metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Understanding the pathophysiology of epilepsy in an animal model: Pentylenetetra...
Journal Information
Vol. 25. Issue 3.
Pages 148-155 (April 2010)
Share
Share
Download PDF
More article options
Vol. 25. Issue 3.
Pages 148-155 (April 2010)
Full text access
Understanding the pathophysiology of epilepsy in an animal model: Pentylenetetrazole induces activation but not death of neurons of the medial extended amygdala
Descifrando la fisiopatología de la epilepsia en un modelo animal: el pentilentetrazol induce la activación pero no la muerte de las neuronas de la amígdala extendida medial
Visits
1545
G. Pereno
Corresponding author
gpereno@psyche.unc.edu.ar

Author for correspondence.
, C. Beltramino
Cátedra de Neurología y Psicología, Facultad de Psicología, Universidad Nacional de Córdoba, Argentina
This item has received
Article information
Abstract
Introduction

Since middle of the 20th century the importance of amygdala in epilepsy it has suggested, although the basic mechanisms of this participation are still unknown. This ignorance increases when the different subdivisions of amygdala are considered, especially the medial amygdala. In this work we assess the involvement of the medial extended amygdala in an animal model of epilepsy and the consequences of its application in this brain structure.

Material and methods

Forty eight adult Wistar male rats were used, of which 24 of them received i.p. injections of pentylenetetrazole, and 24 (controls) were injected with saline. After 2, 6, 12 and 24 h survival, animals were fixed; the brains were sectioned serially and stained for fos (immunochemistry) and for neuronal death with the A-Cu-Ag technique. Data were analysed using two-way ANOVA followed by the Fisher post hoc test.

Results

Very few or no fos-immunoreactive neurons were seen in control animals. In experimental animals, fos was rapidly induced in structures of medial extended amygdala with peak levels at 2 h. Marked fos immunoreactivity persisted up to 12 h followed by a gradual return to baseline at 24 h. However, status epilepticus did not induced neuronal death.

Conclusions

These results show involvement of medial extended amygdala in epileptic mechanisms with an inhibitory component. However, neuronal death is not a consequence of status epilepticus-induced by pentylentetrazole.

Keywords:
Medial extended amygdala
Epilepsy
Fos
GABA
Pentylentetrazole
Resumen
Introducción

Desde mitad del siglo xx se ha apuntado a la importancia de la amígdala en la epilepsia, aunque los mecanismos básicos de esta participación en su mayoría son aún desconocidos. Esta ignorancia es aún mayor cuando se tienen en cuenta las distintas subdivisiones de la amígdala, especialmente sus partes mediales. En este trabajo evaluamos la participación de la amígdala extendida medial en un modelo animal de epilepsia, así como las consecuencias que tiene el epileptógeno en esta estructura cerebral.

Material y métodos

Se utilizaron ratas adultas Wistar machos (n = 48); 24 animales recibieron inyecciones intraperitoneales de pentilentetrazol y 24, de salina. Luego de 2, 6, 12 y 24 h de sobrevida, los animales se fijaron, y sus cerebros se cortaron seriadamente y se procesaron para fos (inmunoquímica) y muerte neuronal con la técnica A-Cu-Ag. Los datos se analizaron con un ANOVA de 2 vías seguido de un test post-hoc (LSD de Fisher).

Resultados

Muy poca activación fos se halla en animales controles. En animales experimentales, fos fue rápidamente inducida en la amígdala extendida medial a las 2 h. Esta activación fue sostenida hasta las 12 h y retornó a valores basales a las 24 h. Sin embargo, el estado epiléptico no produjo muerte neuronal.

Conclusiones

Se demuestra así una participación de la amígdala extendida medial en mecanismos epilépticos en los cuales subyace un componente inhibitorio. Sin embargo, el estado epiléptico inducido no produce muerte neuronal en esta estructura.

Palabras clave:
Amígdala extendida medial
Epilepsia
Fos
GABA
Pentilentetrazol
Full text is only aviable in PDF
References
[1.]
C. De la Vega, P. Villanueva-Hernandez, A. Prieto-Martín.
Neuroquímica de la epilepsia, neurotransmisión inhibitoria y modelos experimentales: nuevas perspectivas.
Rev Neurol, 42 (2006), pp. 159-168
[2.]
Y. Ben-Ari.
Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy.
Neuroscience, 14 (1985), pp. 375-403
[3.]
G. Curia, D. Longo, G. Biagini, R. Jones, M. Avolia.
The pilocarpine model of temporal lobe epilepsy.
J Neurosci Methods, 172 (2008), pp. 143-157
[4.]
K. Itoh, M. Watanabe.
Paradoxical facilitation of PTZ-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase.
Neuroscience, 159 (2009), pp. 735-743
[5.]
J.S. De Olmos, C.A. Beltramino, G. Aldheid.
Amygdala and extended amygdala of the rat: A Cytoarchitectonical, Fibroarchitec-tonical and Chemoarchitectonical Survey.
The rat nervous system, 3rd ed, pp. 509-603
[6.]
E.B. Keverne, C. De la Riva.
Pheromones in mice: Reciprocal interactions between the nose and brain.
Nature, 296 (1982), pp. 148-150
[7.]
C.A. Beltramino, S. Taleisnik.
Release of LH in the female rat by olfactory stimuli. Effect of removal of the vomeronasal organ or lesioning of the accessory olfactory bulbs.
Neuroendocrinol, 36 (1983), pp. 53-58
[8.]
A. Pitkänen, J. Tuunanen, R. Kalviainen, K. Partanen, T. Salmenpera.
Amygdala damage in experimental and human temporal lobe epilepsy.
Epilepsy Res, 32 (1998), pp. 233-253
[9.]
E. Martínez-Castillo, J. Arrazola, A. Fernández, F. Maestú, T. Ortiz.
Atrofia del complejo amigdalino y expresión neuropsiquiátrica de la enfermedad de Alzheimer.
Rev Neurol, 33 (2001), pp. 477-482
[10.]
E.J. Nestler, M. Barrot, R.J. DiLeone, A.J. Eisch, S.J. Gold, L.M. Monteggia.
Neurobiology of depression.
Neuron, 34 (2002), pp. 13-25
[11.]
M.B. Stein, A.N. Simmons, J.S. Feinstein, M.P. Paulus.
Increased Amygdala and insula activation during emotion processing in anxiety-prone subjects.
Am J Psychiatry, 164 (2007), pp. 318-327
[12.]
M. Ding, K.G. Haglid, A. Hamberger.
Quantitative immunochemistry on neuronal loss, reactive gliosis and BBB damage in cortex/striatum and hippocampus/amygdala after systemic kainic acid administration.
Neurochem Int, 36 (2000), pp. 313-318
[13.]
A. Riba-Bosch, J. Pérez-Clausell.
Reponse to kainic acid injections: changes in staining for Zinc, fos, cell death and glial response in the rat forebrain.
Neuroscience, 125 (2004), pp. 803-818
[14.]
K. Kovacs.
C-fos as a transcription factor: a stressful (re) view from a functional map.
Neurochem Int, 33 (1998), pp. 287-297
[15.]
V. André, N. Pineau, J.E. Motte, C. Marescaux, A. Nehlig.
Mapping of neuronal networks underlying generalized seizures induced by increase doses of PTZ in the immature and adult rat: a c-Fos immunohistochemical study.
Eu J Neurosci, 10 (1998), pp. 2094-2106
[16.]
N. Pineau, C. Charriaut-Marlangue, J. Motte, A. Nehlig.
PTZ seizures induce cell suffering but not death in the immature rat brain.
Brain Res Dev Brain Res, 112 (1999), pp. 139-144
[17.]
J.S. De Olmos, C.A. Beltramino, S. De Olmos de Lorenzo.
Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma.
Neurotoxicol Teratol, 16 (1994), pp. 545-561
[18.]
G. Paxinos, C. Watson.
The rat brain in stereotaxic coordinates.
Academic Press, (1995),
[19.]
A. Muñoz, J.I. Arellano, J. Defelipe.
GABABR1 receptor protein expresión in human mesial temporal cortex: changes in temporal lobe epilepsy.
J Comp Neurol, 449 (2002), pp. 166-179
[20.]
S. Furtinger, S. Pirker, T. Czech, C. Baumgartner.
Increased expression of gamma aminobutyric acid type B receptors in the hippocampus of patients with temporal lobe epilepsy.
Neurosci Lett, 352 (2003), pp. 141-145
[21.]
C. Schawarzer, K. Tsunanshima, K. Fuchs, W. Sleghart.
GABAA receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy.
Neuroscience, 80 (1997), pp. 1001-1017
[22.]
Y. Ben-Ari.
Excitatory actions of GABA during development: the nature of the nurture.
Nat Rev Neurosci, 3 (2002), pp. 728-739
[23.]
A. Straessie, F. Loup, D. Arabadzisz, G.V. Ohning, J.M. Fritschy.
Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy.
Eu J Neurosci, 18 (2003), pp. 2213-2226
[24.]
S.C. Baraban, M.R. Taylor, P.A. Castro, H. Baier.
PTZ induced changes in zebrafish behavior, neural activity and c-fos expression.
Neuroscience, 131 (2005), pp. 759-768
[25.]
M. Erdtmann-Vourliotis, U. Riechert, P. Mayer, G. Grecksch, V. Höllt.
PTZ-induced c-fos expression in the hippocampus of kindled rats is suppressed by concomitant treatment with naloxone.
Brain Res, 792 (1998), pp. 299-308
[26.]
J. Pastor, Y. Uzcátegui, B. Gal-Iglesias, G. Ortega, R. Sola, L. Menéndez de la Prida.
Bases fisiopatológicas de la epilepsia del lóbulo temporal: estudios en humanos y animales.
Rev Neurol, 42 (2006), pp. 663-673
[27.]
R. Miyamoto, S. Shimakawa, S. Susuki, T. Ogihara, H. Tamai.
Edaravone prevents kainic acid-induced neuronal death.
Brain Res, 1209 (2008), pp. 85-91
[28.]
Y.H. Liu, L. Wang, L.C. Wei, Y.G. Huang, L.W. Chen.
Up-regulation of D: —serine Might Induce GABAergic neuronal degeneration in the cerebral cortex and hippocampus in the mouse pilocarpine model of epilepsy.
Neurochem Res, 34 (2009), pp. 1209-1218
[29.]
J.H. Park, H. Cho, H. Kim, K. Kim.
Repeated brief epileptic seizures by PTZ cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats.
Neuroscience, 140 (2006), pp. 673-684
[30.]
B.D. Obay, E. Tasdemir, C. Tümer, H.M. Bilgin, M. Atmaca.
Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model.
[31.]
M. Pellegrini, C.T. Baldari.
Apoptosis and oxidative stress-related diseases: the p66Shc connection.
Curr Mol Med, 9 (2009), pp. 392-398
Copyright © 2010. Sociedad Española de Neurología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos