metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Neuroanatomy of financial decisions
Journal Information
Vol. 26. Issue 3.
Pages 173-181 (January 2011)
Share
Share
Download PDF
More article options
Vol. 26. Issue 3.
Pages 173-181 (January 2011)
Review Article
Full text access
Neuroanatomy of financial decisions
Neuroanatomía de las decisiones financieras
Visits
1941
P.E. Bermejoa,
Corresponding author
pedro.bermejo.v@gmail.com

Corresponding author.
, R. Doradob, M.A. Zea-Sevillac, V. Sánchez Menéndezd
a Servicio de Neurología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
b Fundación Instituto San José. Servicio de Neurología, Madrid, Spain
c Servicio de Neurología, Hospital del Henares, Coslada, Madrid, Spain
d Servicio de Neurología, Hospital Universitario Reina Sofía, Córdoba, Spain
This item has received
Article information
Abstract
Introduction

Neuroeconomics is a new science that studies the brain processes involved in taking decisions, particularly related to economy and it has experienced an important advance in recent years due to the development of new neuroimaging techniques, basically functional magnetic resonance imaging. The aim of this paper it to carry out a review of the literature on the different neurological mechanisms involved in taking financial decisions, the concerned brain structures and the diseases that can affect them.

Sources

We made a non systematic review of the literature in primary (PubMed) and secondary (Tripdatabase and Cochrane Library) bibliographic databases. We also used bibliography given by the Asociación Española de Neuroeconomía.

Development

Brain reward and loss aversion systems suppose a balance that makes us take one or another decision. Dopamine plays an important role on it and several brain structures have been involved in this balance such as the amygdala, the insula, the medial prefrontal cortex, the anterior and posterior cingulated cortex, the nucleus accumbens and the ventral tegmental area. The alteration of this balance may produce inappropriate financial behaviours that may occur in common diseases including depression, mania, alcoholism, gambling and several impulse control disorders.

Conclusions

Neurologists should define our role in this interdisciplinary field due to the privileged position of our specialty to study how the brain works and due to the potential growing of this science in the near future.

Keywords:
Neuroeconomics
Nucleus accumbens
Reward system
Medial prefrontal córtex
Amygdala
Insula
Orbito-frontal cortex
Resumen
Introducción

La neuroeconomía es una nueva disciplina que estudia los procesos cerebrales de toma de decisiones, fundamentalmente económicas y que ha adquirido un importante avance en los últimos años con el desarrollo de las modernas técnicas de neuroimagen, como la resonancia magnética cerebral funcional. Este artículo realiza una revisión de la bibliografía sobre los diferentes mecanismos neurológicos implicados en la toma de decisiones financieras, las estructuras cerebrales involucradas y las enfermedades que pueden afectarlos.

Fuentes

Realizamos una revisión no sistemática de la literatura, tanto en fuentes de información primaria (PubMed) como de información secundaria (Tripdatabase y Cochrane Library). También se utilizó bibliografía cedida por la Asociación Española de Neuroeconomía.

Desarrollo

Los sistemas de recompensa cerebral y de aversión a la pérdida suponen un equilibrio que hará que optemos por una u otra decisión. En este equilibrio en el que la dopamina desempeña un papel primordial, se han visto involucradas varias estructuras cerebrales como la amígdala, la ínsula, la corteza prefrontal medial, las cortezas cinguladas anterior y posterior, el núcleo accumbens y el área tegmental ventral. Su alteración supone la producción de conductas financieras inapropiadas como tienen lugar en enfermedades tan frecuentes como la depresión, la manía, el alcoholismo, la ludopatía o diversos trastornos del control de impulsos.

Conclusiones

Los neurólogos deberíamos definir nuestro papel en esta ciencia pluridisciplinar, dada la posición de privilegio de nuestra especialidad para estudiar el funcionamiento cerebral, y al más que posible crecimiento que se espera que la neuroeconomía adquiera en un futuro cercano.

Palabras clave:
Neuroeconomía
Núcleo accumbens
Sistema de recompensa cerebral
Área prefrontal medial
Amígdala
Ínsula
Corteza orbitofrontal
Full text is only aviable in PDF
References
[1.]
Bermejo PE, Izquierdo RJ. Cerebro rico, cerebro pobre. Una introducción a la neuroeconomía. Madrid: DCT21; 2010.
[2.]
C. Camerer.
Behavioral economics: reunifying psychology and economics.
Proc Natl Acad Sci U S A, 96 (1999), pp. 10575-10577
[3.]
P.W. Glimcher, C.F. Camerer, E. Fehr, R.A. Poldrack.
Neuroeconomics.
Decision making and the brain, Elsevier, (2009),
[4.]
H. Spencer.
Principles of Psychology.
Appleton Press, (1880),
[5.]
M.A. Bozarth.
Pleasure systems in the brain.
Pleasure: The Politics and The Reality, pp. 5-14
[6.]
F. Manes, B. Sahakian, L. Clark, R. Rogers, N. Antoun, M. Aitken, et al.
Decision-making processes following damage to the prefrontal cortex.
Brain, 125 (2002), pp. 624-639
[7.]
P.E. Bermejo, L. Castillo-Moreno.
Acalculia: clasificación, etiología y tratamiento clínico.
Rev Neurol, 43 (2006), pp. 223-227
[8.]
B. Knutson, C.S. Adams, G.W. Fong, D. Hommer.
Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
J Neurosci, 21 (2001), pp. 159
[9.]
B. Knutson, G.W. Fong, S.M. Bennett, C.M. Adams, D. Hommer.
A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI.
NeuroImage, 18 (2003), pp. 263-272
[10.]
G.I. Christopoulos, P.N. Tobler, P. Bossaerts, R.J. Dolan, W. Schultz.
Neural correlates of value, risk, and risk aversion contributing to decision making under risk.
J Neurosci, 29 (2009), pp. 12574-12583
[11.]
A. Bechara, H. Damasio, A.R. Damasio.
Emotion, decision making and the orbitofrontal cortex.
Cereb Cortex, 10 (2000), pp. 295-307
[12.]
E.T. Rolls, F. Grabenhorst.
The orbitofrontal cortex and beyond: from affect to decision-making.
Prog Neurobiol, 86 (2008), pp. 216-244
[13.]
A. Bechara.
The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage.
Brain Cogn, 55 (2004), pp. 30-40
[14.]
B. Shiv, G. Loewenstein, A. Bechara, H. Damasio, A.R. Damasio.
Investment behavior and the negative side of emotion.
Psychol Sci, 16 (2005), pp. 435-439
[15.]
J.A. Weller, I.P. Levin, B. Shiv, A. Bechara.
The effects of insula damage on decision-making for risky gains and losses.
Soc Neurosci, 4 (2009), pp. 347-358
[16.]
G. Xue, Z. Lu, I.P. Levin, A. Bechara.
The impact of prior risk experiences on subsequent risky decision-making: the role of the insula.
Neuroimage, 50 (2010), pp. 709-716
[17.]
L. Clark, A. Bechara, H. Damasio, M.R. Aitken, B.J. Sahakian, T.W. Robbins.
Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making.
Brain, 131 (2008), pp. 1311-1322
[18.]
D. Polezzi, G. Sartori, R. Rumiati, G. Vidotto, I. Daum.
Brain correlates of risky decision-making.
Neuroimage, 49 (2010), pp. 1886-1894
[19.]
A. Bechara, H. Damasio, A.R. Damasio.
Role of the amygdala in decision-making.
Ann N Y Acad Sci, 985 (2003), pp. 356-369
[20.]
J. Zweig.
Your money and your brain.
Simon and Schuster paperbacks, (2007),
[21.]
M.K. Chen, V. Lakshminarayanan, L.R. Santos.
How basic are behavioral biases?.
J Political Econ, 114 (2006), pp. 517-537
[22.]
G.C. Westegaard, C. Liv, T.J. Chavanne, S.J. Suomi.
Token mediated tool-use by a tufted capuchin monkey [Cebus apella].
Animal Cogn, 1 (1998), pp. 101-106
[23.]
A. Tversky, D. Kahneman.
Rational choice and the framing of decisions.
J Business, 59 (1986), pp. 251-278
[24.]
T. Odean.
Are investors reluctant to realize their losses?.
J Finance, 5 (1998), pp. 1775-1798
[25.]
B.G.S. Hardie, E.J. Johnson, P.S. Fader.
Modeling loss aversion and reference dependence effects on brand choice.
Marketing Sci, 12 (1993), pp. 378-394
[26.]
A.B. Krueger, L.H. Summers.
Efficiency wages and the interindustry wage structure.
Econometrica, 56 (1988), pp. 259-293
[27.]
G.A. Akerlof, J.L. Yellen.
The fair wage-effort hypothesis and unemployment.
Q J Economics, 105 (1990), pp. 255-283
[28.]
R.L. Peterson.
The neuroscience of investing: fMRI of the reward system.
Brain Res Bull, 67 (2005), pp. 391-397
[29.]
M.G. Hardin, D.S. Pine, M. Ernst.
The influence of context valence in the neural coding of monetary outcomes.
Neuroimage, 48 (2009), pp. 249-257
[30.]
B. Knutson, S. Rick, G.E. Wimmer, D. Prelec, G. Loewenstein.
Neural predictors of purchases.
[31.]
C. Martin-Soelch.
Is depression associated with dysfunction of the central reward system?.
Biochem Soc Trans, 37 (2009), pp. 313-317
[32.]
B. Abler, I. Greenhouse, D. Ongur, H. Walter, S. Heckers.
Abnormal reward system activation in mania.
Neuropsychopharmacology, 33 (2008), pp. 2217-2227
[33.]
N. Makris, M. Oscar-Berman, S.K. Jaffin, S.M. Hodge, D.N. Kennedy, V.S. Caviness, et al.
Decreased volume of the brain reward system in alcoholism.
Biol Psychiatry, 64 (2008), pp. 192-202
[34.]
B. Söderpalm, E. Löf, M. Ericson.
Mechanistic studies of ethanol's interaction with the mesolimbic dopamine reward system.
Pharmacopsychiatry, 42 (2009), pp. 87-94
[35.]
Laplante DA, Nelson SE, Labrie RA, Shaffer HJ. Disordered gambling, type of gambling and gambling involvement in the British Gambling Prevalence Survey 2007. Eur J Public Health. In press.
[36.]
G. Di Chiara, V. Bassareo.
Reward system and addiction: what dopamine does and doesn’t do.
Curr Opin Pharmacol, 7 (2007), pp. 69-76
[37.]
J.A. Gil-Verona, J.F. Pastor, F. de Paz, M. Barbosa, J.A. Macias-Fernández, M.A. Maniega, et al.
Neurobiología de la adicción a las drogas de abuso.
Rev Neurol, 36 (2003), pp. 361-365
[38.]
E.P. Nolley, B.M. Kelley.
Adolescent reward system perseveration due to nicotine: studies with methylphenidate.
Neurotoxicol Teratol, 29 (2007), pp. 47-56
[39.]
J. Moncho-Bogani, F. Martínez-García, A. Novejarque, E. Lanuza.
Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala.
Eur J Neurosci, 21 (2005), pp. 2186-2198
[40.]
E.H. Castellanos, E. Charboneau, M.S. Dietrich, S. Park, B.P. Bradley, K. Mogg, et al.
Obese adults have visual attention bias for food cue images: evidence for altered reward system function.
Int J Obes (Lond), 33 (2009), pp. 1063-1073
[41.]
L.E. Stoeckel, R.E. Weller, E.W. Cook, D.B. Twieg, R.C. Knowlton, J.E. Cox.
Widespread reward-system activation in obese women in response to pictures of high-calorie foods.
Neuroimage, 41 (2008), pp. 636-647
[42.]
G. Linazaroso, N. van Blercom, A. Lasa.
Hipótesis: enfermedad de Parkinson, síndrome de deficiencia de recompensa y efectos adictivos de la levodopa.
Neurologia, 19 (2004), pp. 117-127
[43.]
D.E. Comings, K. Blum.
Reward deficiency syndrome: genetic aspects of behavioral disorders.
Prog Brain Res, 126 (2000), pp. 325-341
[44.]
D. Weintraub.
Impulse control disorders in Parkinson's disease: prevalence and possible risk factors.
Parkinsonism Relat Disord, 15 (2009), pp. 110-113
[45.]
D. Weintraub, S. Hoops, J.A. Shea, K.E. Lyons, R. Pahwa, E.D. Driver-Dunckley, et al.
Validation of the questionnaire for impulsive-compulsive disorders in Parkinson's disease.
Mov Disord, 24 (2009), pp. 1461-1467
[46.]
L. Martini, F. Domahs, T. Benke, M. Delazer.
Everyday numerical abilities in Alzheimer's disease.
J Int Neuropsychol Soc, 9 (2003), pp. 871-878
[47.]
H. Sinz, L. Zamarian, T. Benke, G.K. Wenning, M. Delazer.
Impact of ambiguity and risk on decision making in mild Alzheimer's disease.
Neuropsychologia, 46 (2008), pp. 2043-2055
[48.]
J.M. Coates, J. Herbert.
Endogenous steroids and financial risk taking on a London trading floor.
Proc Natl Acad Sci U S A, 105 (2008), pp. 6167-6172
[49.]
P. Sapienza, L. Zingales, D. Maestripieri.
Gender differences in financial risk aversion and career choices are affected by testosterone.
Proc Natl Acad Sci U S A, 106 (2009), pp. 15268-15273
[50.]
M. Baddeley.
Herding, social influence and economic decisionmaking: socio-psychological and neuroscientific analyses.
Philos Trans R Soc Lond B Biol Sci, 365 (2010), pp. 281-290
[51.]
R.M. Raafat, N. Chater, C. Frith.
Herding in humans.
Trends Cogn Sci, 13 (2009), pp. 420-428
[52.]
D.G. Amaral.
The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety.
Biol Psychiatry, 51 (2002), pp. 11-17
[53.]
D.G. Amaral.
The amygdala, social behavior, and danger detection.
Ann N Y Acad Sci, 1000 (2003), pp. 337-347
[54.]
J. Tiihonen, M. Virkkunen, P. Räsänen, S. Pennanen, E.L. Sainio, J. Callaway, et al.
Free L-tryptophan plasma levels in antisocial violent offenders.
Psychopharmacology (Berl), 157 (2001), pp. 395-400
[55.]
M. Virkkunen, H. Ebeling, I. Moilanen, P. Tani, S. Pennanen, J. Liesivuori, et al.
Total plasma l-tryptophan, free l-tryptophan and competing amino acid levels in a homicidal male adolescent with conduct disorder.
Acta Psychiatr Scand, 108 (2003), pp. 244-246
[56.]
G. Rizzolatti, M. Fabbri-Destro.
The mirror system and its role in social cognition.
Curr Opin Neurobiol, 18 (2008), pp. 179-184
[57.]
M.L. Noordzij, S.E. Newman-Norlund, J.P. de Ruiter, P. Hagoort, S.C. Levinson, I. Toni.
Brain mechanisms underlying human communication.
Front Hum Neurosci, 3 (2009), pp. 14
[58.]
L.M. Oberman, J.A. Pineda, V.S. Ramachandran.
The human mirror neuron system: A link between action observation and social skills.
Soc Cogn Affect Neurosci, 2 (2007), pp. 62-66
[59.]
I.P. Pavlov.
Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex.
Oxford University Press;, (1927),
[60.]
M.A. Kheirbek, J.A. Beeler, Y. Ishikawa, X. Zhuang.
A cAMP pathway underlying reward prediction in associative learning.
J Neurosci, 28 (2008), pp. 11401-11408
[61.]
P.V. Chandrasekhar, C.M. Capra, S. Moore, C. Noussair, G.S. Berns.
Neurobiological regret and rejoice functions for aversive outcomes.
Neuroimage, 39 (2008), pp. 1472-1484
[62.]
J.M. Allman, A. Hakeem, J.M. Erwin, E. Nimchinsky, P. Hof.
The anterior cingulate cortex. The evolution of an interface between emotion and cognition.
Ann N Y Acad Sci, 935 (2001), pp. 107-117
[63.]
Z.M. Williams, G. Bush, S.L. Rauch, G.R. Cosgrove, E.N. Eskandar.
Human anterior cingulate neurons and the integration of monetary reward with motor responses.
Nat Neurosci, 7 (2004), pp. 1370-1375
[64.]
G. Bush, B.A. Vogt, J. Holmes, A.M. Dale, D. Greve, M.A. Jenike, et al.
Dorsal anterior cingulate cortex: a role in reward-based decision making.
Proc Natl Acad Sci U S A, 99 (2002), pp. 523-528
[65.]
W.J. Gehring, A.R. Willoughby.
The medial frontal cortex and the rapid processing of monetary gains and losses.
Science, 295 (2002), pp. 2279-2282
[66.]
C.E. Preston, S. Harris.
Psychology of drivers in traffic accidents.
J Appl Psychol, 49 (1965), pp. 284-288
[67.]
O. Svenson.
Are we all less risky and more skillful than our fellow drivers?.
Acta Psychologica, 47 (1981), pp. 143-148
[68.]
B. Weber, A. Rangel, M. Wibral, A. Falk.
The medial prefrontal cortex exhibits money illusion.
Proc Natl Acad Sci U S A, 106 (2009), pp. 5025-5028
[69.]
K. Matsumoto, K. Tanaka.
The role of the medial prefrontal cortex in achieving goals.
Curr Opin Neurobiol, 14 (2004), pp. 178-185
[70.]
P. Presson, V. Benassi.
Illusion of control: a metaanalytic review.
J Social Behavior Personality, 3 (1996), pp. 493-510
Copyright © 2011. Sociedad Española de Neurología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos