanosc, J.M. Rodad
a Servicio de Neurocirugía, Hospital Clínico San Carlos, Madrid, Spain
b Servicio de Neurocirugía, Hospital de La Princesa, Madrid, Spain
c Servicio de Neurocirugía, Hospital Virgen de La Salud, Toledo, Spain
d Servicio de Neurocirugía, Hospital La Paz, Madrid, Spain
This item has received
Article information
Abstract

The major aim of experimental models of cerebral ischemia is to study the cerebral ischemic damage under controlled and reproducible conditions. Experimental studies have been fundamental in the establishment of new concepts regarding the mechanisms underlying the ischemic brain injury, such as the ischemic penumbra, the reperfusion injury, the cell death or the importance of the damage induced on mitochondria, glial cells and white matter. Disagreement between experimental and clinical studies regarding the benefit of drugs to reduce or restore the cerebral ischemic damage has created a growing controversy about the clinical value of the experimental models of cerebral ischemia. One of the major explanations for the failure of the clinical trials is the reductionist approach of most therapies, which are focused on the known effect of a single molecule within a specific pathway of ischemic damage. This philosophy contrasts to the complex morphological design of the cerebral tissue and the complex cellular and molecular physiopathology underlying the ischemic brain injury. We believe that the main objective of studies carried out in experimental models of cerebral ischemic injury must be a better understanding of the fundamental mechanisms underlying progression of the ischemic injury. Clinical trials should not be considered if the benefit obtained in experimental studies is limited or weak.

Keywords:
Cerebral stroke
Ischemic brain injury
Experimental models
Resumen

El objetivo principal de los modelos experimentales de isquemia cerebral es el estudio del daño isquémico cerebral en condiciones fisiológicamente controladas y reproducibles. Los estudios realizados han sido esenciales para establecer nuevos conceptos sobre los mecanismos subyacentes al daño cerebral isquémico tales como la penumbra isquémica, el daño por reperfusión, los mecanismos de muerte celular o la importancia del daño sufrido por las mitocondrias, las células gliales y la sustancia blanca. Sin embargo, debido a la discrepancia entre los estudios experimentales y clínicos respecto a la eficacia de las terapias que tratan de aminorar o revertir el daño isquémico cerebral, existe una polémica creciente en torno a la utilidad clínica de los modelos experimentales de isquemia cerebral. Uno de los principales motivos del fracaso de las diversas estrategias terapéuticas ensayadas en el ámbito clínico es el enfoque teórico reduccionista de la mayoría de los ensayos farmacológicos, que analizan el efecto de una molécula con un mecanismo de acción conocido dentro de una ruta concreta de progresión del daño isquémico. Este abordaje contrasta con la complejidad estructural y funcional del tejido cerebral y la intricada fisiopatología de las alteraciones celulares y moleculares inducidas por la isquemia. Creemos que el objetivo fundamental de los estudios realizados en modelos experimentales de isquemia cerebral debe ser la obtención de conocimientos básicos acerca de los procesos patobiológicos subyacentes al daño isquémico y que los ensayos clínicos no deberían iniciarse con agentes terapéuticos cuyos beneficios hayan sido escasos o inconsistentes en los estudios experimentales.

Palabras clave:
Infarto cerebral
Isquemia cerebral
Modelos experimentales
Full text is only aviable in PDF
References
[1.]
L. García-Bonilla, A. Rosell, G. Torregrosa, J.B. Salom, E. Alborch, M. Gutiérrez, et al.
Guía de recomendaciones en la aplicación de modelos animales para el estudio del ictus.
Neurologia, 26 (2011), pp. 105-110
[2.]
National Institute of Neurological Disorder.s, Strok.e, rt-PA study group.
Tissue plasminogen activator for acute ischemic stroke.
N Engl J Med, 333 (1995), pp. 1581-1587
[3.]
E. Bandera, M. Botteri, C. Minelli, A. Sutton, K.R. Abrams, N. Latronico.
Infarct core in acute ischemic stroke. A systematic review.
[4.]
D.W. Choi.
Glutamate neurotoxicity and diseases of the nervous system.
Neuron, 1 (1988), pp. 623-634
[5.]
B.K. Siesjö.
Historical overview. Calcium, ischemia and death of brain cells.
Ann NY Acad Sci, 522 (1988), pp. 638-661
[6.]
K.-A. Hossman.
Viability thresholds and the penumbra of focal ischemia.
Ann Neurol, 36 (1994), pp. 557-565
[7.]
J. Astrup, B. Siesjö, L. Symon.
Threshold in cerebral ischemia – the ischemic penumbra.
Stroke, 12 (1981), pp. 723-725
[8.]
T.H. Jones, R.B. Morawetz, R.M. Crowell, F.W. Marcoux, S.J. FitzGibbon, U. DeGirolami, et al.
Thresholds of focal cerebral ischemia in awake monkeys.
J Neurosurg, 54 (1981), pp. 773-782
[9.]
T. Back, W. Zhao, M.D. Ginsberg.
Three-dimensional image analysis of brain glucose metabolism/blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.
J Cereb Blood Flow Metab, 15 (1995), pp. 566-577
[10.]
J.H. Garcia, Y. Yoshida, H. Chen, Y. Li, Z.G. Zhang, J. Lian, et al.
Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.
Am J Pathol, 142 (1993), pp. 623-635
[11.]
C.S. Kidwell, J.R. Alger, J.L. Saver.
Beyond mismatch. Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging.
[12.]
J.M. Wardlaw.
Neuroimaging in acute ischaemic stroke: insights into unanswered questions of pathophysiology.
J Intern Med, 267 (2010), pp. 172-190
[13.]
M.E. Moseley, A. de Crespingny, D.M. Spielman.
Magnetic resonance imaging of human brain function.
Surg Neurol, 45 (1996), pp. 385-391
[14.]
S.P. Kloska, M. Wintermark, T. Engelhorn, J.B. Fiebach.
Acute stroke magnetic resonance imaging: current status and future perspective.
Neuroradiology, 52 (2010), pp. 189-201
[15.]
C. Oppenheim, R. Stanescu, D. Dormont, S. Crozier, B. Marro, Y. Samson, et al.
False-negative diffuse diffusion-weighted MR findings in acute ischemic stroke.
Am J Neuroradiol, 21 (2000), pp. 1434-1440
[16.]
F. Li, M.D. Silva, K.F. Liu, K.G. Helmer, T. Omae, J.D. Fenstermacher, et al.
Secondary decline in apparent diffusion coefficient and neurological outcomes after a short period of focal brain ischemia in rats.
Ann Neurol, 48 (2000), pp. 236-244
[17.]
C.S. Kidwell, J.L. Saver, J. Mattiello, S. Starkman, F. Vinuela, G. Duckwiler, et al.
Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging.
Ann Neurol, 47 (2000), pp. 269-462
[18.]
J. Fiehler, T. Kucinski, K. Knudsen, M. Rosenkranz, G. Thomalla, C. Weiller, et al.
Are there time-dependent differences in diffusion and perfusion within the first 6hours after stroke onset?.
[19.]
K.-A. Hossman.
Cerebral ischemia: Models, methods and outcomes.
Neuropharmacology, 55 (2008), pp. 257-270
[20.]
M.D. Ginsberg.
The new language of cerebral ischemia.
AJNR, 18 (1997), pp. 1435-1445
[21.]
S.H. Graham, J. Chen.
Programmed cell death in cerebral ischemia.
J Cereb Blood Flow Metab, 21 (2001), pp. 99-109
[22.]
S.W. Yu, H. Wang, M.F. Poitras, C. Coombas, W.J. Bowers, H.J. Federoff, et al.
Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.
Science, 297 (2002), pp. 259-263
[23.]
G. Kroemer, L. Galluzzi, C. Brenner.
Mitochondrial membrane permeabilization in cell death.
Physiol Rev, 87 (2007), pp. 99-163
[24.]
K. Blomgren, C. Zhu, X. Wang, J.O. Karlsson, A.L. Leverin, B.A. Bahr, et al.
Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”?.
J Biol Chem, 276 (2001), pp. 10191-10198
[25.]
S. Matsumoto, H. Friberg, M. Ferrand-Drake, T. Wieloch.
Blockade of the mitochondrial permeability transition pore disminishes infarct size in the rat after transient middle cerebral artery occlusion.
Cereb Blood Flow Metab, 19 (1999), pp. 736-741
[26.]
L. Galluzzi, K. Blomgren, G. Kroemer.
Mitochondrial membrane permeabilization in neuronal injury.
Nat Rev Neurosci, 10 (2009), pp. 481-494
[27.]
T.D. Perea, J.D. Coplan, S.H. Lisanby, C.M. Lipira, M. Arif, C. Carpio, et al.
Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates.
J Neurosci, 27 (2007), pp. 4894-4901
[28.]
B.H. Juurlink, L. Hertz, J.Y. Yager.
Astrocyte maturation and susceptibility to ischaemia or substrate deprivation.
NeuroReport, 2 (1992), pp. 1135-1137
[30.]
M.F. Anderson, F. Blomstrand, C. Blomstrand, P.S. Eriksson, M. Nilsson.
Astrocytes and stroke: networking for survival?.
Neurochem Res, 28 (2003), pp. 293-305
[31.]
R. Siushansian, J.F. Bechberger, D.F. Cechetto, V.C. Hachinski, C.C. Naus.
Connexin 43 null mutation increases infarct size after stroke.
J Comp Neurol, 440 (2001), pp. 387-394
[32.]
T. Nakase, G. Söhl, M. Theis, K. Willecke, C.C. Naus.
Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexion 43 in astrocytes.
Am J Pathol, 164 (2004), pp. 2067-2075
[33.]
J.L. Perez Velazquez, L. Kokarovtesa, R. Sarbaziha, Z. Jeyapalan, Y. Leshchenko.
Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage.
Eur J Neurosci, 23 (2006), pp. 1-10
[34.]
J.H. Garcia, H. Kalimo, Y. Kamijyo, B.F. Trump.
Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion.
Virchows Arch B Cell Pathol, 25 (1977), pp. 191-206
[35.]
D. Liang, S. Bhatta, V. Gerzanich, J.M. Simard.
Cytotoxic edema: mechanisms of pathological cell swelling.
Neurosurg Focus, 22 (2007), pp. E5
[36.]
G.T. Manley, M. Fujimura, T. Ma, N. Noshita, F. Filiz, A.W. Bollen, et al.
Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke.
Nat Med, 6 (2000), pp. 159-163
[37.]
M. Amiry-Moghaddam, R. Xue, F.M. Haug, J.D. Neely, A. Bhardwaj, P. Agre, et al.
Alpha–Syntrophin deletion removes the perivascular but no endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia.
FASEB J, 18 (2004), pp. 542-544
[38.]
O. Bloch, G.T. Manley.
The role of aquaporin-4 in cerebral water transport and edema.
Neurosurg Focus, 15 (2007), pp. E3
[39.]
A. Rolls, R. Shechter, M. Schwartz.
The bright side of the glial scar in CNS repair.
Nat Rev Neurosci, 10 (2009), pp. 235-241
[40.]
J.R. Faulkner, J.E. Herrmann, M.J. Woo, K.E. Tansey, N.B. Doan, M.W. Sofroniew.
Reactive astrocytes protect tissue and preserve function after spinal cord injury.
J Neurosci, 24 (2004), pp. 2143-2155
[41.]
G. Raisman.
Myelin inhibitors: does NO mean GO?.
Nature Rev Neurosci, 5 (2004), pp. 157-161
[42.]
S.C. Fagan, D.C. Hess, E.J. Hohnadel, D.M. Pollock, A. Ergul.
Targets for vascular protection after acute ischemic stroke.
[43.]
A. Eichmann, T. Makinen, K. Alitalo.
Neural guidance molecules regulate vascular remodelling and vessel navigation.
Genes Dev, 19 (2005), pp. 1013-1021
[44.]
P.H. Chan.
Reactive oxygen radicals in signalling and damage in the ischemic brain.
J Cereb Blood Flow Metab, 21 (2001), pp. 2-14
[45.]
M. Andersen, K. Overgaard, P. Meden, G. Boysen, S.C. Choi.
Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model.
Stroke, 30 (1999), pp. 1464-1471
[46.]
M. Asahi, K. Asahi, X. Wang, E.H. Lo.
Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats.
J Cereb Blood Flow Meta, 20 (2000), pp. 452-457
[47.]
P. Lyden, M. Jacoby, J. Schim, G. Albers, P. Mazzeo, T. Ashwood, for the CLASS IHT Investigators, et al.
The Clomethiazole Acute Stroke Study in Tissue-Type Plasminogen Activator –Treated Strokek (CLASS-T): final results.
Neurology, 57 (2001), pp. 1199-1205
[48.]
J. Grotta.
Combination Therapy Stroke Trial: recombinant tissue-type plasminogen activator with/without lubezole.
Cerebrovas Dis, 12 (2001), pp. 258-263
[49.]
R. Prieto, J.M. Pascual, B. Tavazzi, K. Taya, L. Barrios, A.M. Amorini, et al.
Early metabolic alterations following a severe diffuse traumatic brain injury in rats as detected by HPLC: Importance of PARP-1 overactivation.
World Congress of Neurlogical Surgeons, (2009),
[50.]
M.J. Eliasson, K. Sampei, A.S. Mandir, P.D. Hurn, R.J. Traystman, J. Bao, et al.
Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia.
Nature Med, 3 (1997), pp. 1089-1095
[51.]
G.Y. Yang, A.L. Betz.
Reperfusion-induced injury to the blood brain barrier after middle cerebral artery occlusion in rats.
Stroke, 25 (1994), pp. 1658-1665
[52.]
M. Asahi, K. Asahi, J.C. Jung, G.J. del Zoppo, M.E. Fini, E.H. Lo.
Role of matriz metalloproinase 9 after focal cerebral ischemia: effects of gene knockout and exime inhibition with BB-94.
J Cereb Blood Flow Metab, 20 (2000), pp. 1681-1689
[53.]
G.A. Rosenberg, Y. Yang.
Vasogenic edema due to tight junction disruption by matrix metalloprotinases in cerebral ischemia.
Neurosurg Focus, 22 (2007), pp. E4
[54.]
M. Coleman.
Axon degeneration mechanisms: commonality amid diversity.
Nat Rev Neurosci, 6 (2005), pp. 889-898
[55.]
L. Pantoni, J.H. Garcia, J.A. Gutierrez.
Cerebral White matter is highly vulnerable to ischemia.
Stroke, 27 (1996), pp. 1641-1646
[56.]
J.W. McDonald, S.P. Althomsons, K.L. Hyrc, D.W. Choi, M.P. Goldberg.
Oligodendrocytes from forebrain are highly vulnerable to AMPA/Kainate receptor-mediated excitotoxicity.
Nat Med, 4 (1998), pp. 291-297
[57.]
F. Xie, B. Zheng.
White matter inhibitors in CNS axon regeneration failure.
Exp Neurol, 209 (2008), pp. 302-312
[58.]
A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, O. Lindvall.
Neuronal replacement from endogenous precursors in the adult brain after stroke.
Nat Med, 8 (2002), pp. 963-970
[59.]
J. Silver, J.H. Miller.
Regeneration beyond the glial scar.
Nat Rev Neurosci, 5 (2004), pp. 146-156
[60.]
B. Hattiangady, M.S. Rao, G.A. Shetty, A.K. Shetty.
Brain-derived neurotrophic factor phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus.
Exp Neurol, 195 (2005), pp. 353-371
[61.]
C.E. Brown, P. Li, J.D. Boyd, K.R. Delaney, T.H. Murphy.
Extensive turnover of dendritic spines and vascular remodelling in cortical tissues recovering from stroke.
J Neurosci, 27 (2007), pp. 4101-4109
[62.]
C.E. Brown, K. Aminoltejari, H. Erb, I.R. Winship, T.H. Murphy.
In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites.
J Neurosci, 29 (2009), pp. 1719-1734
[63.]
T.H. Murphy, D. Corbett.
Plasticity during stroke recovery: from synapse to behaviour.
Nat Rev Neurosci, 10 (2009), pp. 861-872
[64.]
S.T. Carmichael, I. Archibeque, L. Luke, T. Nolan, J. Momiy, S. Li.
Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex.
Exp Neurol, 193 (2005), pp. 291-311
[65.]
Y. Takatsuru, D. Fukumoto, M. Yoshitomo, T. Nemoto, H. Tsukada, J. Nabekura.
Neuronal circuit remodelling in the contralateral cortical hemisphere during functional recovery from cerebral infarction.
J Neurosci, 29 (2009), pp. 10081-10086
[66.]
J. Biernaskie, G. Chernenko, D. Corbett.
Efficacy of rehabilitative experience declines with time after focal ischemic brain injury.
J Neurosci, 24 (2004), pp. 1245-1254
[67.]
U. Dirnagl.
Bench to bedside: the quest for quality in experimental stroke research.
J Cereb Blood Flow Metab, 26 (2006), pp. 1465-1478
[68.]
N.A. Crossley, E. Sena, J. Goehler, J. Horn, B. van der Worp, P.M. Bath, et al.
Empirical evidence for bias in the design of experimental stroke studies. A metaepidemiologic approach.
[69.]
J. Horn, R.J. de Haan, M. Vermeulen, P.G. Luiten, M. Limburg.
Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review.
Stroke, 32 (2001), pp. 2433-2438
[70.]
TRUST Study Group.
Ramdomised, Double-blind, placebocontrolled Trial of nimodipine in acute stroke.
Trust Study Group. Lancet, 336 (1990), pp. 1205-1209
[71.]
American Nimodipine Study Group.
Clinical trial of nimodipine in acute ischemic stroke.
The American Nimodipine Study Group. Stroke, 23 (1992), pp. 3-8
[72.]
M. Kaste, R. Fogelholm, T. Erila, H. Palomaki, K. Murros, A. Rissanen, et al.
A randomized. Double-blind, placebo-controlled Trial of nimodipine in acute ischemic hemispheric stroke.
Stroke, 25 (1994), pp. 1348-1353
[73.]
N.G. Wahlgren, D.G. MacMahon, J. De Keyser, B. Indredavik, T. Ryman.
Intravenous Nimodipine West European Stroke Trial (INWEST) of nimodipine in the treatment of acute ischaemic.
Stroke, 4 (1994), pp. 204-210
[74.]
J. Horn, R.J. de Haan, M. Vermeulen, M. Limburg.
Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial.
Stroke, 32 (2001), pp. 461-465
[75.]
D. Kondziolka, L. Wechsler, S. Goldstein, C. Meltzer, K.R. Thulborn, J. Gebel, et al.
Transplantation of cultured human neuronal cells for patients with stroke.
Neurology, 55 (2000), pp. 565-569
[76.]
C. Scharff, J.R. Kim, M. Grossman, J.D. Macklis, F. Nottebohm.
Targeted neuronal death affects neuronal replacement and vocal behaviour in adult songbirds.
Neuron, 25 (2000), pp. 481-492
[77.]
F. Rossi, E. Cattaneo.
Neural stem cell therapy for neurological diseases: dreams and reality.
Nat Rev Neurosci, 3 (2002), pp. 401-409
[78.]
T.C. Burns, C.M. Verfaillie, W.C. Low.
Stem cells for ischemic brain injury: a critical review.
J Comp Neurol, 515 (2009), pp. 125-1444
[79.]
P. Rakic.
Neurogenesis in adult primate neocortex: an evaluation of the evidence.
Nat Rev Neurosci, 3 (2002), pp. 65-71
[80.]
A. Alvarez-Buylla, J.M. Garcia-Verdugo.
Neurogenesis in adult subventricular zone.
J Neurosci, 22 (2002), pp. 629-634
[81.]
D. Koketsu, Y. Furuichi, M. Maeda, N. Matsuoka, Y. Miyamoto, T. Hisatsune.
Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia.
Exp Neurol, 199 (2006), pp. 92-102
[82.]
B. Zhang, R.Z. Wang, Z.G. Lian, Y. Song, Y. Yao.
Neurogenesis by activation of inherent neural stem cells in the rat hippocampus after cerebral infarction.
Chin Med. Sci J, 24 (2009), pp. 41-45
[83.]
W. Jiang, W. Gu, T. Brannstrom, R. Rosqvist, P. Wester.
Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion.
Stroke, 32 (2001), pp. 1201-1207
[84.]
K. Ohira, T. Furuta, H. Hiroki, K.C. Nakamura, E. Kuramoto, Y. Tanaka, et al.
Ischemia–induced neurogenesis of neocortical layer 1 pogenitor cells.
Nat Neurosci, 13 (2010), pp. 173-179
[85.]
H.E. Scharfman, J.H. Goodman, A.L. Sollas, S.D. Cross.
Spontaneous limbic seizures after intrahippocampal infusion of brainderived neurotrophic factor.
Exp Neurol, 174 (2002), pp. 201-214
[86.]
M. Assanah, R. Lochhead, A. Ogden, J. Bruce, J. Goldman, P. Canoll.
Glial progenitors in adult white matter are driven to dorm malignant gliomas by platelet-derived growth factor-expressing retroviruses.
J Neurosci, 26 (2006), pp. 6790-6871
[87.]
B. Mattson, J.C. Sorensen, J. Zimmer, B.B. Johansson.
Neural grafting to experimental neocortical infarcts improves behavioural outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environment.
Stroke, 28 (1997), pp. 1225-1231
[88.]
B. Kolb, C. Morshead, C. Gonzalez, M. Kim, C. Gregg, T. Shingo, et al.
Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats.
J Cereb Blood Flow Metab, 27 (2007), pp. 983-997
Copyright © 2011. Sociedad Española de Neurología
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos